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Abstract. We present GUPU, a side-effect free environment special-
ized for programming courses. It seamlessly guides and supports stu-
dents during all phases of program development, covering specification,
implementation, and program debugging. GUPU features several inno-
vations in this area. The specification phase is supported by reference
implementations augmented with diagnostic facilities. During implemen-
tation, immediate feedback from test cases and from visualization tools
helps the programmer’s program understanding. A set of slicing tech-
niques narrows down programming errors. The whole process is guided
by a marking system.

Introduction

Teaching logic programming has specific opportunities different from traditional
languages. In particular, the declarative notions can be liberated from theoret-
ical confines and be applied to actual program development. Our approach is
centered around the programming course environment GUPU used for introduc-
tory Prolog programming courses since 1992 at TU Wien and other universities.
The language used by GUPU is the monotone pure subset of Prolog which also
contains the many constraint extensions offered by SICStus Prolog.

In this article, we focus on the program development process supported by
GUPU. To illustrate this process, we will develop the predicate alldifferent/1

describing a list of pairwise different elements.
The actual programming effort is divided into two stages which both are

equipped with appropriate diagnosing facilities. The first stage (Sect. 1) is de-
voted to specifying a predicate by example. Cases are stated where the predicate
should succeed, fail, terminate, or not terminate. In the second stage (Sect. 2),
the actual predicate is implemented and immediately tested against the pre-
viously stated example cases. The whole development process is guided by a
marking system that highlights missing items and computes an interval percent-
age of the fulfillment of an exercise.

1 Specification by example

Writing test cases prior to actual coding is good practice also in other program-
ming languages. It has reached broader attention with the rise of the extreme
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programming movement [1]. The major advantage generally appreciated is in-
creased development speed due to the following reasons. Test cases are an unam-
biguous (albeit incomplete) specification. They influence system design, making
it better testable. They provide immediate feedback during coding, which is most
important in our context. And finally, they constitute a solid starting point for
documentation and maintenance.

In the context of logic programming, there are several further aspects in favor
of this approach. Test cases focus the attention on the meaning of the predicate
avoiding procedural details. In particular, recursive predicates are a constant
source of misunderstandings for students, because they confuse the notion of ter-
mination condition in imperative languages with Prolog’s more complex mecha-
nisms. While there is only a single notion of termination in procedural languages,
Prolog has two: Existential and universal termination. By writing tests prior to
coding, the student’s attention remains focused on the use of a predicate. With
logic variables, test cases are more expressive than in imperative languages. We
can use these variables existentially (in positive queries) as well as universally
(in negative queries).

In our attempt to develop alldifferent/1 describing a list of pairwise different
elements, we start by writing the following two assertions. The first is a positive
assertion. It ensures that there must be at least a single solution for alldifferent/1.
The second is a negative one which insists that the given goal is not the case.
Here, alldifferent/1 should not be true for a list with its two elements being equal.
Both tests cannot be expressed in traditional languages.

← alldifferent(Xs).
6← alldifferent([X,X]).
@! Definition of alldifferent/1 missing in above assertions

We write test cases directly into the program text. Upon saving, GUPU inserts
feedback into that text. Above, GUPU added the line starting with @ to remind
us that we have not yet defined alldifferent/1.

Taking all of the aforementioned advantages into account, this methodology
appears preferable to the traditional “code then test” approach. Still, students
prefer to write code prior to testing. It seems that the biggest obstacle is a lack
of motivation. Test cases as such do not provide any immediate feedback when
they are written. Why should one write tests when they might be incorrect?
Such incorrect tests would be misleading in the later development. For this
reason GUPU tests assertions for validity.

1.1 Reference implementation

All test cases provided by the student are tested against a reference implementa-
tion which is realized with otherwise inaccessible predicates. It is considered to
be correct for those cases where the reference predicate fails finitely or succeeds
unconditionally. In all other cases (exceptions, non-termination, pending con-
straints), the reference implementation is incomplete and therefore unspecified
as discussed in the sequel.
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Cases detected as incompatible with the reference implementation are high-
lighted immediately. In this manner, it is possible to “test the tests” without any
predicate yet defined by the student. Errors due to the reference implementation
start with != to distinguish them from other errors.

We continue with the specification of alldifferent/1, by adding further positive
and negative assertions. In the cases below GUPU disagrees and offers help.

← alldifferent([a,b,c,d,c]).
!= Should be negative. Details with DO on the arrow

6← alldifferent([X,Y| ]).
!= Should be positive. Details with DO on the arrow

1.2 Diagnosis of incorrect assertions

A more elaborate explanation on why an assertion is incorrect is obtained on
demand as proposed by the message “DO on the arrow” above. According to the
kind of assertion the following steps are taken. In case of an incorrect negative
assertion, a more specific query is produced if possible. For incorrect positive
assertions, a generalized query is given. In this manner, GUPU provides a de-
tailed diagnosis without showing the actual code of the reference implementation.
Moreover, further assertions are offered that will improve test coverage during
coding.

Explaining incorrect negative assertions. If the reference implementation suc-
ceeds in a negative assertion, a more specific goal is obtained using an answer
substitution of the reference implementation. All free variables are grounded
with new constants any1, any2, ....

Below, an answer substitution completed the end of the list with [], and the
variables X and Y have been grounded to constants. GUPU temporarily inserts
the specialized assertion into the program text. By removing the leading @-signs,
the assertion can be added easily to the program.

6← alldifferent([X,Y| ]).
@@ % != Should be a positive assertion.
@@ % Also this more specific query should be true.
@@ ← X = any0, Y = any1, alldifferent([X,Y]).

Explaining incorrect positive assertions. If the reference implementation fails
for a positive assertion, GUPU tries to determine a generalized goal that fails as
well. Generalized goals are obtained by rewriting the goal (or a conjunction of
goals) up to a fixpoint with the following rules.

R1: Replace a goal (in a conjunction) by true.
R2: Replace a subterm of a goal’s argument by a fresh variable .
R3: Replace two or more identical subterms by a new shared variable.
R4: Replace two non-unifiable subterms by new variables V1, V2 and add the

goal dif(V1, V2).
R5: Replace a goal by a set of other goals that are known to be implied.
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← alldifferent([a,b,c,d,c]).
@@ % != Should be a negative assertion
@@ % @ Generalized negative assertion: — using R1,R2
@@ 6← alldifferent([ , ,c, ,c]).
@@ % @ Further generalization: — using R1-R4
@@ 6← alldifferent([ , ,V0, ,V0]).
@@ % @ Further generalization: — using R1-R5
@@ 6← alldifferent([V0, ,V0| ]).

In our experience it is helpful to use several stages of generalizations. Explana-
tions that are easier to compute are presented first. In the first stage, R1 and
R2 are used, and the generalization is displayed immediately. In the next stage,
R1-R4 may incur a significant amount of computation. In particular, R4 is often
expensive if the number of non-unifiable subterms is large. Note that the obtained
generalized goals are not necessarily optimal because of the incompleteness of
the reference implementation. In the above example, the first generalization is
sub-optimal. The optimum for R1 and R2 is 6← alldifferent([ , ,c, ,c| ]). However,
our reference implementation loops in this case. In the last generalization, R5 ap-
plied “alldifferent([ |Xs]) =⇒ alldifferent(Xs).” twice. This permitted R1 to remove
constant [] at the end of the list.

1.3 Incomplete reference implementations

For most simple predicates, our reference implementation is capable of deter-
mining the truth of all simple assertions. There are, however, several situations
where no feedback is provided.

– The reference implementation takes too long, although most reference pred-
icates take care of many situations and are therefore more complex than the
student’s code.

– The predicate itself is under-specified. Many under-specified predicates, how-
ever, still allow for partial assertion testing.

The former situation has been illustrated previously with alldifferent([ , ,c, ,c| ]).
For the latter, consider a family database, the usual introductory example. While
the particular persons occurring in child of/2 and ancestor of/2 are not fixed, there
still remain many constraints imposed on them.

c1 No child has three parents.
c2 A parent is an ancestor of its children.
c3 The ancestor relation is irreflexive.
c4 The ancestor relation is transitive.

We give here the actual reference implementation of child of/2 and ances-

tor of/2 implemented in CHR [4], a high-level language to write constraint sys-
tems with simplification (⇔) and propagation rules (=⇒). The definition pro-
vides two predicates that can be executed together with regular predicates of the
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reference implementation. This reference implementation cannot succeed uncon-
ditionally because of the pending constraints imposed by CHR. Therefore, it can
only falsify positive assertions.

% Reference implementation in CHR
← use module(library(chr)).
option(already in store, on). % prevents infinite loops

c1 @ child of(C,P1), child of(C,P2), child of(C,P3) ⇔
true & P1 \= P2, P2 \= P3, P1 \= P3 | false.

c2 @ child of(A,B) =⇒ ancestor of(B,A).
c3 @ ancestor of(A,A) ⇔ false.
c4 @ ancestor of(A,B), ancestor of(B,C) =⇒ ancestor of(A,C).

← child of(A,B), child of(B,C), A = C.
!= Should be negative.
← alldifferent([P1,P2,P3]), child of(C,P1), child of(C,P2), child of(C,P3).
!= Should be negative.

1.4 Termination

Termination properties and in particular non-termination properties are often
considered unrelated to the declarative meaning of a program. It is perceived
that ideally a program should always terminate. We note that non-termination
is often closely related to completeness. In fact, a query must not terminate if
the intended meaning can only be expressed with an infinite number of answer
substitutions. Notice that this observation is completely independent of Prolog’s
actual execution mechanism! No matter how sophisticated an execution mecha-
nism may be, its termination property is constrained by the size of the generated
answer. If this answer must be infinite, non-termination is inevitable. For this
reason, cases of non-termination that are due to necessarily infinite sets of an-
swer substitutions can be safely stated in advance. On the other hand, cases of
termination always depend on the particular predicate definition as well as on
Prolog’s execution mechanism.

The most interesting cases of termination are those where actual solutions
are found. Termination is therefore expressed with two assertions: A positive
assertion to ensure a solution: ← Goal. A negative one to ensure universal termi-
nation under Prolog’s simplistic left-to-right selection rule: 6← Goal, false. In our
particular case of alldifferent/1, we can state that alldifferent(Xs) must not ter-
minate, because there are infinitely many lists as solutions. With the negative
infinite assertion 6∞← Goal, false. we state that Goal must not terminate universally.

← alldifferent(Xs).

6∞← alldifferent(Xs), false.

When the length of the list is bounded (at most) a single answer substitution
for alldifferent/1 is possible. Therefore, the predicate could terminate if defined
appropriately. In the example below, the ideal answer is dif(A,B).

← Xs = [A,B], alldifferent(Xs).
6← Xs = [A,B], alldifferent(Xs), false.
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1.5 Summary

In the first stage of realizing a predicate, only test cases are given. The idea
is to start from the most general goal and refine the meaning of the predicate
by adding further cases. To streamline this process, their correctness is ensured
with the help of an internal reference implementation. It provides immediate
feedback and detailed diagnosis in the form of further test cases that can be
added to the program. Without any actual predicate code written, the learner
is put into the situation of formulating and reading queries generated by the
system. Note that in this first stage most errors remain local in each query.
The marking system provides overall guidance by demanding various forms of
assertions. E.g., a ground positive assertion, non-termination annotations, etc.

2 Predicate definition

Armed with validated test cases obtained in the first stage, we are now ready to
implement alldifferent/1. Inconsistencies between the student’s test cases and im-
plementation, are highlighted immediately. Answer substitutions are tested with
the reference implementation, as shown in the central column of the following
table. Explanations based on slicing locate an error. We continue our example
by defining the predicate with an error in the underlined part.

alldifferent([]).
alldifferent([X|Xs]) ←

nonmember of(Xs, X),
alldifferent(Xs).

nonmember of( X, []).
nonmember of(X, [E|Es]) ←

dif(X, E),
nonmember of(X, Es).

← X = any1, Y = any2, alldifferent([X,Y]).
! Unexpected failure. Explanation with DO on the arrow.
← Xs = [ , ], alldifferent(Xs).
!= The first solution is incorrect. Explanation with DO on the arrow.
6← Xs = [ , ], alldifferent(Xs), false.
! Universal non-termination. Explanation with DO on the arrow.

2.1 Slicing

Slicing [11] is a technique to facilitate the understanding of a program. It is
therefore of particular interest for program debugging. The basic idea of slicing
is to narrow down the relevant part of a program text. For the declarative prop-
erties insufficiency (unexpected failure) and incorrectness (unexpected success),
two different slicers have been realized. A further slicer was realized to explain
universal non-termination [7]. They all highlight fragments of the program where
an error has to reside. As long as the programmer does not modify the displayed
fragment, the error persists.

a) For unexpected failures, generalized program fragments are produced that
still fail. The program is generalized by deleting some goals, indicated with
a *-sign. To remove the error, the slice must be generalized.

E.g., a rule p ← q, r. is generalized to p ← * q, r.



7

b) In case of unexpected success, still succeeding specialized fragments are
obtained by inserting some goals false/0 that effectively remove program
clauses. In order to remove the error, the programmer has to specialize the
remaining program fragment.

c) For universal non-termination, slicing determines still non-terminating spe-
cialized fragments. The inserted false/0-goals hide all subsequent goals in a
clause. If false/0 is inserted as the first goal, the clause is completely elim-
inated. The remaining program fragment has to be modified in order to
remove non-termination. The constraint based algorithm is found in [7].

E.g., p ← p, q. is specialized to p ← p, false, q.

GUPU generates the following slices on demand (“DO on the arrow”).
← X= any1, Y= any2,

alldifferent([X,Y]).
! Unexpected failure.

—— Explanation, ad a) —
Generalized fragment fails.

← X= any1, Y= any2,
alldifferent([X,Y]).

alldifferent([]).
alldifferent([X|Xs]) ←

nonmember of(Xs, X),
* alldifferent(Xs).

nonmember of( X, []).
nonmember of(X,[E|Es]) ←

* dif(X, E),
* nonmember of(X, Es).

← Xs = [ , ], alldifferent(Xs).
@@ % Xs = [[],[]].% Incorrect!
@@ % Generalization
@@ 6← alldifferent([[],[]| ]).
@@ %Further generalization
@@ 6← alldifferent([V0,V0| ]).

—— Explanation, ad b) ——–
Specialized fragment succeeds.

6← alldifferent([V0,V0| ]).

alldifferent([]).
alldifferent([X|Xs]) ←

nonmember of(Xs, X),
alldifferent(Xs).

nonmember of( X, []).
nonmember of(X, [E|Es]) ← false,

dif(X, E),
nonmember of(X, Es).

6← Xs = [ , ], alldifferent(Xs),
false.

! Universal non-termination

—— Explanation, ad c) ––
Fragment does not terminate.

6← Xs = [ , ], alldifferent(Xs),
false.

alldifferent([]) ← false.
alldifferent([X|Xs]) ←

nonmember of(Xs, X), false,
alldifferent(Xs).

nonmember of( X, []) ← false.
nonmember of(X, [E|Es]) ←

dif(X, E),
nonmember of(X, Es), false.

In the above example, two declarative errors and a procedural error yielded
three different explanations. All explanations exposed some part of the program
where an error must reside. Reasoning about errors can be further enhanced
by combining the obtained explanations. Under the assumption that the error
can be removed with a single modification of the program text, the error has
to reside in the intersection of the three fragments. The intersection of all three
fragments comprises only two lines of a total of eight lines — the head and first
goal of alldifferent/1. This intersection is currently not generated by GUPU.

alldifferent([]).
alldifferent([X|Xs]) ←

nonmember of(Xs, X),
alldifferent(Xs).

nonmember of( X, []).
nonmember of(X, [E|Es]) ←

dif(X, E),
nonmember of(X, Es).

The advantages of using slicing in the context of a teaching environment are
manifold. The students’ attention remains focused on the logic programs and
not on auxiliary formalisms like traces. Reading program fragments proves to be
a fruitful path toward program understanding. Simpler and smaller parts can be
read and understood instead of the complete program. Further, the described
techniques are equally used for monotone extensions of pure Prolog programs
like constraints in the domain CLP(FD).
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2.2 Beyond Prolog semantics

The truth of infinite queries cannot be tested with the help of Prolog’s sim-
plistic but often efficient execution mechanism. GUPU subjects infinite queries
implicitly to an improved execution mechanism based on iterative deepening. In
contrast to approaches that exclusively rely on iterative deepening [12], we can
therefore obtain the best of both worlds: Prolog’s efficiency and a sometimes
more complete search. In the case of negative infinite queries, a simple loop
checking prover is used. We are currently investigating to further integrate more
sophisticated techniques.

nat(s(N)) ←
nat(N).

nat(0).

6∞← nat(N).
!++ Unexpected success. Remove /

q ←
q.

∞← q.
!++ Unexpected failure.Add /

2.3 Viewers

In a pure logic programming environment, the only way to see the result of
a computation is via answer substitutions which often serves as an excuse to
introduce impure features and side-effects. In GUPU, answer substitutions are
visualized in a side-effect free manner with the help of viewers. Viewers pro-
vide an alternate visual representation of an answer substitution which helps to
understand the investigated problem. To ensure that no side effects take place,
viewers are only allowed in assertions of the form ← Viewer <<< Goal. When
querying such an assertion, an answer substitution of Goal is displayed along
with a separate window for the viewer. Viewer is one of the predefined viewers.
Most complex viewers are based on the Postscript viewer which expects a string
describing a Postscript document. In fact, many viewers have been implemented
side-effect free within GUPU in student projects. We present two select viewers.
Further viewers are discussed in [8].

← postscript(Cs) <<< Cs = ”0 0 100 100 rectfill”.
@@ % Cs = ”0 0 100 100 rectfill”.
@@ %% One solution found.

Repetitive Scheduling. Within the context of fault-tolerant, distributed hard real-
time systems, the need to calculate time-rigid schedules arises. Before system
start up, a schedule meeting the time criteria of the application is calculated.
The resulting table is executed at run time by the components of the system.
This real-world application of CLP(FD) [3] has been integrated into GUPU. The
viewer repsched/1 displays one particular solution to this scheduling problem:
← repsched(DB-S) <<< DB = big, db timerigidschedule(DB,S).

The modeled system consists of several processors and of one global intercon-
nect (a bus). During design-time, every task is assigned to exactly one processor.
All tasks are executed periodically and are fully preemptive. Tasks communicate
and synchronize by sending messages. Internal messages are used for tasks on
the same processor. All other messages are sent over the bus.
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Solutions to the scheduling problem
obey several constraints. All messages
must be transmitted after the comple-
tion of the sending task and before
starting the receiving task. The bus
transfers at most one message at a time.
Transactions (specific groups of tasks)
have a guaranteed maximal response
time (time from the start of the earli-
est task to the end of the last complet-
ing task). Tasks having a period smaller
than the period of their transaction are
replicated accordingly. Processors exe-
cute at most one task at a time.

Periodic Plan: Db=big
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Transactions: a b c d e f g h i

An agent environment. Another critical issue apart from basic I/O concerns
the side-effect free representation of logical agents. As an example, the wum-
pus cave has been realized, well known from introductory AI texts [10]. In this
world the agent is supposed to find and rescue gold in a dark cave guarded
by a beast and paved with other obstacles. Only by using rudimentary percep-
tion, the agent makes its way through the cave. The basic functionality of the
agent is represented with two predicates. One for initialization of the agent’s
state init(State) and one to describe the agent’s reaction upon a perception per-

cept action (Percept, Action, State0, State). In addition, the state of the agent’s
knowledge can be communicated via maybehere obj (Position, Object, State) which
should succeed if the agent believes at the current State that an Object may be
located at Position.

-6

0 -1 -2 -3 -4

-5 -6 -7 -8 -9

-10 -11 -12 -13 -14

-15 -16 -17 -18 -19

-20 -21 -22 977

The graphical representation shows the agent depicted as an arrow walking
through the cave as well as the location of the objects invisible to the agent. The
agent’s belief is represented by the centered squares on each field. The agent may
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believe that a field is free, a pit, contains gold, or is occupied by the wumpus.
In the picture, the agent has discovered the wumpus, a pit, and some free fields.
All other fields are believed to contain a free field, gold, or a pit. Inconsistencies
between the agent’s belief and reality are highlighted as depicted by the field in
the upper right corner. While that field is a dangerous pit, the agent believes it
to be safe. The left viewer only displays a single situation at a time, the other
viewer presents the complete course through the cave at a glance, simplifying
the comparison of different agents.

Related Work. Ushell [12] uses iterative deepening in introductory courses.
GUPU resorts to better strategies only when Prolog takes too long. CIAOPP [5]
provides a rich assertion language (types, modes, determinacy, cost, ...). It is
much more expressive than GUPU’s but also complex to learn. Prolog IV [9]
has a very sophisticated assertion language which is particularily well suited
for constraints. Approaches to teaching Prolog with programming techniques [2]
highlight patterns otherwise invisible to the inexperienced. Advice is given on
the programming technique and coding level [6]. GUPU provides guidance prior
to any coding effort. We believe programming techniques might also be useful
for GUPU.
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