
Applying static analysis techniques for inferring
termination conditions of logic programs

(preliminary version)

F.Mesnard1 and U. Neumerkel2

1 Iremia - Université de La Réunion, France
fred@univ-reunion.fr

2 Institut für Computersprachen - Technische Universität Wien, Austria
ulrich@mips.complang.tuwien.ac.at

Abstract. We present the implementation of cTI, a system for universal
left-termination inference of logic programs, which heavily relies on static
analysis techniques.
Termination inference generalizes termination analysis/checking. Tradi-
tionally, a termination analyzer tries to prove that a given class of queries
terminates. This class must be provided to the system, requiring user
annotations. With termination inference such annotations are not nec-
essary. Instead, all provably terminating classes to all related predicates
are inferred at once.
The architecture of cTI is described and some optimizations are dis-
cussed. Running times for classical examples from the termination liter-
ature in LP and for some middle-sized logic programs are given.

1 Introduction

Termination is a crucial aspect of program verification. For logic programs [27,
3], the problem is of particular importance because there is a priori no syntactic
restriction on queries. Termination has been the subject of many works in the
last fifteen years in the logic programming community.

A first observation (see [42]) was to recognize that there were two notions
of termination for logic programs which we explain now. Assume that we use a
standard Prolog engine. Existential termination means that either the compu-
tation finitely fails or it produces one solution in finite time (then it may loop if
we ask for another solution). On the other hand, universal termination means
that the computation produces all solutions (if we repeatedly ask for another
solution) in finite time then terminates. Although existential termination plays
an important rôle in the termination of normal logic programs, this notion has
severe drawbacks: it is not instantiation-closed (a goal may existentially termi-
nate, hence it is not and-compositional (two goals may existentially terminate,
but not their conjunction), but some of its instances may not terminate), and it
depends on the textual order of clauses. Universal termination has none of these
problematic features.

So existential termination has been the subject of a few papers (see e.g. [25,
28]). The research efforts were mainly on universal termination and can be di-
vided in two groups (a survey is given in [20]): characterizing termination [4,
1, 34] and weakening such undecidable criteria to get decidable sufficient condi-
tions (e.g. [41, 33, 43]) that lead to actual implementations. Our research belongs
to both streams. A companion paper describes our approach in the theoretical
setting of acceptability for constraint logic programming [31]. The present pa-
per focuses on the implementation1 of our ideas, which heavily relies on static
analysis techniques.

Our main innovation compared to other recent works related to automated
termination analysis [26, 16, 40, 10] is that we infer sufficient universal termina-
tion conditions from the text of any Prolog program. Inference implies that we
adopt a bottom-up approach to termination. There is no need to define a class
of queries of interest. We point out that giving a class of queries is imposed
by all other works we are aware of (but if required, such classes can be easily
simulated within our framework).

Our system, called cTI for constraint-based Termination Inference, can be
used at the url http://www.complang.tuwien.ac.at/cti and has been real-
ized in SICStus Prolog. Currently the only requirement we impose on ISO-Prolog
[18] programs to ensure correctness of the analysis is that they must not cre-
ate infinite rational terms. Hence we only consider NTSO (not subject to occur
check) programs [19] that can be safely executed with any standard complying
system or an execution with occurs check. Our tool cTI is also available in the
LP environment GUPU [32]. In what follows, we give an intuitive view of the
analysis, some insights of its underlying, and running times for cTI.

2 An overview of cTI

Our aim is to compute classes of queries for which universal left termination is
guaranteed.

Definition 1. Let P be a Prolog program and q a predicate symbol of P . A
termination condition for q is a set TCq of goals of the form ← q(t̃) such that,
for any goal G ∈ TCq, each derivation of G using the left-to-right selection rule
is finite.

Syntactic informations are often too weak to reason about non-trivial pro-
grams. Some semantics information is required. For this reason our analyzer
uses three main constraint structures [23, 24]: Herbrand terms (CLP(H)) for
the initial program P , non-negative integers (CLP(IN)) and booleans (CLP(B))
for approximating P . The correspondence between these structures relies on ap-
proximations [29], which are a simple form [21] of abstract interpretation [12, 13],
1 A preliminary version of this paper was presented at the Workshop on Parallelism

and Implementation Technology for Constraint Logic Programming Languages (ed.
Ines de Castro Dutra), CL’2000, London.

2

also coined abstract compilation. We illustrate our method to infer termination
conditions by using the predicates app/3, app3/4, and nrev/2.
app([], Xs, Xs).
app([X|Xs], Ys, [X|Zs]) ←

app(Xs, Ys, Zs).

nrev([], []).
nrev([X|Xs], Ys) ←

nrev(Xs, Zs),
app(Zs, [X], Ys).

app3(Xs, Ys, Zs, Us) ←
app(Xs, Ys, Vs),
app(Vs, Zs, Us).

1. The initial Prolog program P is mapped to P IN, a program in CLP(IN)
using an approximation based on a symbolic norm. In our example, we use
the term-size norm:

‖t‖term−size =





1 +
n∑

i=1

‖ti‖term−size if t = f(t1, . . . , tn), n > 0

0 if t is a constant
t if t is a variable

E.g.‖f(0, 0)‖Term−Size = 1. All non-monotonic elements of the program are
approximated by monotone constructs. E.g., Prolog’s unsound negation \+G
is approximated by ((G,false);true). The main point here is that we
maintain that if a goal in P IN is terminating, then also the corresponding
goals in P terminate.
appIN(0, Xs, Xs).
appIN(1+X+Xs,Ys,1+X+Zs) ←

appIN(Xs, Ys, Zs).

nrevIN(0, 0).
nrevIN(1+X+Xs,Ys) ←

nrevIN(Xs, Zs),
appIN(Zs, 1+X, Ys).

app3IN/4
same as
app3/4

2. In IN we compute a model of all predicates. The model describes with a
finite conjunction of linear equalities and inequalities the relations between
the arguments of a goal (inter-argument relations post) that hold for every
solution. The actual computation is performed with CLP(Q), using a generic
fixpoint calculator with a standard widening (see section 4). In our example
we are able to determine the least model. In general, however, only a less
precise model is determined. For each recursive predicate p (the only source of
potential non-termination), we compute a linear level mapping (see section 5)
called µp. For instance, the meaning of µIN

app is: for any ground recursive
clause defining appIN, the first and the third argument decrease. The meaning
of µIN

rev is: for any ground recursive clause defining revIN, the first argument
decreases (we do not have to compare nrevIN and appIN at this step). The
need of the numeric model of P is only justified by the need to compute a level
mapping on a more semantical basis than by a purely syntactic approach.

(least) models
postINapp(x, y, z) ≡ z = x + y

postINnrev(x, y) ≡ x = y

postINapp3(x, y, z, u) ≡ u = x + y + z

level mappings
µIN

app(x, y, z) ≡ min(x, z)
µIN

nrev(x, y) ≡ x

—

3. P IN is mapped to PB, a program in CLP(B). Here 1 means that an argument
is bounded w.r.t. the considered norm. Note that the obtained program

3

no longer maintains the same termination property. Its sole purpose is to
determine the actual dependencies of boundedness within the program. The
simplified structure allows us to always compute the least model. For each
predicate, its previously computed linear level mapping is represented by a
single boolean term.
appB(1, Xs, Xs).
appB(1∧X∧Xs,Ys,1∧X∧Zs) ←

appB(Xs, Ys, Zs).

nrevB(1, 1).
nrevB(1∧X∧Xs,Ys) ←

nrevB(Xs, Zs),
appB(Zs, 1∧X, Ys).

app3B/4
same as
app3/4

least models
postBapp(x, y, z) ≡ (x ∧ y) ⇔ z

postBnrev(x, y) ≡ x ⇔ y

postBapp3(x, y, z, u) ≡ (x ∧ y ∧ z) ⇔ u

level mappings
µBapp(x, y, z) ≡ x ∨ z

µBnrev(x, y) ≡ x

—

4. Using all previously determined informations, PB is translated into the fol-
lowing system of boolean fixpoint formulæ that ensures the propagation of
the finiteness of the level mappings through the call graph and the Prolog
dataflow.

preapp = νA.λ(b, c, d).





b ∨ d
∧
∀f, g, h.[(f ∧ g ↔ b) ∧ (f ∧ h ↔ d)] → A(g, c, h)

prenrev = νA.λ(b, c).





b
∧
∀d, e, f.[d ∧ e ↔ b] → A(e, f)
∧
∀d, e, f.[(f ↔ e) ∧ (d ∧ e ↔ b)] → preapp(f, d, c)

preapp3 = νA.λ(b, c, d, e).




∀f.1 → preapp(b, c, f)
∧
∀f.[f ↔ c ∧ b] → preapp(f, d, e)

The resolution of this system (computation of the greatest fixpoint by means
of a boolean µ-solver [11]) gives, for each predicate symbol, its boolean ter-
mination condition:

preapp(x, y, z) ≡ x ∨ z
prenrev(x, y) ≡ x
preapp3(x, y, z, u) ≡ (x ∧ y) ∨ (x ∧ u)

These boolean termination conditions lift to termination conditions (defini-
tion 1) with the following interpretation:
– any goal← c, app(X,Y,Z), where c is a CLP(H) constraint, left-terminates

if X or Z are ground in c.
– any goal ← c, nrev(X,Y) left-terminates if X is ground in c.
– any goal ← c, app3(X,Y,Z,U) left-terminates if either X and Y are

ground in c or X and U are ground in c.

4

The correctness of the analysis is based on is the following result [29, 31]:

Theorem 1. Let P be a program, p and q be two predicate symbols of P . Assume
that p is defined by mp rules rk: p(x̃) ← ck, pk,1(x̃k,1), . . . pk,nk

(x̃k,nk
) and for

each q 6∈ p̄ and appearing in the rules defining p̄, a boolean termination condition
preq has been computed. If the set of boolean terms {prep}p∈p̄ verifies:

∀p ∈ p̄





prep(x̃) →B µBp (x̃),[∀1 ≤ k ≤ mp, ∀1 ≤ j ≤ nk,(
prep(x̃) ∧ cBk ∧

∧j−1
i=1 postBpk,i

(x̃k,i)
)
→B prepk,j

(x̃k,j)
]

then {prep}p∈p̄ is a correct boolean termination condition for p̄.

3 Running cTI

3.1 Standard programs from the termination literature in LP

Tables 1 and 2 presents timings and results of cTI using some standard LP
termination benchmarks, where the following abbreviations mean:

– cTI time: the running time for cTI to infer termination conditions;
– top-level predicate: the predicate of interest;
– Others: checked : the class of queries checked by the analyzers of [17, 26, 40];
– result : the best result (y > n > ?) among [17, 26, 40];
– cTI: inferred : the termination condition inferred by cTI (1 means that any

call to the predicate terminates, 0 means that cTI can not find a terminating
mode for that predicate);

For the mergesort (and similarly for mergesort ap), the problem lies
in the split/3 predicate, aiming at splitting a list (the first argument) in two
sublists (the second and third argument) which length are almost equal:

split([],[],[]).
split([X|Xs],[X|Ys],Zs) :- split(Xs,Zs,Ys).

Using the term size norm, depending on the precision of the numeric abstract
interpreter (see section 4), we have:

prec ≤ 1 ⇒ postINsplit(x, y, z) ≡ true

prec ≥ 2 ⇒ postINsplit(x, y, z) ≡ x = y + z

Switching to the list size norm defined as follows:

‖t‖list−size =





1 + ‖u‖list−size si t = [s|u]
t si t est une variable
0 sinon

5

Table 1. Programs from [20, 2], cTI 0.29, Athlon 750MHz, 256Mo, SICStus 3.8.4

times in [s] cTI Others: cTI:
program time top-level predicate checked result inferred

permute 0.15 permute(x, y) x yes x
duplicate 0.05 duplicate(x, y) x yes x ∨ y
sum 0.18 sum(x, y, z) x ∧ y yes x ∨ y ∨ z
merge 0.26 merge(x, y, z) x ∧ y yes (x ∧ y) ∨ z
dis-con 0.24 dis(x) x yes x
reverse 0.08 reverse(x, y, z) x ∧ z yes x

append 0.09 append(x, y, z) x ∧ y yes x ∨ z
list 0.01 list(x) x yes x
fold 0.10 fold(x, y, z) x ∧ y yes y
lte 0.13 goal 1 yes 1
map 0.09 map(x, y) x yes x ∨ y
member 0.03 member(x, y) y yes y
mergesort 0.43 mergesort(x, y) x no 0
mergesort 0.57 mergesort(x, y) x no x
mergesort ap 0.79 mergesort ap(x, y, z) x yes z
mergesort ap 0.92 mergesort ap(x, y, z) x yes x ∨ z
naive rev 0.12 naive rev(x, y) x yes x
ordered 0.04 ordered(x) x yes x
overlap 0.05 overlap(x, y) x ∧ y yes x ∧ y
permutation 0.15 permutation(x, y) x yes x
quicksort 0.39 quicksort(x, y) x yes x
select 0.08 select(x, y, z) y yes y ∨ z
subset 0.09 subset(x, y) x ∧ y yes x ∧ y
subset 0.09 subset(x, y) y no x ∧ y
sum 0.12 sum(x, y, z) z yes y ∨ z

we get:

prec ≤ 1 ⇒ postINsplit(x, y, z) ≡ true

prec = 2 ⇒ postINsplit(x, y, z) ≡ x = y + z

prec ≥ 3 ⇒ postINsplit(x, y, z) ≡ x = y + z ∧ 0 ≤ y − z ≤ 1

This last model is sufficiently precise for proving termination of the considered
programs.

3.2 Middle-sized programs

Table 4 presents timings of cTI using some standard benchmarks2 from the LP
program analysis community. We have chosen twelve middle-sized well-known
2 collected by Naomi Lindenstrauss, www.cs.huji.ac.il/~naomil and also available

at www.complang.tuwien.ac.at/cti/bench.

6

Table 2. programs from [33], cTI 0.29, Athlon 750MHz, 256Mo, SICStus 3.8.4

times in [s] cTI Others: cTI:
program time top-level predicate checked result inferred

pl1.1 0.08 append(x,y,z) x ∧ y yes x ∨ z
pl1.1 0.08 append(x,y,z) z yes x ∨ z
pl1.2 0.16 perm(x,y) x yes x
pl2.3.1 0.01 p(x,y) x no 0
pl3.1.1 0.09 a ? ? 0
pl3.5.6 0.05 p(x) 1 no x
pl3.5.6a 0.06 p(x) 1 yes x
pl3.5.6a 0.06 p(x) 1 yes 1
pl4.0.1 0.10 append3(x,y,z,t) x ∧ y ∧ z yes (x ∧ y) ∨ (x ∧ t)
pl4.4.3 0.26 merge(x,y,z) x ∧ y yes (x ∧ y) ∨ z
pl4.4.6a 0.12 perm(x,y) x yes x
pl4.5.2 0.17 s(x,y) x no 0
pl4.5.3a 0.01 p(x) x no 0
pl4.5.3b 0.02 goal ? ? 0
pl4.5.3c 0.01 goal ? ? 0
pl5.2.2 3.41 turing(x,y,z,t) x ∧ y ∧ z no 0
pl6.1.1 0.39 qsort(x,y) x yes x
pl7.2.9 0.21 mult(x,y,z) x ∧ y yes x ∧ y
pl7.6.2a 0.14 reach(x,y,z) x ∧ y ∧ z no 0
pl7.6.2b 0.22 reach(x,y,z,t) x ∧ y ∧ z ∧ t no 0
pl7.6.2c 0.29 reach(x,y,z,t) x ∧ y ∧ z ∧ t yes z ∧ t
pl8.2.1 0.43 mergesort(x,y) x no 0
pl8.2.1 0.58 mergesort(x,y) x no x
pl8.2.1a 0.47 mergesort(x,y) x yes x
mergesort t 0.94 mergesort(x,y) x yes x
pl8.3.1 0.26 minsort(x,y) x no x ∧ y
pl8.3.1a 0.24 minsort(x,y) x yes x
pl8.4.1 0.13 even(x) x yes x
pl8.4.2 0.52 e(x,y) x yes x

logic programs. Almost all the programs are taken from [7] except credit,
plan and minissaexp. Table 3 describes them, where the following abbrevi-
ations mean:

– lines is the number of lines of the Prolog program in pure form (e.g. no
disjunction), with one predicate symbol per line and no blank line;

– facts and rules denote, respectively, the numbers of facts (unit clauses) and
rules (non-unit clauses) in the program;

– sccs gives the number of strongly connected components (sccs, i.e. cycles of
mutually recursive predicate symbols) in the call graph;

– length denotes the number of predicate symbols in the longest cycle in the
call graph;

7

– vars denotes the sum of the arities of the predicate symbols of the longest
cycle in the call graph.

Table 3. Informations about analyzed programs.

Program lines facts rules sccs length vars

ann 571 101 99 44 2 7
bid 108 24 26 20 1 4
boyer 275 63 78 25 2 5
browse 107 4 29 15 1 6
credit 108 33 24 24 1 4
minissaexp 833 37 223 100 5 17
peephole 322 72 80 11 2 5
plan 64 12 17 16 1 4
qplan 403 63 87 38 3 11
rdtok 285 7 57 12 4 12
read 299 15 75 17 7 33
warplan 304 43 68 33 3 14

The first five columns of Table 4 indicate the time for computing:

– a model PostIN (section 4);
– the constraint defining the level mapping µ (section 5);
– the concrete level mapping;
– the least model PostB;
– the boolean termination conditions.

The timings are minimum execution times over ten iterations. Next we give:

– the total runtime (including various syntactic transformations);
– the speed of the analysis (the average number of analyzed lines of code in

one second);
– the quality of the analysis, computed as the ratio of the number of relations

which have a a non-empty termination condition over the total number of
relations.

Let us comment on the results of Table 4.
The speed of the analysis is surprisingly slower for peephole than for the

other programs. A more careful look on its code shows that its call graph contains
5 cycles of length 2, which slow down the computation of the constraints defining
the level mapping.

We note that cTI was able to prove that bid, credit, and plan are left-
terminating (see [3], every ground atom left-terminates). For any such program

8

P , TP has only one fixpoint ([3], Theorem 8.13), which helps for proving par-
tial correctness. Moreover, the ground semantics of such a program is decidable
(Prolog is the decision procedure !), which helps for testing and validating the
program.

Table 4. middle-sized programs, cTI 0.29, Athlon 750 MHz, 256Mo, SICStus 3.8.4

times in [s]
program PostIN Cµ µ PostB TC total time lines/sec q %

ann 1.07 2.62 0.17 0.46 0.13 5.43 105 28
bid 0.17 0.33 0.03 0.09 0.04 0.81 133 70
boyer 2.55 0.36 0.03 0.25 0.05 3.91 70 75
browse 0.37 1.01 0.08 0.12 0.03 1.81 59 30
credit 0.12 0.18 0.04 0.07 0.03 0.61 177 87
minissaexp 2.98 4.77 0.49 0.73 0.38 11.03 75 65
peephole 1.24 8.94 0.14 0.47 0.12 11.69 28 49
plan 0.13 0.32 0.03 0.09 0.03 0.71 90 58
qplan 1.52 4.32 0.23 0.62 0.16 7.56 53 50
rdtok 1.22 0.95 0.07 0.26 0.05 2.92 98 23
read 1.05 5.25 0.03 0.34 0.16 7.29 41 39
warplan 0.82 1.67 0.03 0.27 0.03 3.18 96 23

mean 23% 54% 2% 7% 2% 100% 85 50%

4 Fixpoint Computations

As explained in section 2, we have to compute some models of two versions of the
initial program: P IN, the CLP(IN) version, and PB, the CLP(B) version. To this
aim, we have developed an abstract immediate consequence operator UP . This
operator is quite similar to the well-known TP . This section borrows numerous
results found in [12, 15, 13, 14].

4.1 The algorithm

The key of our abstract computation is the notion of rational interpretation for
a predicate symbol p:

Definition 2. Let P be a program and p be a predicate symbol of P . We call
a rational interpretation of p an equivalence of the form: p(x̃) ↔ c where c, a
disjunction of conjunctions of atomic constraints, is a formula s.t. vars(c) ⊆ x̃.
We extend this notion to P : a rational interpretation of P is a set I containing
exactly one interpretation for each predicate symbol p of P .

9

We write I the set of all rational interpretations. We want to compute a
rational interpretation which is a model of P . To this end, we define below an
operator UP , where we impose

∨
(x̃) ⊇ ∪x̃.

Definition 3. UP is a function on I defined for any rational interpretation I
of a program P by:

UP (I) = {p(x̃) ↔ c | c ≡ ∨
cl∈P

(
∃−x̃(c0 ∧

∧
1≤i≤n ci)

)
,

cl ≡ p(x̃) ← c0 ¦ p1(x̃1), . . . , pn(x̃n) and
∀i ∈ J1; nK, pi(x̃i) ↔ ci ∈ I}

We define the successive powers of UP as usual. It turns out that UP is
monotone and continuous. Now let us establish a link between the meaning of a
program P and the UP operator. First, we give a ground semantics of a rational
interpretation:

Definition 4. Let I be a rational interpretation, we define the semantics of I
by: [I] = {p(d̃) | p(x̃) ↔ c ∈ I, d̃ ∈ D̃χ, |=χ c(d̃)} where Dχ is the domain of
computation.

For any interpretation I, we have: TP ([I]) ⊆ [UP (I)]. Now, as a fixpoint I of
UP verifies TP ([I]) ⊆ [UP (I)] = [I], we get: any fixpoint of UP is a model of P .

For CLP(B),
∨

is the union of two constraints. Hence we have TP ([I]) =
[UP (I)]. It justifies the use of UP for computing the least boolean model (=
lfp(UP)) of P . Figure 1 presents an algorithm for the UP operator.

function UP(I) : J

Require: I is a rational interpretation of P .
Ensure: J is a rational interpretation of P .

1: J ← ∅ ;
2: for all clause(p(x̃) ← c ¦ p1(x̃1), . . . , pn(x̃n)) ∈ P do
3: for i ← 1 to n do
4: let pi(x̃i) ↔ ci ∈ I ;
5: end for
6: let p(x̃) ↔ c′ ∈ J ;
7: c ← W

(c′, Πx̃(c1 ∧ . . . ∧ cn)) ;
8: J ← update(J, p(x̃) ↔ c)) ;
9: end for

10: return J ;

Fig. 1. UP , a TP -like operator.

10

4.2 Widenings

For CLP(Q), lfp(UP) is not, in general, reachable in finite time. That is the
reason why a widening operator (O) [12] is used. The widening operator is used
to force convergence of the UP operator. This operator has a major impact on the
precision and the speed of the computation. In cTI, we adopt such an approach
for the numeric model computation only since the least boolean model is finitely
reached. However, we have coded a generic fixpoint calculator for both CLP(Q)
and CLP(B) [8, 22, 30]. A simple widening (O1) on system of linear inequalities
can be found in [15]. This is an equivalent definition [35]:

Definition 5. Let S1 and S2 be two sets of linear inequalities defining two poly-
hedra in Qn. Then:

S1 O1 S2 = {β ∈ S1 | S2 ⇒ β}

O2 (see [14]) is an improved version of O1, which is simplified for efficiency
in [36]:

Definition 6. Let S1 and S2 be two sets of linear inequalities defining two poly-
hedra in Qn. Then:

S1 O2 S2 = {β ∈ S1 | S2 ⇒ β}⋃
{γ ∈ S2 | S1 ⇒ γ

∧ ∃β ∈ S1((S1 − {β}) ∪ {γ}) ⇒ β}

Tests to determinate the impact of using O1 or O2 on the accuracy of cTI are
under construction. Figure 2 presents an algorithm for successive iterations of
UP until it reaches a fixpoint. In the current implantation of cTI, for CLP(Q),
prec is set to 2.

It remains to show that In = ite UP(prec) is a model of P . First, note that,
by induction on k, Ik ⊆ Ik+1. So we have in fact an equality when we reach
line 11 for the last time: In = In−1. Then the last assignment for In is either
line 7 if n ≤ prec. In this case, we have In = UP (In) hence TP ([In]) ⊆ [In]. Or
the last assignment for In is line 9: In ← InOUP (In) ⊇ UP (In) by definition of
any widening operator O. But we know that TP ([I]) ⊆ [UP (I)] for all I. Again,
TP ([In]) ⊆ [In].

4.3 Optimization

Since the fixpoint computation engine is used twice, making it as efficient as pos-
sible is quite important. The current optimization takes all unit clauses defining
the predicate symbols of the analyzed scc into account in a single pass and then
processes only the non-unit clauses of the scc. Table 5 shows the timings between
the non-optimized version of UP and the optimized version. Note that we also
replace the union operator

∨
of line 7 of the algorithm presented Fig. 1 by a

convex hull (in both versions for CLP(Q), opt and nopt), which can be easily
coded via projection in CLP(Q) using a trick which first appears in [5] (see also
[6]).

11

function ite UP(prec) : In

Require: prec is a non-negative integer.
Ensure: In is a rational interpretation such that lfp(UP) ⊆ In.

1: n ← 0 ;
2: In ← ∅ ;
3: repeat
4: I ← UP(In) ;
5: n ← n + 1 ;
6: if n ≤ prec then
7: In ← I ;
8: else
9: In ← In−1OI ;

10: end if
11: until In ⊆ In−1

12: return In ;

Fig. 2. An algorithm to finitely reach a super set of lfp(UP).

5 Computing level-mappings

One key concept in many approaches for termination lies in the use of level
mappings, i.e. mappings from ground atoms to natural numbers. We present
an improvement of an already known technique for their automatic generation.
Indeed, K. Sohn and A. Van Gelder have described in 1991 an algorithm (SVG
in short, see [38]) based on linear programming which ensures the existence
of linear level mappings. This method, despite its power, does not seem to be
very well-known among researchers aiming at automating termination. Hence
we recall it after some preliminaries. Then, the remaining subsections propose
an extensions to SVG.

5.1 Preliminaries

We consider pure CLP(IN) programs, with three predefined symbols for con-
straints: =, ≥, and ≤ and their standard meaning. Those programs are abstrac-
tions of (constraint) logic programs using (fixed or inferred) norms. We assume
that clauses are written in flat form: p0(x̃0) ← c0, p1(x̃1), c1, . . . , cl−1, pl(x̃l), cl,
with i 6= j → x̃i ∩ x̃j = ∅ (where ∅ denotes the empty set). For sake of concision,
we disallow mutually recursive predicates (this restriction does not apply to cTI).
Note that we frequently switch to CLP(Q+) as some computational problems in
this structure are much cheaper (e.g. satisfiability). There is clearly a loss in the
precision of the analysis: results are correct but not complete. From now on, we
write CLP for CLP(IN) or CLP(Q+). Section 4 shows how we can compute a
model M for a CLP program P , where each predicate p(x̃) is defined as a (finite)
conjunction of CLP constraints. We use this model to simplify the program P .

12

Table 5. Impact of the optimization on the analysis times.

times in [s] PostIN PostB
Programs opt nopt gain opt nopt gain

ann 1.07 1.33 20% 0.46 0.65 29%
bid 0.17 0.27 37% 0.09 0.14 35%
boyer 2.55 3.48 27% 0.25 0.48 48%
browse 0.37 0.35 -5% 0.12 0.15 20%
credit 0.12 0.19 37% 0.07 0.13 46%
minissaexp 2.98 2.74 -9% 0.73 1.17 38%
peephole 1.24 1.35 8% 0.47 0.63 25%
plan 0.13 0.20 35% 0.09 0.13 31%
qplan 1.52 1.88 19% 0.62 0.86 28%
rdtok 1.22 0.70 -74% 0.26 0.29 10%
read 1.05 1.26 17% 0.34 0.50 32%
warplan 0.82 0.96 15% 0.27 0.37 27%

average 11% 31%
min. -74% 10%
max. 37% 48%

Definition 7. Let MP be a model of the CLP program P . The definition of a
predicate p is simplified wrt M when, for the clauses defining p/n, we add to the
right of each predicate q(x̃) its meaning cq(x̃) relative to MP . Moreover, those
predicates q/m 6= p/n which appear in the bodies are replaced by true (e.g. the
dummy constraint 0 = 0). Hence we end with a finite set of CLP clauses of the
form: p(x̃0) ← c0, p(x̃1), c1, . . . , cl−1, p(x̃l), cl. The simplified program is denoted
P simpl

M .

We are interested in the automatic discovery of linear level mappings.

Definition 8. Let p/n be a recursive predicate symbol of a CLP program P . A
linear level mapping µ for p(x1, . . . , xn) is a linear relation

∑n
i=1 µixi, where the

coefficients µi are non-negative integers.

Such linear level mappings should satisfy a property ensuring their usefulness
for left-termination:

Definition 9. A linear level mapping µ for p is valid wrt P simpl
MP

if for each
clause recursive defining p in P simpl

M , say p(x̃0) ← c0, p(x̃1), c1, . . . , cl−1, p(x̃l), cl,
for k = 0 to l− 1,

∧k
i=0 ci → µT x̃0 ≥ 1 + µT x̃k, where µT denotes the transpose

of the vector µ.

5.2 The algorithm SVG

Let us first quickly review the algorithm of Sohn and Van Gelder. It aims at
checking the existence of one valid linear level mapping. SVG starts with a pure

13

CLP program P and a constrained goal. A top-down boundedness analysis (see
[29, 30]) reveals the calling modes of each predicate. Arguments are detected as
either bounded (denoted b) or unbounded (u). A CLP model M is computed
and P is simplified to P simpl

M . Then SVG examines each recursive procedure p/n
in turn (the precise order does not matter). Let us symbolically define the level
mapping for p(x1, . . . , xn) as µT x̃ =

∑
1≤i≤n µu or b

i xi where µu
i = 0 is xi is

labelled as unbounded wrt the calling mode of p/n and µb
i ≥ 0 if xi is labelled as

bounded. Each clause ri is processed. For one such clause, l simplified rules (for
k = 0 to k = l − 1) are constructed: p(x̃0) ←

∧
0≤j≤k cj , p(x̃k). One can assume

that the constraint Cij =
∧

0≤j≤k cj is satisfiable, already projected onto x̃0∪x̃k,
only contains inequalities of the form ≤, and implies x̃0 ≥ 0 and x̃k ≥ 0. Such a
simplified rule gives rise to the following (pseudo-)linear programming problem

minimize θ = µT (x̃0 − x̃k) subject to Cij (1)

A valid linear level mapping µ exists (at least for this recursive call of this clause)
if θ∗ ≥ 1 where θ∗ denotes the minimum of the objective function. Unfortunately,
because of the symbolic constants µ, (1) is not a linear programming problem.

The clever idea of the authors is to consider its dual form:

maximize η = ỹβ subject to ỹ ≥ 0 ∧ ỹA ≥ (µ,−µ) (2)

By duality theory (see [37] for instance), we have θ∗ = η∗. Now, the authors
observe that µ appears linearly in the dual problem (it is not true for (1))
because no µi appears in A. Hence (2) can be rewritten, by adding η ≥ 1 and
µ̃b ≥ 0∧µ̃u = 0, as Sij , a set of linear inequations. If the conjunction Sp = ∧i,jSij

for each recursive call and for each clause defining p/n is satisfiable, then there
exists a valid linear level mapping for p/n.

5.3 An extension of SVG

Instead of checking satisfiability of Sp, we can project it onto µ (we do not
need the top-down boundeness analysis explained subsection 5.2, all arguments
are assumed bounded). Hence we get in one constraint all the valid linear level
mappings. It remains to compute the maximal elements of Πµ(Sp), given the
partial order: µ1 º µ2 if ∀i ∈ J1; nKµ1

i 6= 0 → µ2
i 6= 0.

Example 1. For app/3, let µ(x, y, z) = ax+ by + cz. We have Πµ(Sp) = {a+ c ≥
1}. There are two maximal elements: µ1(x, y, z) = x and µ2(x, y, z) = z.

In some sense, given a model for a program, this extension is complete. But
a more precise model can lead to more maximal elements. Hence the precision
of the inferred CLP model is important. From an implementation point of view,
this algorithm heavily relies on the costly projection operator. We found that a
good strategy is to project constraints as soon as possible.

14

6 Conclusion

We have presented the main algorithms of cTI, our bottom-up left-termination
inference tool for logic programs and given some running for standard LP ter-
mination programs and middle-sized logic programs. The analysis requires three
fixpoint computations and the inference of well-founded orders. We have de-
scribed some optimizations and measured their impacts.

We have compared the quality of the results obtained by cTI with three other
top-down termination checkers. Our termination inference tool is able in all cases
(although we manually tuned cTI four times) to infer a larger class of terminating
queries. On the other hand, the running times of cTI are also more important,
but termination inference is a much more general problem than termination
checking. In the worst case, an exponential number of termination checks are
needed to simulate termination inference.

Right now, cTI can not directly infer termination for some programs, e.g.
chat, as suggested by P. Tarau. A more detailed look to this program written
by F.C.N. Pereira and D.H.D. Warren a shows that it contains one scc of 30
mutually recursive predicate symbols with 8 arguments per predicate symbol on
the average. We cannot compute a numeric model for chat using the constraint
solver of SICStus Prolog (the CLP(Q) solver is itself written in SICStus Prolog)
in reasonable time. So we add for each computation which may be too costly
(see also [9]) a timeout and if necessary we are able to return a value which does
not destroy the correctness of the analysis (this is another widening!). The point
is that the theoretical framework [31] only requires to have a CLP(IN) model
and an upper approximation of the CLP(B) least model. The drawback of this
approach is that, in such a case, the quality of the inference is poorer. As a side
effect, the running time of cTI is now linear with respect to the number of sccs
in the call graph. We point out that chat is the only natural example we know
which requires such a mechanism, although F. Henderson notified us of a similar
scc in the code of the Mercury compiler [39]. Finally, Table 4 points out that
most (> 75%) of the analysis time lies in numeric computations. Hence we plan
to link SICStus Prolog with specialized C libraries (e.g. a tool for polyhedra
manipulations and a simplex solver optimized wrt to projection).

We are also developing another line of research where we try to prove the
optimality of the termination conditions computed by cTI. Instead of looking
for general classes of logic programs for which the analysis is complete, we try,
for each particular (pure) logic program, to prove that the termination condition
derived by cTI is as general as it can be (modulo the language describing the
termination conditions). We have already implemented the analysis (called nTI
for non-Termination Inference, available at the same url than cTI) and its
formalization is in progress.

Acknowledgements

We thank the readers of this paper for their constructive comments.

15

References

1. K. R. Apt and D. Pedreschi. Reasoning about termination of pure Prolog programs.
Information and computation, 1(106):109–157, 1993.

2. K. R. Apt and D. Pedreschi. Modular termination proofs for logic and pure Prolog
programs. In G. Levi, editor, Advances in Logic Programming Theory, pages 183–
229. Oxford University Press, 1994.

3. K.R. Apt. From Logic Programming to Prolog. Prentice Hall, 1997.
4. K.R. Apt and D. Pedreschi. Studies in pure Prolog: Termination. In J.W. Lloyd,

editor, Proc. of the Symp. in Computational Logic, pages 150–176. Springer, 1990.
5. B. De Backer and H. Beringer. A clp language handling disjunctions of linear

constraints. In Proc. of ICLP’93, pages 550–563. MIT Press, 1993.
6. F. Benoy and A. King. Inferring argument size relationships with CLP(R). In

J. P. Gallagher, editor, Logic Program Synthesis and Transformation, volume 1207
of Lecture Notes in Computer Science. Springer-Verlag, 1997.

7. F. Bueno, M. Garcia de la Banda, and M. Hermenegildo. Effectiveness of global
analysis in strict independence-based automatic program parallelization. In Pro-
ceedings of the 1994 International Symposium on Logic Programming, pages 320–
336. MIT Press, 1994.

8. M. Carlsson. Boolean constraints in SICStus Prolog. Technical Report T91:09,
Swedish Institute of Computer Science, 1994.

9. M. Codish. Worst-case groundness analysis using positive boolean functions. Jour-
nal of Logic Programming, x:yyy–zzz, 1999.

10. M. Codish and C. Taboch. A semantics basis for termination analysis of logic
programs. Journal of Logic Programming, 41:103–123, 1999.

11. S. Colin, F. Mesnard, and A. Rauzy. Constraint logic programming and mu-
calculus. ERCIM/COMPULOG Workshop on Constraints, 1997.

12. P. Cousot and R. Cousot. Abstract interpretation: a unifed lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of the fourth Symposium on Principles of Programming Languages, pages 238–252.
ACM, 1977.

13. P. Cousot and R. Cousot. Abstract interpretation and application to logic pro-
grams. Journal of Logic Programming, 13(2,3):103–179, 1992.

14. P. Cousot and R. Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation. In Lecture Notes of Computer
Science, volume 631. Springer-Verlag, 1992. Proceedings of PLILP’92.

15. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Proceedings of the fifth Symposium on Principles of
Programming Languages, pages 84–96. ACM, 1978.

16. S. Decorte. Enhancing the power of termination analysis of logic programs through
types and constraints. PhD thesis, Katholieke Universiteit Leuven, 1997.

17. S. Decorte, D. De Schreye, and H. Vandecasteele. Constraint-based termination
analysis of logic programs. ACM Transactions on Programming Languages and
Systems, 21(6):1136–1195, 1999.

18. P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog: The standard, reference manuel.
Springer-Verlag, 1996.

19. P. Deransart, G. Ferrand, and M. Téguia. NSTO programs (not subject to occur-
check). Proc. of the Int. Logic Programming Symp., pages 533–547, 1991.

20. D. DeSchreye and S. Decorte. Termination of logic programs : the never-ending
story. Journal of Logic Programming, 19-20:199–260, 1994.

16

21. S. Hoarau. Inférer et compiler la terminaison des programmes logiques avec con-
traintes. PhD thesis, Université de La Réunion, 1999.

22. C. Holzbaur. Ofai clp(q,r) manual, edition 1.3.3. Technical Report TR-95-09,
Austrian Research Institute, 1995.

23. J. Jaffar and J-L. Lassez. Constraint logic programming. In Proceedings of the
14th Symposium on Principles of Programming Languages, pages 111–119. ACM,
1987.

24. J. Jaffar and M. J. Maher. Constraint logic programming: a survey. Journal of
Logic Programming, 19:503–581, 1994.

25. G. Levi and F. Scozzari. Contributions to a theory of existential termination for
definite logic programs. In M. Alpuente and M. I. Sessa, editors, Proceedings of the
GULP-PRODE’95 Joint Conference on Declarative Programming, pages 631–641,
1995.

26. N. Lindenstrauss and Y. Sagiv. Automatic termination analysis of logic programs.
In L. Naish, editor, Proceedings of the 14th International Conference on Logic
Programming, pages 63–77. MIT Press, 1997.

27. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.
28. M. Marchiori. Proving existential termination of normal logic programs. In Pro-

ceedings of the 1996 AMAST, pages xxx–yyy, 1996.
29. F. Mesnard. Inferring left-terminating classes of queries for constraint logic pro-

grams by means of approximations. In M. J. Maher, editor, Proceedings of the 1996
Joint International Conference and Symposium on Logic Programming, pages 7–21.
MIT Press, 1996.

30. F. Mesnard. Entailment and projection for CLP(B) and CLP(Q) in SICStus Prolog.
1st International Workshop on Constraint Reasoning for Constraint Programming,
1997.

31. F. Mesnard and S. Ruggieri. On proving left termination of constraint logic pro-
grams. Technical report, Université de La Réunion, 2001.

32. U. Neumerkel. GUPU: A Prolog course environment and its programming method-
ology. In M. Maher, editor, Proc. of JICSLP’96, page 549. MIT Press, 1996.
http://www.complang.tuwien.ac.at/ulrich/gupu/.

33. L. Plümer. Termination proofs for logic programs. Lecture Notes in Artificial
Intelligence, 446, 1990.

34. S. Ruggieri. Verification and Validation of Logic Programs. PhD thesis, Università
di Pisa, 1999.

35. H. Sağlam. A Toolkit for Static Analysis of Constraint Logic Programs. PhD thesis,
University of Bristol, 1997.

36. H. Sağlam and J. Gallagher. Static analysis of logic programs using CLP as a
meta-language. Technical Report CSTR-96-003, University of Bristol, Department
of Computer Science, 1996.

37. A. Schrijver. Theory of linear and integer programming. John Wiley and Sons,
1986.

38. K. Sohn and A. Van Gelder. Termination detection in logic programs using argu-
ment sizes. In Proceedings of the 1991 International Symposium on Principles of
Database Systems, pages 216–226. ACM, 1991.

39. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury,
an efficient purely declarative Logic Programming language. The Journal of Logic
Programming, 29(1–3):17–64, 1996.

40. C. Speirs, Z. Somogyi, and H. Søndergaard. Termination analysis for Mercury.
In P. van Hentenrick, editor, Proceedings of the 1997 International Symposium

17

on Static Analysis, volume 1302 of Lecture Notes in Computer Science. Springer-
Verlag, 1997.

41. J. D. Ullman and A. Van Gelder. Efficient tests for top-down termination of logical
rules. Communications of the ACM, pages 345–373, 1988.

42. T. Vasak and J. Potter. Characterization of terminating logic programs. In Proceed-
ings of the 1986 International Symposium on Logic Programming, pages 140–147.
IEEE, 1986.

43. K. Verschaetse. Static termination analysis for definite Horn clause programs. PhD
thesis, Dept. Computer Science, K.U. Leuven, 1992.

18

