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Abstract

We present a new intermediary language suitable for program transfor-
mations that fills the gap between Prolog source level and lower represen-
tations like binary Prolog or WAM-code. With the help of Continuation
Prolog transformations on the level of continuations can be expressed that
are unavailable in the usual settings of WAM-code generation.

1 Introduction

Current implementations of Prolog still lack many optimizations even for appli-
cations like syntax analysis. The following grammar rule illustrates the problem.

expr −→ [op], expr, expr.

In a procedural language such a rule can be implemented with recursive
descent. The input string is a global variable which is updated destructively.

expr( [op |
Xs0−−−−−−−−−−−−−−−→

Xs0], Xs) ← expr(Xs0,
Xs1−−−−−−−−−→

Xs1), expr(Xs1, Xs).←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Xs

In Prolog however the variable representing the input string is simulated with
several different logic variables since logic variables can only represent a single
state. These overheads can be observed in all Prolog machines: the variables are
allocated in memory; memory must be initialized, the binding of theses variables
require superfluous trail checks. Eventually, the different states of the input
string are written into memory and read back. This overhead is necessary even
if the input string is simply passed around. The procedural counterpart requires
for the comparable task a single memory location to represent the variable.
Overheads for maintaining the input string only occur if the input string is
read. Evidently the imperative implementation is more efficient than a Prolog
implementation. For this reason language extensions have been proposed for
Prolog to allow destructive updates. With such extensions, however, desirable
properties of Prolog like referential transparency are affected.
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In this article we present an intermediary language called Continuation Pro-
log and its transformation system — EBC-transformations. With them we are
able to remove all auxiliary variables necessary to represent list differences and
similar constructs. The resulting programs can transformed either into binary
Prolog (and eventually into BinWAM code) or into WAM-code. Earlier for-
mulations of EBC-transformations were only able to generate optimized binary
Prolog [6].

Our transformation overcomes some of the well known pitfalls of the WAM.
In particular the lifetime of registers is significantly extended. In the classical
WAM setting no argument register remains valid over the proceed instruction.
While this problem is well known in the literature, there are only few approaches
that address this problem. Two alternate abstract machines have been devel-
oped to circumvent the “WAM argument register bottleneck”: the VAM [3] and
the NTOAM [14] but both introduce also new problems absent in the WAM.

Overview. In Sect. 2 we discuss various implementation strategies and iden-
tify in Sect. 3 the rôle of Continuation Prolog. Sect. 4 presents the transforma-
tion system. An example demonstrating the benefits of our transformation is
given in Sect. 5. WAM code generation for continuation Prolog is discussed in
6.

2 Implementation strategies

Prolog ⇒ WAM (⇒ Machine code). The most widely used approach
translates Prolog into the intermediary code of an abstract machine. A further
translation step compiles the intermediary code into machine code. Often the
WAM-instruction set has been extended and refined considerably. In particular
systems for native code generation prefer a more refined level (BAM [8] and
PARMA [12]).

Prolog ⇒ Binary Prolog ⇒ reduced WAM. Prolog is first translated
into a subset called binary Prolog. Only this representation is used for fur-
ther translation. Since binary Prolog encodes AND-control with the help of
terms, the instruction set required is reduced. All instructions with environ-
ment operands can be eliminated. On the other hand, heap consumption in-
creases. The first Prolog implementation based on this approach (BinProlog)
has shown that it is a viable alternative to the well established paths of WAM-
implementations. BinProlog is comparable in efficiency and significantly smaller
than comparable Prolog implementations. The core of BinProlog uses 43 WAM-
instructions which are divided into 23 elementary and 20 folded instructions. In
contrast SICStus-Prolog, a system based on traditional WAM-technology, uses
500 (folded) instructions for comparable efficiency and functionality. (A com-
parison of the total size of both systems cannot be made because the two systems
provide different functionality.)
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Binary Prolog not only simplifies an implementation but allows source-to-
source transformations that are not possible on the original source code. In
[4] EBC-transformations were presented that allow many optimizations on the
source level of binary Prolog like interprocedural register allocation and removal
of all auxiliary variables used to represent list differences as they occur in trans-
lated DCG-rules.

Our approach of using binary Prolog as an intermediary language for EBC-
transformations has however several practical drawbacks. First, when using
binary Prolog for source-to-source optimizations several complications arise:
While —in principle– all predicate arguments are treated in the same man-
ner, a distinction between the continuation argument and other arguments is
necessary. Handling this separate argument complicates the implementation of
transformation rules considerably. Second, binary Prolog cannot be used with
ease as an intermediary language for WAM-generating systems. In binary Pro-
log all environments are already encoded as terms. But in a WAM-based system
environments should be implemented differently using the WAM’s environment
stack.

To overcome these drawbacks a new formalism was developed — Continua-
tion Prolog. EBC-transformations are now defined on the level of Continuation
Prolog. The resulting improved programs can then be translated either into
Binary Prolog or directly into full WAM code.

3 Continuation Prolog

Since continuations are not treated in the same manner as ordinary arguments
during program transformation our new formalism avoids an explicit represen-
tation of continuations. Rules in Continuation Prolog are of the form ( Head ←←
Body ), where both Head and Body are sequences (lists). The translation of a
Prolog program to Continuation Prolog is straight forward. The head of a rule
is mapped onto a list with a single element. The rule body maps onto a list of
goals. Only cuts must be treated differently. They are implemented, similar to
binary Prolog with the help of a labeled cut. Facts are treated like rules with
an empty body.

expr([z|Xs],Xs).

expr([op|Xs0],Xs) ←
expr(Xs0,Xs1),
expr(Xs1,Xs).

[ expr([z|Xs],Xs) ] ←←
[].

[ expr([op|Xs0],Xs) ] ←←
[ expr(Xs0,Xs1),
expr(Xs1,Xs) ].

The meaning of a program in Continuation Prolog is defined by the meta
interpreter contint/1. The predicate contint/1 is a generalization of an ordinary
Prolog meta interpreter. For programs that have been directly translated from
regular Prolog, the meta interpreter is equivalent to a meta interpreter for reg-
ular Prolog. In this case the rule heads will always contain a list with a single
element and instead of rulediff/2 the specialized predicate rulediff spez/2 can be
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used.

contint(C) ←
contint([C],[]).

contint(Cs,Cs).
contint([C|Cs0],Cs) ←

rulediff([C|Cs0], Cs1),
contint(Cs1,Cs).

rulediff(Cs0, Cs) ←
( Hs ←← Gs ),
append(Hs, Cs1, Cs0),
append(Gs, Cs1, Cs).

rulediff spez([H|Cs1], Cs) ← % regular meta interpreter
( [H] ←← Gs ),
append(Gs, Cs1, Cs).

The only difference between Continuation Prolog and regular Prolog is that
a rule head can contain more than one element. An inference with rulediff/2 is
thus able to read several elements (with the goal append(Hs, Cs1, Cs0)). This ex-
tension allows transformations that cannot be expressed with traditional trans-
formation systems which operate on the level of goals (fold-/unfold according
to Sato and Tamaki [10]).

The relation between Continuation Prolog and Binary Prolog is straight for-
ward. Each element C of a continuation Cs in Continuation Prolog corresponds
to a term BinCont in Binary Prolog. The mapping via contclause to binaryclause/2

sheds some light on the difficulties when using Binary Prolog for program trans-
formations since continuations must be manipulated via =../2.

contlit to binlitsdiff(C, BinCont0,BinCont) ←
C =.. [F|Args],
append(Args,[BinCont],ArgsBinCont),
BinCont0 =.. [F|ArgsBinCont].

contlits to binlitsdiff([], BinCont,BinCont).
contlits to binlitsdiff([C|Cs], BinCont0,BinCont) ←

contlit to binlitsdiff(C, BinCont0,BinCont1),
contlits to binlitsdiff(Cs, BinCont1,BinCont).

contclause to binaryclause((Hs ←← Gs), (BH ← BG)) ←
contlits to binlitsdiff(Hs, BH, Cont),
contlits to binlitsdiff(Gs, BG, Cont).

A subset of Continuation Prolog can be translated directly into WAM-code.
In this case the environment stack is used to represent continuations. Heap
consumption is now similar to a traditional WAM. In a later section we will
identify a subset of Continuation Prolog that can be translated to WAM-code
with ease.

4 The transformation system

EBC- (equality based continuation) transformations transform a program in
Continuation Prolog into an operationally equivalent one. Also infinite deriva-
tions and errors are preserved. The transformation formalism is divided into
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three parts: equations providing alternative representations for continuations,
compilation of these equations into the program, simplification of the compiled
programs.

A continuation is a list of continuation elements. A subcontinuation s is a
sublist of continuation c where c = r·s·t. The symbol · denotes the concatenation
of two continuations. A rule in Continuation Prolog consists of a continuation
in the head and a continuation in the body.

4.1 Equations of continuations

The transformation system uses equations to introduce new alternate (and hope-
fully more efficient) representations for continuations. Equations over contin-
uations are of the form s=. t. With this equation every continuation c where
c = u · sθ · v is equivalent to d with d = u · tθ · v. For example, the equation

[ expr(Xs0,Xs) ] =.= [ expr1(Xs0), rest(Xs) ].

states that the new functors expr1/1 and rest/1 may serve as substitutes for
expr/2.

A set E of equations is called a conservative extension if for all continu-
ations s, t, that can be constructed from a given program the equations do not
affect unification.

∃θ.sθ = tθ iff ∃ρ.sρ=Etρ

Whether a given set of equations is a conservative extension or not is unde-
cidable in general. We are using only a few schemes of equations. The following
schemes form conservative extensions:
[old] =.= [new1, ..., newn] [old1, ..., oldn] =.= [new] [old1, old2] =.= [old1, new,

old2]

4.2 Compilation of equations

Equations are implemented with the help of syntactic unification. They are
compiled into the program prior to execution. The compilation is divided into
the compilation of goals and heads.

Compilation of goals. Continuations in the goals are never read but are sim-
ply written. We are therefore free to replace any subcontinuation that matches
a given equation by the other side of the equation. With the continuation equa-
tion u=. v the body c0 = r · s · t with s = uθ is translated into c1 = r · vθ · t
Remark that we are allowed to use the equations in any direction desired.

Compilation of heads. The head of a clause reads and unifies continuations.
It must therefore be able to deal with all alternative representations of a term.
For every clause C we create for every rewriting yielding a different head a
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new clause Ci. All resulting clauses Ci must not be unifiable with one another.
Usually, only a single transformation step is required for every combination of
a clause and an equation.

For the existing rule r · s ←← t the continuation equation u · v =. w adds the
following rule:

1. The rule r · s ←← t is rewritten with equation u · v =. w if ∃θ.sθ = uθ into
the new rule (r · w ←← t · v)θ

2. The rule r · s · t ←← u is rewritten with equation v=. w if ∃θ.sθ = vθ into
the new rule (r · w · t ←← u)θ.

4.3 Simplification of clauses

In all applications of EBC investigated so far a simplification step is required
after the compilation of equations. In this step redundancies in the program
are removed that have been made explicit by the introduced equations. The
conditions for simplification depend only on the equations E compiled in the
previous step and the clause to be simplified. No global analysis is required to
validate the simplification step.

The original clause Co = Ho ←← Bo was translated into C = H ←← B. The
clause C = H ←← B can be simplified further on to Cg = Hg ←← Bg as follows:

Continuation shortening: H = Hg ·X, B = Bg ·X
The common suffix X in head and body is removed. The variable in X
must not occur in Hg and Bg.

Generalization of arguments: C = Cgθ with dom(θ) ⊆ VAR(Bg)

i.e., Only those generalizations are permitted that are covered by the body
of a clause.

To ensure that a simplification is valid the following condition must hold:
For each clause H ←← B and its simplification Hg ←← Bg, for all i, j ≥ 1:

Old(Pi(H) ←← Pj(B)) = Old(Pi(Hg) ←← Pj(Bg))

Old(H ←← B) is the set of rules Ho ←← Bo that are unifiable with H ←← B.
P is a projection. Pi(Cont) shortens the continuation starting from the i-th

element.
Example: P1([k1, k2]) = [], P2([k1, k2]) = [k1] etc.
This condition ensures that during execution the bindings at the outer con-

tinuations will be identical to the original program. This means that built-in
predicates, read and write statements, cuts etc. may be used in the programs
to be transformed at any place.
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5 Example of an EBC-transformation

Predicate expr/2 describes a list difference of simple prefix expressions. This
predicate is the minimal nontrivial example where an existential variable occurs
(Xs1) which cannot be removed by fold-/unfold transformations. The fold-
/unfold strategy presented by Proietti and Pettorossi [7] is able to remove the
existential variable but introduces a new different existential variable.

[ expr([z|Xs],Xs) ] ←←
[ ].

[ expr([op|Xs0],Xs) ] ←←
[ expr(Xs0,Xs1),
expr(Xs1,Xs) ].

Separation of an output argument. The equation below introduces two
new structures expr1/1 and rest/1. These two new function symbols serve as
an alternative (and hopefully more efficient) representation for the old function
symbol expr/2.

[ expr(Xs0,Xs) ] =.= [ expr1(Xs0), rest(Xs) ].

[ expr( Xs0,Xs) ] ←←
[ expr1( Xs0),
rest(Xs) ].

[ expr1([z|Xs]),
rest(Xs) ] ←←

[ ].
[ expr1([op|Xs0]),
rest(Xs) ] ←←

[ expr1(Xs0),
rest(Xs1),
expr1(Xs1),
rest(Xs) ].

Simplification of the continuation. The structure rest(Xs) is redundant in
the rule. It does not contribute anything to the computation. This can be seen
from the equation above: rest(Xs) will always occur where expr1/1 occurs. It
is therefore safe to generalize the second clause in expr1/1. This generalization
does not require a global analysis of the program.

[ expr1([z|Xs]),
rest(Xs) ] ←←

[ ].
[ expr1([op|Xs0]) ] ←←

[ expr1(Xs0),
rest(Xs1),
expr1(Xs1) ].

Definition of an auxiliary predicate. To keep the program compact, all
occurrences of rest/1 in the head are folded into the auxiliary predicate demo/1.
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[ expr1([z|Xs]) ] ←←
[ demo(Xs) ].

[ expr1([op|Xs0]) ] ←←
[ expr1(Xs0),
rest(Xs1),
expr1(Xs1) ].

[ demo(Xs),
rest(Xs) ] ←←

[].

Compaction of the continuation. The last occurrence of rest/1 in expr1/1

is removed by combining rest/1 and expr1/1. The continuation rest/1 has now an
alternate representation: rest expr1/0. All clauses reading rest/1 are duplicated
to read the new representation. In this example demo/1 gets a new clause.

[ rest(Xs1), expr1(Xs1) ] =.= [ rest expr1 ].

[ expr(Xs0,Xs) ] ←←
[ expr1(Xs0),
rest(Xs) ].

[ expr1([z|Xs]) ] ←←
[ demo(Xs) ].

[ expr1([op|Xs0]) ] ←←
[ expr1(Xs0),
rest expr1 ].

[ demo(Xs),
rest(Xs) ] ←←

[].
[ demo(Xs),
rest expr1 ] ←←

[ expr1(Xs) ].

The resulting program in binary Prolog has now a smaller continuation than
the original predicate and is executed 70% faster on BinProlog. Slightly smaller
relative speedups can be obtained when generating WAM-code.

expr(Xs0,Xs, Cont) ←
expr1(Xs0, rest(Xs, Cont)).

expr1([z|Xs], Cont) ←
demo(Cont, Xs).

expr1([op|Xs0], Cont) ←
expr1(Xs0, rest expr1(Cont)).

demo(rest(Xs, Cont), Xs) ←
Cont.

demo(rest expr1(Cont), Xs) ←
expr1( Xs, Cont).

6 WAM-code generation

To exploit the full WAM instruction set we have to reduce Continuation Prolog
to a subset that can be easily translated onto a stack based architecture. The
following restrictions allow for a very simple translation scheme.

A WAM-ifiable subset of Continuation Prolog. The WAM-ifiable subset
must only contain predicates of the following form:

1. User predicates: They contain heads of a single element. Calls to auxiliary
predicates must occur only in clauses with a single goal.
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2. Auxiliary predicates: All clauses contain heads of two elements and a body
with at most one element. The second element of a head must occur only
in a single clause.

All functors of continuation elements must either be predicate functors (oc-
curing as the first element of the head) or auxiliary functors (occuring as the
second element in an auxiliary predicate).

In this case the translation is very simple:

• Predicate functors in the body correspond to regular goals.

• Auxiliary functors are translated according to their clause in the auxiliary
predicate.

• Calls to auxiliary predicates are mapped onto the “proceed”-instruction.

% Prolog code
— .

% Original WAM
— .

% Optimized WAM
[ ifshallow,neck(2),
else,endif,
allocate,
get y variable(0,1),
init([]),
call(expr1/1,1),
get y value(0,0),
deallocate,
execute(true/0)].

% EBC-CP
[ expr(Xs0,Xs) ] ←←

[ expr1(Xs0),
rest(Xs) ].

% Prolog code
expr( [

z

|Xs],
Xs).

% Original WAM
[ get list x0,
unify constant(z),
unify x local value(1),
neck(2),
proceed ].

% Optimized WAM
[ get list x0,
unify constant(z),
neck(1),
unify x variable(0),
proceed ].

% EBC-CP
[ expr1([

z

|Xs]) ] ←←
[ demo(Xs) ].

% Prolog code
expr( [

op

|Xs0],Xs) ←

expr(Xs0,Xs1),

expr(Xs1,Xs).

% Original WAM
[ get list x0,
unify constant(op),
neck(2),
allocate,
get y variable(1,1),
unify x variable(0),
put y variable(0,1),
init([]),
call(expr/2,2),
put y unsafe value(0,0),
put y value(1,1),
deallocate,
execute(expr/2)].

% Optimized WAM
[ get list x0,
unify constant(op),
neck(1),
allocate,
unify x variable(0),

init([]),
call(expr1/1,0),

deallocate,
execute(expr1/1)].

% EBC-CP
[ expr1([

op

|Xs0]) ] ←←

[ expr1(Xs0),

rest expr1 ].
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Conclusion

We have presented a program transformation that uses Continuation Prolog as
an intermediary language. The resulting programs can be translated further on
to both binary Prolog and WAM-code. They can therefore be used for systems
with and without environment stacks.
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