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Long term goal:
Make the pure, monotonic part of Prolog stronger
+ iterative deepening
+ compatible with constraints
+ simpler to model/analyze
+ better reasoning (explanations: slices instead of traces)
+ simpler to teach
Current progress:
e occurs check reconsidered
e arithmetic as generalized, terminating CLP(FD)
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Termination and Nontermination

e Minimal procedural notion
e Connected to declarative notions
- Hard to understand — existential vs. universal termination

- Hard to analyze correctly
Models in IN (¢TT)
- X=s) . z=1+y
- X=s8X)..rx=1+=x
- Hard to implement — unnecessary nontermination
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Sound unification

[SO unification: defined if NSTO (not subject to occurs check).
All other cases implementation dependent (= havoc).
Definition beyond ISO: Two new unification modes with occurs-check.
Controlled with Prolog flag occurs_check:
true
+ classical unification
+ difficult to use for real programs
— no direct feedback
error, if occurs-check fails
+ locates most STO cases
+ identifies implementation dependent cases
+ good for learning/debugging /testing
— current implementation worst case exp.
— undisciplined change of flag may reveal implementation details
Efficiency better than anticipated. Linear append/3. No overheads for DCGs.
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Sound unification — implementation

Desirable properties:

1. X = X always succeeds

2. NewVar = AnyTerm always succeeds

3. LocalVar = AnyTerm always succeeds

4. Does not reveal sharing of terms

e unify_with_occurs_check(X,X) :- acyclic(X).
violates 1,2.3 but agrees with 4
e Robinson-style unification (SWI):
agrees with 1,2,3 but violates 4
compile time (ECLiPSe-Prolog or manual term expansion)
+ no overhead
— inflexible, recompilation needed to change unification mode
run time (SWI)
+ very small overhead
+ flexible, no recompilation (used with unit testing environment plunit)
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Uniform arithmetic

is/2 vs. s(X) vs. constraints (#=)
Extending CLP(FD) to CLP(Z) (integer-programming)
- X #>=T777"7.
Efficiency comparable with is/2 (for comparable cases)
Always terminating
7- X#>abs(X).
7— X#>Y, Y#>X, X#>=0.
Necessary to ensure termination of general unification: ?7- X = 1.
Cheap termination proots for costly labeling:
?- relation_(X, Zs), false. terminates
=
?- relation_(X, Zs), labeling([], Zs), false. terminates.
Implementation in Prolog with attributed variables. No C!
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— produces false alarms for legitimate changes (consistency, operators)
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CLP(FD) - testing

Regression testing

— maintenance high
— produces false alarms for legitimate changes (consistency, operators)

e still inevitable

Observation: Many bugs can be reproduced in small queries

Model based testing
e What model? Reimplementation, another implementation
e oracle required
e conflicts specification vs. implementation
e casily overspecified

Our solution: Take a very small model.
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CLP(FD) - testing with a small model

Recent bug:

?- [D,E,F,G,H,I] ins -3..3,
E #= min(F,G-(H+I)),
D #> 0,
[A,A,B,C,B,A] = [D,E,F,G,H,I].

Too complex: Consistency vs. correctness

Simpler approach:

7- A, B. succeeds unconditionally

7- B. fails

= Inconsistency

Search for inconsistent pairs! Good search language needed.

+ very robust to changes

+ no false alarms (only hardware errors and resource overflows)

+ would be impossible/very costly with nonterminating CLP(FD)
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Conclusions

e More programs terminate

e Programs can be accurately analyzed

e Available in current SWI-Prolog distribution.
e Adopt it to your systems and courses!

e Further step in purification:

Side-effect free 1/0.
Tomorrow, Saturday at CICLOPS



