
Better Termination for Prolog with Constraints

Markus Triska, Ulrich Neumerkel Jan Wielemaker
Technische Universität Wien Universiteit van Amsterdam

Austria The Netherlands

1,

1



Better Termination for Prolog with Constraints

Markus Triska, Ulrich Neumerkel Jan Wielemaker
Technische Universität Wien Universiteit van Amsterdam

Austria The Netherlands

Long term goal:

1, 2,

1



Better Termination for Prolog with Constraints

Markus Triska, Ulrich Neumerkel Jan Wielemaker
Technische Universität Wien Universiteit van Amsterdam

Austria The Netherlands

Long term goal:
Make the pure, monotonic part of Prolog stronger

1, 2, 3,

1



Better Termination for Prolog with Constraints

Markus Triska, Ulrich Neumerkel Jan Wielemaker
Technische Universität Wien Universiteit van Amsterdam

Austria The Netherlands

Long term goal:
Make the pure, monotonic part of Prolog stronger

+ iterative deepening
+ compatible with constraints
+ simpler to model/analyze
+ better reasoning (explanations: slices instead of traces)

1, 2, 3, 4, 5,

1



Better Termination for Prolog with Constraints

Markus Triska, Ulrich Neumerkel Jan Wielemaker
Technische Universität Wien Universiteit van Amsterdam

Austria The Netherlands

Long term goal:
Make the pure, monotonic part of Prolog stronger

+ iterative deepening
+ compatible with constraints
+ simpler to model/analyze
+ better reasoning (explanations: slices instead of traces)
+ simpler to teach

1, 2, 3, 4, 5, 6

1



Better Termination for Prolog with Constraints

Markus Triska, Ulrich Neumerkel Jan Wielemaker
Technische Universität Wien Universiteit van Amsterdam

Austria The Netherlands

Long term goal:
Make the pure, monotonic part of Prolog stronger

+ iterative deepening
+ compatible with constraints
+ simpler to model/analyze
+ better reasoning (explanations: slices instead of traces)
+ simpler to teach

Current progress:
• occurs check reconsidered
• arithmetic as generalized, terminating CLP(FD)

1, 2, 3, 4, 5, 6

1



Termination and Nontermination

• Minimal procedural notion
• Connected to declarative notions

1,

2



Termination and Nontermination

• Minimal procedural notion
• Connected to declarative notions
- Hard to understand — existential vs. universal termination
- Hard to analyze correctly

Models in IN (cTI)
?- X = s(Y) ... x = 1 + y
?- X = s(X) ... x = 1 + x

- Hard to implement — unnecessary nontermination

1, 2

2



Sound unification

ISO unification: defined if NSTO (not subject to occurs check).
All other cases implementation dependent (= havoc).

1,

3



Sound unification

ISO unification: defined if NSTO (not subject to occurs check).
All other cases implementation dependent (= havoc).
Definition beyond ISO: Two new unification modes with occurs-check.
Controlled with Prolog flag occurs_check:
true

+ classical unification
+ difficult to use for real programs
– no direct feedback

error, if occurs-check fails
+ locates most STO cases
+ identifies implementation dependent cases
+ good for learning/debugging/testing
– current implementation worst case exp.
– undisciplined change of flag may reveal implementation details

Efficiency better than anticipated. Linear append/3. No overheads for DCGs.

1, 2

3



Sound unification — implementation

Desirable properties:

1. X = X always succeeds

2. NewVar = AnyTerm always succeeds

3. LocalVar = AnyTerm always succeeds

4. Does not reveal sharing of terms

• unify_with_occurs_check(X,X) :- acyclic(X).

violates 1,2,3 but agrees with 4
• Robinson-style unification (SWI):

agrees with 1,2,3 but violates 4
compile time (ECLiPSe-Prolog or manual term expansion)
+ no overhead
– inflexible, recompilation needed to change unification mode
run time (SWI)
+ very small overhead
+ flexible, no recompilation (used with unit testing environment plunit)

4



Uniform arithmetic

is/2 vs. s(X) vs. constraints (#=)
Extending CLP(FD) to CLP(Z) (integer-programming)
?- X #>= 7^7^7.

Efficiency comparable with is/2 (for comparable cases)
Always terminating
?- X#>abs(X).

?- X#>Y, Y#>X, X#>=0.

Necessary to ensure termination of general unification: ?- X = 1.

Cheap termination proofs for costly labeling:
?- relation_(X, Zs), false. terminates

⇒
?- relation_(X, Zs), labeling([], Zs), false. terminates.

Implementation in Prolog with attributed variables. No C!

5



CLP(FD) - testing

Regression testing

– maintenance high

– produces false alarms for legitimate changes (consistency, operators)

• still inevitable

Observation: Many bugs can be reproduced in small queries

1,

6



CLP(FD) - testing

Regression testing

– maintenance high

– produces false alarms for legitimate changes (consistency, operators)

• still inevitable

Observation: Many bugs can be reproduced in small queries

Model based testing

•What model? Reimplementation, another implementation

• oracle required

• conflicts specification vs. implementation

• easily overspecified

Our solution: Take a very small model.

1, 2

6



CLP(FD) - testing with a small model

Recent bug:

?- [D,E,F,G,H,I] ins -3..3,

E #= min(F,G-(H+I)),

D #> 0,

[A,A,B,C,B,A] = [D,E,F,G,H,I].

1,

7



CLP(FD) - testing with a small model

Recent bug:

?- [D,E,F,G,H,I] ins -3..3,

E #= min(F,G-(H+I)),

D #> 0,

[A,A,B,C,B,A] = [D,E,F,G,H,I].

Too complex: Consistency vs. correctness
Simpler approach:

1, 2,

7



CLP(FD) - testing with a small model

Recent bug:

?- [D,E,F,G,H,I] ins -3..3,

E #= min(F,G-(H+I)),

D #> 0,

[A,A,B,C,B,A] = [D,E,F,G,H,I].

Too complex: Consistency vs. correctness
Simpler approach:
?- A, B. succeeds unconditionally
?- B. fails
⇒ inconsistency

1, 2, 3,

7



CLP(FD) - testing with a small model

Recent bug:

?- [D,E,F,G,H,I] ins -3..3,

E #= min(F,G-(H+I)),

D #> 0,

[A,A,B,C,B,A] = [D,E,F,G,H,I].

Too complex: Consistency vs. correctness
Simpler approach:
?- A, B. succeeds unconditionally
?- B. fails
⇒ inconsistency
Search for inconsistent pairs! Good search language needed.
+ very robust to changes
+ no false alarms (only hardware errors and resource overflows)
+ would be impossible/very costly with nonterminating CLP(FD)

1, 2, 3, 4

7



Conclusions

•More programs terminate

• Programs can be accurately analyzed

• Available in current SWI-Prolog distribution.

• Adopt it to your systems and courses!

• Further step in purification:

Side-effect free I/O.

Tomorrow, Saturday at CICLOPS

8


