Better Termination for Prolog with Constraints

Markus Triska, Ulrich Neumerkel Jan Wielemaker
Technische Universitat Wien Universiteit van Amsterdam
Austria The Netherlands



Better Termination for Prolog with Constraints

Markus Triska, Ulrich Neumerkel Jan Wielemaker
Technische Universitat Wien Universiteit van Amsterdam
Austria The Netherlands

Long term goal:

17 27



Better Termination for Prolog with Constraints

Markus Triska, Ulrich Neumerkel Jan Wielemaker
Technische Universitat Wien Universiteit van Amsterdam
Austria The Netherlands

Long term goal:
Make the pure, monotonic part of Prolog stronger

17 27 37



Better Termination for Prolog with Constraints

Markus Triska, Ulrich Neumerkel Jan Wielemaker
Technische Universitat Wien Universiteit van Amsterdam
Austria The Netherlands

Long term goal:
Make the pure, monotonic part of Prolog stronger
+ iterative deepening
+ compatible with constraints
+ simpler to model/analyze
+ better reasoning (explanations: slices instead of traces)

17 27 37 47 5’



Better Termination for Prolog with Constraints

Markus Triska, Ulrich Neumerkel Jan Wielemaker
Technische Universitat Wien Universiteit van Amsterdam
Austria The Netherlands

Long term goal:
Make the pure, monotonic part of Prolog stronger
+ iterative deepening
+ compatible with constraints
+ simpler to model/analyze
+ better reasoning (explanations: slices instead of traces)
+ simpler to teach

1,2,3,4,5,6

1



Better Termination for Prolog with Constraints

Markus Triska, Ulrich Neumerkel Jan Wielemaker
Technische Universitat Wien Universiteit van Amsterdam
Austria The Netherlands

Long term goal:
Make the pure, monotonic part of Prolog stronger
+ iterative deepening
+ compatible with constraints
+ simpler to model/analyze
+ better reasoning (explanations: slices instead of traces)
+ simpler to teach
Current progress:
e occurs check reconsidered
e arithmetic as generalized, terminating CLP(FD)

1,2,3,4,5,6

1



Termination and Nontermination

e Minimal procedural notion
e Connected to declarative notions



Termination and Nontermination

e Minimal procedural notion
e Connected to declarative notions
- Hard to understand — existential vs. universal termination

- Hard to analyze correctly
Models in IN (¢TT)
- X=s) . z=1+y
- X=s8X)..rx=1+=x
- Hard to implement — unnecessary nontermination

1,2



Sound unification

[SO unification: defined if NSTO (not subject to occurs check).
All other cases implementation dependent (= havoc).



Sound unification

[SO unification: defined if NSTO (not subject to occurs check).
All other cases implementation dependent (= havoc).
Definition beyond ISO: Two new unification modes with occurs-check.
Controlled with Prolog flag occurs_check:
true
+ classical unification
+ difficult to use for real programs
— no direct feedback
error, if occurs-check fails
+ locates most STO cases
+ identifies implementation dependent cases
+ good for learning/debugging /testing
— current implementation worst case exp.
— undisciplined change of flag may reveal implementation details
Efficiency better than anticipated. Linear append/3. No overheads for DCGs.

1,2

3



Sound unification — implementation

Desirable properties:

1. X = X always succeeds

2. NewVar = AnyTerm always succeeds

3. LocalVar = AnyTerm always succeeds

4. Does not reveal sharing of terms

e unify_with_occurs_check(X,X) :- acyclic(X).
violates 1,2.3 but agrees with 4
e Robinson-style unification (SWI):
agrees with 1,2,3 but violates 4
compile time (ECLiPSe-Prolog or manual term expansion)
+ no overhead
— inflexible, recompilation needed to change unification mode
run time (SWI)
+ very small overhead
+ flexible, no recompilation (used with unit testing environment plunit)

4



Uniform arithmetic

is/2 vs. s(X) vs. constraints (#=)
Extending CLP(FD) to CLP(Z) (integer-programming)
- X #>=T777"7.
Efficiency comparable with is/2 (for comparable cases)
Always terminating
7- X#>abs(X).
7— X#>Y, Y#>X, X#>=0.
Necessary to ensure termination of general unification: ?7- X = 1.
Cheap termination proots for costly labeling:
?- relation_(X, Zs), false. terminates
=
?- relation_(X, Zs), labeling([], Zs), false. terminates.
Implementation in Prolog with attributed variables. No C!



CLP(FD) - testing

Regression testing

— maintenance high
— produces false alarms for legitimate changes (consistency, operators)

e still inevitable

Observation: Many bugs can be reproduced in small queries



CLP(FD) - testing

Regression testing

— maintenance high
— produces false alarms for legitimate changes (consistency, operators)

e still inevitable

Observation: Many bugs can be reproduced in small queries

Model based testing
e What model? Reimplementation, another implementation
e oracle required
e conflicts specification vs. implementation
e casily overspecified

Our solution: Take a very small model.

1,2

6



CLP(FD) - testing with a small model

Recent bug:

?- [D,E,F,G,H,I] ins -3..3,
E #= min(F,G-(H+I)),
D #> 0,
[A,A,B,C,B,A] = [D,E,F,G,H,I].



CLP(FD) - testing with a small model

Recent bug:
- [D,E,F,G,H,I] ins -3..3,
E #= min(F,G-(H+I)),
D #> 0,
[A,A,B,C,B,A] = [D,E,F,G,H,I].

Too complex: Consistency vs. correctness
Simpler approach:

17 27



CLP(FD) - testing with a small model

Recent bug:

?- [D,E,F,G,H,I] ins -3..3,

E #= min(F,G-(H+I)),

D #> O,

[A,A,B,C,B,A] = [D,E,F,G,H,I].
Too complex: Consistency vs. correctness
Simpler approach:

7- A, B. succeeds unconditionally

7- B. fails

= Inconsistency

17 27 37



CLP(FD) - testing with a small model

Recent bug:

?- [D,E,F,G,H,I] ins -3..3,
E #= min(F,G-(H+I)),
D #> 0,
[A,A,B,C,B,A] = [D,E,F,G,H,I].

Too complex: Consistency vs. correctness

Simpler approach:

7- A, B. succeeds unconditionally

7- B. fails

= Inconsistency

Search for inconsistent pairs! Good search language needed.

+ very robust to changes

+ no false alarms (only hardware errors and resource overflows)

+ would be impossible/very costly with nonterminating CLP(FD)

1,2,3,4

7



Conclusions

e More programs terminate

e Programs can be accurately analyzed

e Available in current SWI-Prolog distribution.
e Adopt it to your systems and courses!

e Further step in purification:

Side-effect free 1/0.
Tomorrow, Saturday at CICLOPS



