
!"#$%&'$%()*+(,-%. /0 . .1. 2 .334+567#8%-'6$.2099:%;,<

Information technology - Programming languages - Prolog - Part 1:
General Core
DRAFT TECHNICAL CORRIGENDUM 1

Draft technical corrigendum 1 to International Standard 13211-1:1995 (E) was prepared by Joint Technical
Committee ISO/IEC JTC 1, Information technology

NOTE - Some text in Mathematical font is expressed
using Latex convention, i.e. surrounded with ‘$’ signs.

3.106 mapping
‘mapping’ is used with a second meaning in the
standard: add a second definition
 A function from a value of one type T to a value of
another type R denoted by $T \rightarrow R$

3.108 most general unifier (MGU)
Replace ‘instance’ by ‘example’ because ‘instance’ is
not being used with the meaning defined in 3.95.

3.125 partial list
Replace ‘A variable’ by ‘A variable’.
Replace ‘second argument’ by ‘second argument’.

3.148 read-term
Replace ‘end token.’ by ‘end token’.

4.1.3.5 Axiom
Replace:

Axiom: if x > 0 then √ x is the positive square root of x
else undefined.
by

Axiom: if x ≥ 0 then √ x is the non-negative square root
of x else undefined.

6.3.7 Term -- double quoted list notation
If a double quoted list represents an atom (i.e. the
Prolog flag ‘double_quotes’ has value ‘atom’), the
priority of the term should depend on whether or not the
atom is an operator as in 6.3.1.3. ISO/IEC 13211-1
states that the priority of an atom represented by a
double quoted list is always zero.
Replace the syntax rule by the four syntax rules:

term = double quoted list ;
Abstract: l dql
Priority: 0
Condition: Prolog flag double_quotes has value chars

term = double quoted list ;
Abstract: l dql
Priority: 0
Condition: Prolog flag double_quotes has value code

atom = double quoted list ;
Abstract: a dql
Priority: n
Condition: Prolog flag double_quotes has value atom
Condition: a is an operator

atom = double quoted list ;
Abstract: a dql
Priority: 0
Condition: Prolog flag double_quotes has value atom
Condition: a is not an operator

7.2.5 c) 2)
Replace
2) if XN is the ...
by
2) XN is the ...

7.8.5.4
Replace the first sentence:
Tables 27 and 28 show the execution stack before and
after executing the control construct ','(First,
second).

by
Tables 27 and 28 show the execution stack before and
after executing the control construct ','(First,
Second).

Table 35 line 2
Replace
(else(W), CP)

by

1

!"#$%&'$%()*+(,-%. /0 . .1. 2 .334+567#8%-'6$.2099:%;,<

(Else, CP)

7.8.8.4 last example
Replace
';'('->'(!,fail), true), true).

by
';'(('->'(!,fail), true), true).

7.9.2
Add additional errors:
i) The value of an argument Culprit is not a member of
the set I

- type_error(integer, Culprit)
j) The value of an argument Culprit is not a member of
the set F

- type_error(float, Culprit)
9.1.7 example no. 35 shows these errors are required.

7.12.2 i)
Twice replace
imp_dep_atom

by
Imp_dep_atom

8.8.1.1 d)
Replace
 Chooses the first element of the list L
by
 Chooses the first element of the list L, unifies it with
the term clause(Head,Body)

Similarly for f).

8.9.4.1 abolish/1: Description
In the note, replace ‘procedures identified’ by
‘procedure identified’.

8.10.3.4 example no. 20
Replace
 [a, b, f(b), f(a)]

by
 [a, b, f(a), f(b)]

8.13.3.4 put_byte/1
Replace
put_byte(84).
 If the current output stream contains
 [..., 113,119,101,114]
 Succeeds, and leaves that stream
 [..., 113,119,101,114,116]

put_byte(st_o, 84).
 If the stream associated with st_o contains
 [..., 113,119,101,114]
 Succeeds, and leaves that stream
 [..., 113,119,101,114,116]

by
put_byte(84).
 If the current output stream contains
 [..., 113,119,101,114]
 Succeeds, and leaves that stream
 [..., 113,119,101,114,84]

put_byte(st_o, 116).
 If the stream associated with st_o contains
 [..., 113,119,101,114]
 Succeeds, and leaves that stream
 [..., 113,119,101,114,116]

8.14.1.4 examples no. 2 and 3
Replace
st_o

by
st_i

8.14.1.4 example no. 6 (last)
Replace
 The current input stream is left with position past-
end-of-stream.
by
 The current input stream is left in an undefined state.
(Cf. 8.14.1.1 NOTE 2)

8.14.4.1 d)
Replace
 Chooses a member of Set_Op and the goal
succeeds
by
 Chooses a member of Set_Op, unifies it with
(Priority, Op_specifier, Operator), and the goal
succeeds

8.16.4 atom_chars/2
The sixth example in 8.16.4.4 is
atom_chars('North', ['N’ | X]).
 Succeeds, unifying X with
 ['o', ‘r', ‘t', ‘h'].

but the procedural description does not permit this.
Replace 8.16.4.1(c) by:
c) Else if Atom is an atom whose name is the sequence
of characters Seq and List unifies with a list L such
that every element of L is the one-char atom whose
name is the corresponding element of Seq, then the
goal succeeds,

8.16.5 atom_codes/2
The error noted in 8.16.4 implies a similar change in
this procedure. Replace 8.16.5.1(c) by:
c) Else if Atom is an atom whose name is the sequence
of characters Seq and List unifies with a list L such
that every element of L is the character code of the
corresponding element of Seq, then the goal
succeeds,

2

!"#$%&'$%()*+(,-%. /0 . .1. 2 .334+567#8%-'6$.2099:%;,<

9.1.4.1
Add a note pointing to the definition of F* (7.1.3.1).

9.1.7 example no. 21
Replace
'/'(7, 35)

by
'//'(7, 35)

9.1.7 example no. 23
Replace
'/'(140, 3+11)

by
'//'(140, 3+11)

9.1.7 example no. 24
Replace
14.200

by
1.4200

9.1.7 example no. 48
Replace
float(5/3)

by
float(5//3)

9.3.5.4 example no. 2 9.3.6.4 example no. 2
Replace
2.7818

by
2.71828

9.4.1.4 example no. 5, 9.4.2.4 example no. 5.
9.4.3.4 example no. 6, 9.4.4.4 example no. 6
Replace
type(integer,foo)

by
type_error(evaluable,foo/0)

3

!"#$%&'$%()*+(,-%. /0 . .1. 2 .334+567#8%-'6$.2099:%;,<

Annex A

(informative)
Issues still to be resolved

The following points indicate possible problems with
the standard, but do not specify corrections or cures.

6.4.2.1 Quoted characters
The text does not define what character is denoted by a
‘double quote char’ or ‘back quote char’ which is a
‘single quoted character’.
Similar omissions exist for ‘double quoted character’
and ‘back quoted character’.

6.5
Replace
 It shall be implementation defined for each extended
character whether it is a graphic char, or an
alphanumeric char, or a solo char,
This classification is incomplete in the following sense:
- It is not enough to classify an extended character as an
<<alphanumeric char>>, one has to also tell if it is a
<<small letter char>>, <<capital letter char>> (e.g.
NOTE 2 of 6.5 speaks of <<extended small letter
char>>).
- The notion of <<solo char>> is unfortunate: it contains
characters that form a <<name token>> alone (! and ;),
and punctuation characters, which cannot be part of an
unquoted <<name token>>. Classifying an extended
character as a <<solo char>> does not make this
character usable as a token alone, because there is no
syntactic rule for this (! and ; are included explicitly in
<<name token>>).
Along the lines of the Quintus/SICStus Prolog syntax,
perhaps the category of <<solo char>> should be
changed to mean only <<cut char>> and <<semicolon
char>>, and a new category <<punctuation char>> is
introduced to contain all other characters presently
classified as solo. And there should be a non-terminal
<<solo token>>, replacing <<semicolon token>> and
<<cut token>> in <<name token>>, which is defined as:
 solo token = solo char ;
The standard should let the user classify an extended
character by placing it in exactly one of the following
character categories:
 graphic char
 small letter char
 capital letter char
 solo char
 layout char
In addition to these, the notion of <<char>> covers the
categories <<decimal digit char>>, <<underline char>>,
<<punctuation char>> and <<meta char>> - It may not

make sense to allow the user to classify extended
characters into one of these categories. Perhaps it may
be useful to have a category <<other char>>, initially
empty; any extended character classified as such would
only be allowed in (double, back) quoted tokens.
A wide character extension to SICStus Prolog allows
the user to plug in arbitrary character sets and define,
through C hook functions, the character-type mapping.
This is a function taking a character code, and returning
a constant denoting one of the above character
categories. This extension is part of the SICStus Prolog
3.8 release.
I hope the term <<implementation defined>> in the
Prolog standard does allow such delegation of
definitions to the user through hook functions.

6.5 and 7.1.4.1
The distinction between PCS (Processor character set)
and C (the set of characters) is quite confusing at first
reading. It does make sense, for example, in SICStus
Prolog there is a member of PCS with character_code 0,
which is not a character (not a member of C) - as there
cannot be a one-char atom representing a ‘character’
with code 0.
Giving an example of this kind would help the
uninitiated reader. Also replacing the name
<<character>> by a qualified form, e.g. <<Prolog
character>> would help. This is because currently the
<<processor character set>> has members which are
<<character>>s, and other members which are not -
how would you call the letter ‘things"? For example in
the previous paragraph, referring to the ‘character’ with
code 0 was quite cumbersome, because formally the
thing with code 0 is not a character.

7.2.2, 7.2.3 and 7.2.5
The use of the built-in predicates ‘<'/2 and ‘=='/2 in
defining the term order is not very elegant. Perhaps
using the mathematical relation <, and the notion of
<<identical terms>> would be preferable.

7.4.2
A reference to the definition of <<predicate indicator
sequence>> and <<predicate indicator list>> in 7.1.6
would be quite helpful here. Also perhaps these notions
should be included in chapter 3.

4

!"#$%&'$%()*+(,-%. /0 . .1. 2 .334+567#8%-'6$.2099:%;,<

7.6
Perhaps it would make sense to explicitly mention that
an implementation may add other conversion steps, as
an extension. The goal_expansion mechanism of
SICStus Prolog is an example of such extensions.

7.7.12 a)
Where is the definition and purpose of the <<callable
term representing the built-in predicate BP>>. Also the
<<MGU>> produced here is never used.

Table 17
Why is the cut-parent of true shown to be equal to N-2?

7.8.3.3 c)
It might benefit the user if the Culprit in the error term
here could be more precise than the whole argument of
call/1. Maybe call((...,1)) raising type_error(callable, 1)
should be allowed by the standard.

7.8.3.4 example no. 6
This example should not output ‘3’.

Table 25, Table 26
The cut-parent of the first subgoal of the execution state
with index CP is shown as CP - this should be different.

7.8.8.1 o)
The introduction of a local cut in front of the Else part is
artificial.

7.8.10 c)
This says that a throw without an applicable catch
causes a system error. This error condition is different
from other errors, because in this situation it does not
make sense to apply the rules concerning the effect of
an error: 7.12.1 says that the current goal should be
replaced by the goal
 throw(error(system_error,Imp_def)).
Perhaps it should be left implementation defined what
should happen with uncaught exceptions.

7.8.10.1 e)
It does not seem right to replace CP by the cut-parent of
each execution state.

7.8.10.1 g)
The text
R

is used without definition.

7.10.4 NOTE
Replace
 The current operators do not affect output when there
is a write option numbervars(true).
This seems to be garbled.

7.10.5 Writing a term
No method is provided for writing a curly bracketed
term (6.3.6) with curly brackets.

7.10.5 d)
Some implementations, e.g. SICStus, write <<.>> as
<<'.'>> when quoted(true) is in force, to avoid confusion
with end token. It might be good if the standard allowed
this.

7.12.2 NOTE 4 (b)
See the remark to 7.8.10 c)

8.1.3
Replace
 A list of the error conditions and associated error
terms for the built-in predicate
Is the order of this list relevant? It should not be. If two
or more error conditions apply, any of them could be
raised by a standard-conforming processor. Perhaps this
issue is worth clarifying.

8.1.5
Consider
 The error conditions and examples for a bootstrapped
built-in predicate are included in the appropriate clauses
of the general built-in predicate.
This is quite cumbersome, especially that error
conditions use the argument names which appear only
later, and only as part of the Prolog definitions. I would
suggest to list the heads of the bootstrapped predicates
earlier, so that the argument naming becomes more
visible.
An example of this: 8.12.1.3.j) mentions the name
<<Code>> which only appears buried in Prolog code on
the next page in 8.12.1.5.

8.9.3.1 c)
Maybe replace 2) and 3) with
 2) (H:-B) unifies with (Head:-Body).

8.10.2.4 examples no. 5, 10 and 12
Mention that the order of solutions is undefined.

5

!"#$%&'$%()*+(,-%. /0 . .1. 2 .334+567#8%-'6$.2099:%;,<

8.10.3.4 examples no. 22, 23 and 24 (last
three)
Replacing <<Xs>> by <<Ys>> might make these
examples easier to understand.

8.12.1.5
get_code/1 should be defined in terms of get_code/2,
just as it is done for get_char:
get_code(Code) :-
 current_input(S),
 get_code(S, Code).

8.12.3.3 d) and j)
Error condition j) makes little sense, given error
condition d).

8.13.3.4 example no. 4
The example is not fortunate, as the error
permission_error(output, text_stream, user_output)
would be also a valid outcome (see also the remark to
8.1.3).

8.14.4.3
I suggest to add an error condition, so that
current_op(_, 0, _)

 raises the error type_error(atom, 0).

8.16.5.3
Maybe an error condition has to be added so that if
atom_codes is called, e.g. as atom_codes(X, [foo]), it
should raise a type_error(integer, foo).

8.16.4 -- 8.16.8
The error conditions of atom_codes and number_codes
seem not to be in sync, and similarly for ..._chars.
Example:
| ?- catch(atom_codes(f, [foo]), error(E,_),
true).
 no.
| ?- catch(number_codes(1, [foo]),
error(E,_), true).
 E = type_error(integer,foo) ?
 yes

9.1.4.3
Explain the need for the last sentence before the NOTE:
The approximate-addition function should satisfy ...

9.1.6.1 last but one line
Replace
 round_R->Z(x) = entier(x+1/2)>>
Is it not the case that the IEEE FP standard allows other
forms of rounding, e.g. rounding an integer+0.5 to the
nearest *even* integer? If so, could this be allowed in
standard Prolog?

9.1.7 examples no. 5 10 15 20 28 34 45 50 55
These should raise the type_error(evaluable, foo/0)
error, according to 7.9.2 c).

9.1.7 examples no. 25 and 26
Replace
'/'(7, -3)

by
'//'(7, -3)

And replace
'/'(-7, 3)

by
'//'(-7, 3)

Perhaps it is worth adding extending the text ‘Evaluates
to an implementation dependent value which is either -2
or -3’.

6

!"#$%&'$%()*+(,-%. /0 . .1. 2 .334+567#8%-'6$.2099:%;,<

Annex B

(informative)
Editorial notes

Unusual characters
Check the following characters are correctly printed.

4.1.3.5 Square root symbol: √

4.1.3.5 Greater than or equal symbol: ≥

Background
These faults were noted after preparing for publication
the text of ISO/IEC 13211-1:1995 Prolog: Part 1 -
General Core, and subsequent lists of errors noted by
Roger Scowen, Peter Szeredi, Pierre Deransart, and Ali
Ed-Dbali.
Roger Scowen (editor)
9 Birchwood Grove, Hampton, Middlesex
United Kingdom TW12 3DU
Telephone: +44 (0) 20 8979 7429
E-Mail: roger.scowen@npl.co.uk
October - November 2005

Document history
2006 April 15: Two further corrections are noted (3.125,
3.148). The structure is amended to be based on
ISO/IEC 1539-1:2004/Cor.1:2005 (E). Posted to
Jonathan Hodgson for distribution and balloting within
SC22.
December 1: Posted to Jonathan Hodgson for
distribution to, and discussion within JTC 1 SC 22
WG17.
2005 October 26: Copied from c:\rs0\prolog\da58.tex,
and stored in c:\rs5\standard\st77.doc. Examples and
sources are removed.

7

