
Localizing and explaining
reasons for non-terminating logic programs

with failure-slices

Ulrich Neumerkel? and Fred Mesnard

Iremia, Université de la Réunion,
15, avenue René Cassin - BP 7151 -

97 715 Saint Denis Messag. Cedex 9 France
ulrich@complang.tuwien.ac.at fred@univ-reunion.fr

Abstract. We present a slicing approach for analyzing logic programs
with respect to non-termination. The notion of a failure-slice is presented
which is an executable reduced fragment of the program. Each failure-
slice represents a necessary termination condition for the program. If
a failure-slice does not terminate it can be used as an explanation for
the non-termination of the whole program. To effectively determine use-
ful failure-slices we combine a constraint based static analysis with the
dynamic execution of actual slices. The current approach has been inte-
grated into a programming environment for beginners. Further, we show
how our approach can be combined with traditional techniques of termi-
nation analysis.

1 Introduction

Understanding the termination behavior of logic programs is rather difficult due
to their complex execution mechanism. Two different intertwined control flows
(AND and OR) cause a complex execution trace that cannot be followed easily in
order to understand the actual reason for termination or non-termination. The
commonly used procedure box model introduced by [2] for debugging, produces a
huge amount of detailed traces with no relevance to the actual termination be-
havior. Similarly, the notion of proof trees is not able to explain non-termination
succinctly.

Current research in termination analysis of logic programs focuses on the
construction of termination proofs. Either a class of given queries is verified to
guarantee termination, or —more generally— this class is inferred [9]. In both
cases that class of queries is a sufficient termination condition and often smaller
than the class of actually terminating queries. Further this class is described in a
separate formalism different from logic programs. Explanations why a particular
query does not terminate are not directly evident.
? On leave of: Technische Universität Wien, Institut für Computersprachen

G. Nadatur (Ed.): PPDP’99, LNCS 1702, pp. 328-341, 1999.
c© Springer-Verlag 1999, http://www.springer.de/comp/lncs/index.html
This version does not contain the publisher’s formatting errors.

2

We present a complementary approach, that is able to localize and explain
reasons for non-termination using a newly developed slicing technique based on
the notion of failure-slices. Failure-slices expose those parts of the program that
may cause non-termination; under certain conditions, non-termination can be
proved.

Slicing [15] is an analysis technique to extract parts of a program related to
or responsible for a particular phenomenon (e.g. a wrong value of a variable).
Originally, slicing was developed for imperative languages by Weiser [15, 16] who
observed that programmers start debugging a program by localizing the area
where the error has to be. Using program analysis techniques, this process can
be partially automated, simplifying the comprehension of the program. Only
recently, slicing has been adopted to logic programming languages by Zhao [17],
Gyimóthy [5], and Ducassé [14]. While these approaches focus on explaining
(possibly erroneous) solutions of a query, we will present a slicing technique for
explaining non-termination properties. It is an implementation of a previously
developed informal reading technique used in Prolog-courses [11, 12] which is
used within a programming environment for beginners [13].

In contrast to most other programming paradigms, there are two different
notions of termination of logic programs - existential [8] and universal termi-
nation. A query terminates existentially, if one (or no) solution can be found.
Universal termination requires the complete SLD-tree being finite [4]. While ex-
istential termination is easy to observe, it turned out to be rather difficult to
reason about. On the other hand, universal termination, while difficult to ob-
serve, is much easier to treat formally. Further, universal termination is more
robust to typical program changes that happen during program development.
Universal termination is sensitive only to the computation rule but insensitive
to clause selection. As has been pointed out by Plümer [7] the conjunction of two
universally terminating goals always terminates. Further, reordering and dupli-
cating clauses has no influence. For this reasons, most research on termination
focused on universal termination. We will consider universal termination with
the leftmost computation rule, as used for Prolog programs.

Example. The following example contains an erroneous data base causing uni-
versal non-termination of the given query. Its non-termination cannot be easily
observed by inspecting the sequence of produced solutions. Glancing over the first
solutions suggests a correct implementation. But in fact, an infinite sequence of
redundant solutions is produced. The failure-slice on the right, generated auto-
matically by the presented method, locates the reason for non-termination by
hiding all irrelevant parts. The remaining slice has to be changed in order to
make the program terminating.

The failure-slice helps significantly in understanding the program’s termina-
tion property. It shows for example that clause reordering in ancestor of/2 does
not help here since this would lead to the same slice. Further it becomes evident,
that the first rule in ancestor of/2 is not responsible for termination. Often begin-
ners have this incorrect belief confusing universal and existential termination.

3

% original program
← ancestor of(Anc, leopold I).
child of(karl VI, leopold I).
child of(maria theresia, karl VI).
child of(joseph II, maria theresia).
child of(leopold II, maria theresia).
child of(leopold II, franz I).
child of(marie a, maria theresia).
child of(franz I, leopold II).

ancestor of(Anc,Desc) ←
child of(Desc,Anc).

ancestor of(Anc,Desc) ←
child of(Child, Anc),
ancestor of(Child, Desc).

% failure-slice
← ancestor of(Anc, leopold I).
child of(karl VI, leopold I) ← false.
child of(maria theresia, karl VI) ← false.
child of(joseph II, maria theresia) ← false.
child of(leopold II, maria theresia) ← false.
child of(leopold II, franz I).
child of(marie a, maria theresia) ← false.
child of(franz I, leopold II).

ancestor of(Anc,Desc) ←false,
child of(Desc,Anc).

ancestor of(Anc,Desc) ←
child of(Child, Anc),
ancestor of(Child, Desc), false.

This example shows also some requirements for effectively producing failure-
slices. On the one hand we need an analysis to identify the parts of a program
responsible for non-termination. On the other hand, since such an analysis can
only approximate the minimal slices, we need an efficient way to generate all
slices which then are tested for termination by mere execution for a certain
time. With the help of this combination of analysis and execution we often obtain
explanations also when classical termination analysis cannot produce satisfying
results.

Contents. The central notions failure-slice and minimal explanation are pre-
sented in Section 2. Some rules are given in Section 3 that must hold for minimal
explanations. Section 4 presents our implementation. Finally we discuss how our
approach is adapted to handle some aspects of full Prolog. A complete example is
found in the appendix. We conclude by outlining further paths of development.

2 Failure-slices

In the framework of the leftmost computation rule, the query ← G terminates
universally iff the query ← G, false fails finitely. Transforming a program with
respect to this query may result in a more explicit characterization of univer-
sal termination. However, the current program transformation frameworks like
fold/unfold are not able to reduce the responsible program size in a significant
manner. We will therefore focus our attention towards approximations in the
form of failure-slices.

Definition 1 (Program point). The clause h ← g1, ..., gn has a program point
pi on the leftmost side of the body and after each goal. A clause with n goals has
therefore the following n+1 program points: h ← pi, g1pi+1, ..., gnpi+n. We label
all program points of a program in some global order starting with the initial
query. Program points in the query are defined analogously. We denote the set
of all program points in program P with query Q by p(P, Q).

4

Definition 2 (Failure-slice).
A program S is called a failure-slice of a program P with query Q if S contains

all clauses of P and the query Q with the goal “false” inserted at some program
points. We represent a failure-slice by the subset of program points where “false”
has not been inserted (i.e., where “true” has been inserted).

The trivial failure-slice is p(P,Q), therefore the program itself. For a program
with n program points there are |P(p(P, Q))| = 2n possible failure-slices.

Example 1. For predicate list invdiff/3 the set of program points p(P,Q) is the
set of integers {0, 1, 2, 3, 4, 5}. On the right, the slice {0, 2, 4} is shown.

← /*P0*/ list invdiff(Xs, [1,2,3], []). % P5
list invdiff([], Xs, Xs). % P1
list invdiff([E|Es], Xs0, Xs) ← % P2

list invdiff(Es, Xs0, Xs1), % P3
Xs1 = [E|Xs]. % P4

← list invdiff(Xs, [1,2,3], []), false.
list invdiff([], Xs, Xs) ← false.
list invdiff([E|Es], Xs0, Xs) ←

list invdiff(Es, Xs0, Xs1), false,
Xs1 = [E|Xs].

Definition 3 (Partial order). A failure-slice S is smaller than T if S ⊂ T .

Theorem 1. Let P be a definite program with query Q and let S and T be
failure-slices of P,Q with S ⊆ T . If Q does not left-terminate in S then Q does
not left-terminate in T .

Proof. Consider the SLD-tree for the query Q in S. Since Q does not terminate,
the SLD-tree is infinite. The SLD-tree for T contains all branches of S and
therefore will also be infinite. ut
Definition 4 (Sufficient explanation). A sufficient explanation E is a subset
of P(p(P,Q)) such that for every non-terminating slice S 6∈ E, there is a non-
terminating slice T ∈ E such that T ⊂ S. The trivial sufficient explanation is
P(p(P, Q)).

Example 2. A sufficient explanation of list invdiff/3 is {{0,1}, {5}, {0,2}, {0,2,4}}.
The slices {0,1} and {5} are terminating and therefore cannot help to explain
non-termination. Slice {0,2,4} is a superset of {0,2}. Some other non-terminating
slices are {0, 2, 3}, ..., {0, 1, 2}, ..., {0, 1, 2, 3, 4, 5}. We note that there always exists
a unique smallest sufficient explanation gathering all the minimal failure-slices.

Definition 5 (Minimal explanation). The minimal explanation is the suffi-
cient explanation with minimal cardinality.

The minimal explanation contains only non-terminating slices that form an
anti-chain (i.e., that are not included in each other). In our example, {{0,2}} is
the minimal explanation since all other non-terminating slices are supersets of
{0,2}.

The minimal explanation is an adequate explanation of non-termination,
since it contains all minimal slices that imply the non-termination of the whole

5

program with the given query. It helps to correct the program, because in all min-
imal slices some parts highlighted by the minimal explanation must be changed
in order to avoid non-termination. As long as the highlighted part remains com-
pletely unchanged, the very same non-terminating failure-slice can be produced.
Further, in our experience, minimal explanations are very small compared to
the set of possible explanations. For example, the minimal explanation of the
program in the appendix contains one out of 128 possible slices.

Proposition 1. Q left-terminates w.r.t. P iff the minimal explanation of P, Q
is empty.

The undecidability of termination therefore immediately implies that mini-
mal explanations cannot be determined in general. For this reason we approach
the problem from two different directions. First, we focus on determining small
slices. Second, we try to obtain a proof of (universal) non-termination for each
slice in the explanation. If all slices are non-terminating, the minimal set has
been calculated.

Currently, we use a simple loop checker for proving universal non-termination
that aborts signaling non-termination if a subsuming variant A of an atom A′

that occurred in an earlier goal is considered. While this loop check may incor-
rectly prune some solutions ([1], e.g., ex. 2.1.6), it is sufficient to prove universal
non-termination.

The first major obstacle when searching for a non-terminating failure slice
is the large search space that has to be considered whereas the size of the min-
imal explanation is typically very small. For a program with n points there are
2n different slices, most of them being not interesting, either because they are
terminating or because there is a smaller slice that describes the same properties.

3 Failure propagation

In order to narrow down the set of potential slices, we formulate some criteria
that must hold for slices in the minimal explanation. With the help of these
rules, many slices are removed that can never be part of the minimal explanation.
These rules are directly implemented, by imposing the corresponding constraints
on the program points that are represented with boolean variables.

Throughout the following rules we use the following names for program
points. An entry/exit point of a predicate is a program point immediately be-
fore/after a goal for that predicate in some clause body or the initial query. A
beginning/ending point is the first/last program point in a clause.

Right-propagating rules
Program points that will never be used do not occur in a slice of the minimal
explanation. The following rules determine some of them. These rules encode
the leftmost computation rule.
R1: Unused points. In a clause, a failing program point pi implies the next

point pi+1 to fail.

6

R2: Unused predicates. If all entry points of a predicate fail, all corresponding
beginning program points fail.

R3: Unused points after failing definition. If in all clauses of a predicate the
ending program points fail, then all corresponding exit points fail.

R4: Unused points of recursive clauses. If in all clauses that do not contain
a direct recursion the ending points fail, then all ending points fail. A
predicate can only be true, if its definition contains at least one non
recursive clause.

Left-propagating rules
Program points that are only part of a finite failure branch cannot be part
of a slice in the minimal explanation.
L1: Failing definitions. If all beginning program points of a predicate fail then

all entry points fail.
L2: Propagation over terminating goals. A failing program point pi+1 im-

plies pi to fail if gi+1 terminates. Note that safe approximations of the
termination of a goal are described below.

L3: Left-propagation of failing exit points. If all exit points of a predicate
except those after an tail-recursion fail, then all ending points fail.

Local recursions
Some infinite loops can be immediately detected by a clausewise inspection.
Currently we consider only direct left recursions.

M1: Local left recursion. In a clause of the form h ← g1, ..., gn, g, ... a failure
is inserted after goal g, if for all substitution θ, gθ is unifiable with h,
and the sequence of goals g1, ..., gn can never fail. Also in this case it is
ensured that the program never terminates.

Example 3. In the following clause, rule M1 sets the program point after the
recursive goal unconditionally to false. Thereby also the end point is set to false
due to rule R1.

ancestor of(Anc,Desc) ←
ancestor of(Child, Desc),
child of(Child, Anc).

ancestor of(Anc,Desc) ←
ancestor of(Child, Desc), false,
child of(Child, Anc), false.

A detailed example that shows the usage of the other rules is given in the ap-
pendix.

Proposition 2 (Soundness of propagating rules). If a slice is eliminated
with the above rules, this slice does not occur in the minimal explanation.

Proof. For the right propagating rules R1-R4 it is evident that the mentioned
program points will never be used with the leftmost computation rule. Therefore
the program points may be either true or false, the minimal explanation therefore
will contain false.

The left propagating rules prune some finite failure branches. The minimal
explanation will not contain these branches. The main idea is therefore to ensure
that all infinite parts are preserved.

7

L1: When all beginning program points fail, a finite failure branch is encoun-
tered. By setting all entry points to false, only this finite branch is eliminated.

L2: A terminating goal with a subsequent false generates a finite failure
branch, which thus can be eliminated completely.

L3: Consider first the simpler case, when all exit points of a predicate fail.
In this case, all ending points may be true or false, without removing a branch.
A minimal slice therefore will contain just false at these places.

The ending point in a tail-recursive clause has no impact on the failure branch
generated by the predicate, as long as all exit points are false.

M1: This rule describes a never terminating local left recursion. The minimal
explanation may thus contain this loop. The subsequent points after the loop
are therefore not needed in a minimal slice. ut

While the presented rules can be used to generate a sufficient explanation,
they are still too general to characterize a minimal explanation. In particular,
since all rules except M1 do not take information about the arguments into
account.

Safe approximation of termination

Rule L2 needs a safe approximation for the termination property. If the call
graph of a (sliced) predicate does not contain cycles, the predicate will always
terminate. For many simple programs (like perm/2 described in the annex), the
minimal explanation can already be determined with this simple approximation
that does not take the information about data flow into account.

For many recursive predicates, however, this very coarse approximation leads
to imprecise results, yielding a large sufficient explanation. We sketch the ap-
proach we are currently evaluating to combine our constraint based termination
analysis [9] with rule L2. We recall that the mentioned termination prover infers
for each predicate p a boolean term Ct called its termination condition. If the
boolean version of a goal ← p(t̃) entails Ct then universal left-termination of the
original goal ← p(t̃) is ensured.

In order to apply rule L2 w.r.t. P, Q, we first tabulate [10] the boolean version
of P,Q. Then, if all boolean call patterns for p entail Ct, rule L2 can be safely
applied to such goals.

4 Implementation

Our implementation uses finite domain constraints to encode the relations be-
tween the program points. Every program point is represented by a boolean 0/1-
variable where 0 means that the program point fails. In addition every predicate
has a variable whose value indicates whether that predicate is always terminating
or not. We refer to the appendix for a complete example.

8

4.1 Encoding the always-terminating property

While it is possible to express cycles in finite domains directly, they are not
efficiently reified in the current CLP(FD) implementation of SICStus-Prolog [3].
For this reason we use a separate pass for detecting goals that are part of a cycle.
These goals are (as an approximation) not always-terminating.

A predicate is now always-terminating if it contains only goals that are
always-terminating. The encoding in finite domain constraints is straightfor-
ward. Each predicate gets a variable AlwTerm. In the following example we
assume that the predicates r/0 and s/0 do not form a cycle with q/0. So only
q/0 forms a cycle with itself.

q ← (P0) r, (P1) s, (P2) q (P3).

AlwTermQ ⇔ (¬P0 ∨ AlwTermR) ∧ (¬P1 ∨ AlwTermS) ∧ (¬P2 ∨ 0)

If a separate termination analysis is able to determine that q/0 terminates
for all uses in P, Q, the value of AlwTermQ can already set accordingly.

4.2 Failure propagation

The rules for minimal explanations can be encoded in a straightforward manner.
For example rule R1 is encoded for predicate q/1 as follows:

¬P0 ⇒ ¬P1, ¬P1 ⇒ ¬P2, ¬P2 ⇒ ¬P3.

4.3 Labeling and weighting

Since we are interested in obtaining minimal explanations, we use the number
of program points as a weight to ensure that the smallest slices are considered
first. The most straightforward approach simply tries to maximize the number
of failing program points. To further order slices with the same number of pro-
gram points, we prefer those slices that contain a minimal number of predicates.
Therefore we use three weights in the following order.

1. minimal number of program points that succeed
2. minimal number of predicates
3. minimal number of clauses

These weights lead naturally to an implementation in finite domain con-
straints. By labeling these weights in the above order, we obtain minimal solu-
tions first. Further only those solutions that are no extension to already found
minimal slices are considered.

9

4.4 Execution of failure-slices

With the analysis so far we are already able to reduce the number of potentially
non-terminating failure-slices. However, our analysis just as any termination
analysis is only an approximation to the actual program behavior. Since failure-
slices are executable we execute the remaining slices to detect potentially non-
terminating slices. With the help of the built-in time out/3 in SICStus Prolog
a goal can be executed for a limited amount of time. In most situations the
failure-slices will detect termination very quickly because the search space of the
failure is significantly smaller than the original program.

Instead of compiling every failure-slice for execution we use a single enhanced
program —a generic failure-slice— which is able to emulate all failure-slices in
an efficient manner.

Generic failure-slice. All clauses of the program are mapped to clauses with a
further auxiliary argument that holds a failure-vector, a structure with sufficient
arity to hold all program points. At every program point n a goal arg(n,FVect,1)
is inserted. This goal will succeed only if the corresponding argument of the
failure-vector is equal to 1.

p(...) ←

q(...),

...,

r(...).

slicep(...,FVect) ←
arg(n1,FVect,1),
sliceq(...,FVect),
arg(n2,FVect,1),
...,
arg(ni,FVect,1),
slicer(...,FVect),
arg(ni+1,FVect,1).

4.5 Proof of non-termination

Slices that are part of a minimal explanation must all be non terminating. To
this end, we execute the slice with a simple loop checker under a timeout. Since
our loop checker is significantly slower than direct execution, we use it as the
last phase in our system.

5 Full Prolog

In this section we will extend the notion of failure-slices to full Prolog. To some
extent this will reduce the usefulness of failure-slices for programs using impure
features heavily.

5.1 Finite domain constraints

Failure-slices are often very effective for CLP(FD) programs. Accidental loops
often occur in parts that set up the constraints. For the programmer it is difficult

10

to see whether the program loops or simply spends its time in labeling. Since
labeling is usually guaranteed to terminate, removing the labeling from the pro-
gram will uncover the actual error. No special treatment is currently performed
for finite domain constraints. However, we remark that certain non-recursive
queries effectively do not terminate in SICStus Prolog (or require a very large
amount of time) like ← S # >0, S # > T, T # > S. Examples like this cannot
be detected with our current approach. If such goals appear in an non-recursive
part of the program, they will not show up in a failure-slice.

5.2 DCGs

Definite clause grammars can be sliced in the same way as regular Prolog pred-
icates. Instead of the goal false, the escape {false} is inserted.

← phrase(rnaloop, Bases).
rnaloop −→
{Bs = [, , |]},
complseq(Bs), {false},
list([, , |]),
list(Bs).

list([]) −→ {false},
[].

list([E|Es]) −→ {false},
[E],
list(Es).

complseq([]) −→ {false},
[].

complseq([B|Bs]) −→
complseq(Bs), {false},
[C],
{base compl(C,B)}.

base compl(0’A,0’T) ← false.
base compl(0’T,0’A) ← false.
base compl(0’C,0’G) ← false.
base compl(0’G,0’C) ← false.

5.3 Moded built-ins

Built-ins that can only be used in a certain mode like is/2 pose no problems,
since failure-slices do not alter actual modes.

5.4 Cut

The cut operator is a heritage of the early years of logic programming. Its se-
mantics prevents an effective analysis because for general usages cuts require to
reason about existential termination. Existential termination may be expressed
in terms of universal termination with the help of the cut operator. A goal G
terminates existentially if the conjunction G, ! terminates universally. For this
reason, goals in the scope of cuts and all the predicates the goal depends on
must not be sliced at all. A simple cut at the level of the query therefore pre-
vents slicing completely.

C1: Goals in front of cuts and all its depending predicates must not contain
failure points. There must be no loop check in this part.

C2: In the last clause of a predicate, failure points can be inserted anywhere. By
successively applying this rule, the slice of the program may be still reduced.

C3: In all other clauses failures may only be inserted after all cuts.

11

Notice that these restrictions primarily hinder analysis when using deep cuts.
Using recommended shallow cuts [6] does not have such a negative impact. In
the deriv-benchmark for example, there are only shallow cuts right after the
head. Therefore, only program points after the cuts can be made to fail besides
from clauses at the end.

d(U+V,X,DU+DV) ←
!,
d(U,X,DU), false,
d(V,X,DV).

d(U-V,X,DU-DV) ← false,
!,
d(U,X,DU),
d(V,X,DV).

5.5 Negation

Similar to cuts Prolog’s unsound negation built-in \+/1 “not” is handled. The
goal occurring in the “not” and all the predicates it depends on must not contain
any injected failures. Similarly “if-then-else” and if/3 are treated. The second
order predicates setof/3 and findall/3 permit a more elaborate treatment. The
program point directly after such goals is the same as the one within findall/3

and setof/3. Therefore, failure may be propagated from right to left.

5.6 Side effects

Side effects must not be present in a failure-slice. However, this does not exclude
the analysis of predicates with side effects completely. When built-ins only pro-
duce side effects that cannot affect Prolog’s control (e.g. a simple write onto a
log file provided that Prolog does not read that file, or reading something once
from a constant file) still some failure-slice may be produced. Before such side
effecting goals a failure is injected, therefore ensuring that the side effect is not
part of the failure-slice. We note that the classification into harmless and harmful
side effects relies on the operating system environment and is therefore beyond
the scope of a programming language.

6 Summary

To summarize our approach, slicing proceeds in the following manner:

1. The call graph is analyzed to detect goals that are part of a cycle.
2. A predicate fvectPQ weights(FVect,Weights) is generated and compiled. It de-

scribes the relation between the program points in P with respect to the
query Q with the help of finite domain constraints. All program points are
represented as variables in the failure-vector FVect. FVect therefore rep-
resents the failure-slice. Weights is a list of values that are functions of the
program points. Currently three weights are used: The number of predicates,
the number of clauses and the number of succeeding program points.

12

3. The generic failure-slice is generated and compiled.
4. Now the following query is executed to find failure-slices.

← fvectPQ weights(FVect, Weights),
FVect =.. [|Fs],
labeling([], Weights),
labeling([], Fs),
time out(slicePQ(...,FVect), t, time out),
loopingslicePQ(...,FVect,Result).

Procedurally the following happens:
(a) fvectPQ weights/2 imposes the constraints within FVect and Weights.
(b) An assignment for the weights is searched, starting from minimal values.
(c) An assignment for the program points in the failure vector is searched.

A potential failure-slice is thus generated.
(d) The failure-slice is actually run for a limited amount of time to discard

some terminating slices.
(e) The loop checker is uses to determine if non-termination can be proven.

The analysis thus executes on the fly while searching for failure-slices.

7 Conclusion and future work

We presented a slicing approach for termination that combines both static and
dynamic techniques. For the static analysis we used finite domain constraints
which turned out to be an effective tool for our task. Usual static analysis con-
siders a single given program. By using constraints we were able to consider a
large set of programs at the same time, thereby reducing the inherent search
space considerably. Since failure-slices are executable their execution helps to
discard terminating slices.

Tighter integration of termination proofs. Our approach might be further refined
by termination proofs. In principle, any system for proving termination could
be integrated in our system to test whether a particular slice terminates. In
this manner some more terminating slices can be eliminated from a sufficient
explanation. There are however several obstacles to such an approach. First,
most termination proofs are rather costly, in particular, when a large set of
slices is detected as terminating. We consider using a constraint based approach
as presented in [9] that will be parameterized by the program points. We expect a
significantly more efficient implementation than those that tests for termination
at the latest possible moment. On the other hand, the precision of the analysis
should not suffer from this generalization.

Stronger rules constraining sufficient explanations. In another direction we are
investigating to formulate strong rules to constrain the search space of sufficient
explanations. In particular in programs as ancestor of/2, there is still an expo-
nential number of slices that must be tested dynamically. We envisage the usage
of dependencies between alternate clauses to overcome this problem.

13

Argument slicing. The existing slicing approaches [17, 5, 14] all perform argu-
ment slicing. We have currently no implementation of argument slicing. While
it improves program understanding, argument slicing does not seem to be help-
ful for further reducing the number of clauses or program points. It appears
preferable to perform argument slicing after a failure-slice has been found.

Acknowledgments. The initial work on failure-slices was done within INTAS
project INTAS-93-1702.

References

1. R. N. Bol. Loop Checking in Logic Programming. Thesis, Univ. Amsterdam, 1991.
2. L. Byrd. Understanding the control flow of Prolog programs. Logic Programming

Workshop, Debrecen, Hungary, 1980.
3. M. Carlsson, G. Ottosson and B. Carlson. An Open-Ended Finite Domain Con-

straint Solver. PLILP’97 (H. Glaser, P. Hartel and H. Kuchen Eds.), 191–206,
LNCS 1292, Springer-Verlag, 1997.

4. P. Deransart and J. Maluszynski. A Grammatical View of Logic Programming.
MIT-Press, 1993.

5. T. Gyimóthy and J. Paakki. Static slicing of logic programs. AADEBUG 95 (M.
Ducassé Ed.), 87–103, IRISA-CNRS, 1995.

6. R. A. O’Keefe. The Craft of Prolog. MIT-Press, 1990.
7. L. Plümer. Termination Proofs for Logic Programs, LNAI 446, Springer, 1990.
8. T. Vasak, J. Potter. Characterization of Termination Logic Programs, IEEE SLP,

140–147, 1986.
9. F. Mesnard. Inferring Left-terminating Classes of Queries for Constraint Logic

Programs. JICSLP’96 (M. Maher Ed.), 7–21, MIT-Press, 1996.
10. F. Mesnard and S. Hoarau. A tabulation algorithm for CLP. Proc. of the 1st

International Workshop on Tabling in Logic Programming, Leuven, 1997. Revised
report www.univ-reunion.fr/~gcc.

11. U. Neumerkel. Mathematische Logik und logikorientierte Programmierung, Skrip-
tum zur Laborübung, 1993-1997.

12. U. Neumerkel. Teaching Prolog and CLP. Tutorial. PAP’95 Paris, 1995 and
ICLP’97 Leuven, 1997.

13. U. Neumerkel. GUPU: A Prolog course environment and its programming method-
ology. Proc. of the Poster Session at JICSLP’96 (N. Fuchs and U. Geske Eds.),
GMD-Studien Nr. 296, Bonn, 1996.

14. St. Schoenig, M. Ducassé. A Backward Slicing Algorithm for Prolog. SAS 1996 (R.
Cousot and D. Schmidt Eds.), 317–331, LNCS 1145, Springer-Verlag, 1996.

15. M. Weiser. Programmers Use Slices When Debugging. CACM 25(7), 446–452, 1982.
16. M. Weiser. Program Slicing. IEEE TSE 10(4), 352–357, 1984.
17. J. Zhao, J. Cheng, and K. Ushijima. Literal Dependence Net and Its Use in Con-

current Logic Programming Environment: Proc. Workshop on Parallel Logic Pro-
gramming FGCS’94, pp.127–141, Tokyo, 1994.

14

A Failure-slices for perm/2

% Original program
perm([], []). % P1
perm(Xs, [X|Ys]) ← % P2

del(X, Xs, Zs), % P3
perm(Zs, Ys). % P4

del(X, [X|Xs], Xs). % P5
del(X, [Y|Ys], [Y|Xs]) ← % P6

del(X, Ys, Xs). % P7

← perm(Xs, [1,2]). % P0, P8

% First failure-slice {2,6}
perm([], []) ← false.
perm(Xs, [X|Ys]) ←

del(X, Xs, Zs), false,
perm(Zs, Ys), false.

del(X, [X|Xs], Xs) ← false.
del(X, [Y|Ys], [Y|Xs]) ←

del(X, Ys, Xs), false.

← perm(Xs, [1,2]), false.
% does not terminate

% 2nd failure-slice {2,3,5}
perm([], []) ← false.
perm(Xs, [X|Ys]) ←

del(X, Xs, Zs),
perm(Zs, Ys), false.

del(X, [X|Xs], Xs).
del(X, [Y|Ys], [Y|Xs]) ← false,

del(X, Ys, Xs), false.

← perm(Xs, [1,2]), false.
% terminates

% Determination of failure-slices to be tested for termination/non-termination
← fvectPQ weights(FVect,Wghts), FVect=..[|Ps], labeling([],Wghts), labeling([],Ps).
% FVect = s(0,1,0,0,0,1,0,0), Wghts = [3,2,2]. % {2,6} does not terminate
% FVect = s(0,1,1,0,1,0,0,0), Wghts = [4,2,2]. % {2,3,5} terminates; deleted
% FVect = s(0,1,1,0,1,1,0,0), Wghts = [5,2,3]. % {2,3,5,6} ⊃ {2,6}; not considered
% FVect = s(0,1,1,0,1,1,1,0), Wghts = [6,2,3]. % {2,3,5,6,7} ⊃ {2,6}; not considered
% ⇒ The minimal explanation E = {{2,6}}

% Definition of the failure-vector
fvectPQ weights(s(P1, P2, P3, P4, P5, P6, P7), [NPoints, NPreds, NClauses]) ←

domain zs(0..1, [P1, P2, P3, P4, P5, P6, P7]),
P0 = 1, P8 = 0, % Given Query

% R1: unused points in clause
¬P2 ⇒ ¬P3, ¬P3 ⇒ ¬P4, ¬P6 ⇒ ¬P7,
% R2: unused predicates
/*perm/2:*/ ¬P0 ∧ ¬P3 ⇒ ¬P1 ∧ ¬P2, /*del/3:*/ ¬P2 ∧ ¬P6 ⇒ ¬P5 ∧ ¬P6,
% R3: failing definition
/*perm/2:*/ ¬P1 ∧ ¬P4 ⇒ ¬P8 ∧ ¬P4, /*del/3:*/ ¬P5 ∧ ¬P7 ⇒ ¬P3 ∧ ¬P7,
% R4: right propagation into recursive clause
/*perm/2:*/ ¬P1 ⇒ ¬P4, /*del/3:*/ ¬P5 ⇒ ¬P7,

% L1: failing definition
/*perm/2:*/ ¬P1 ∧ ¬P2 ⇒ ¬P3 ∧ ¬P0, /*del/3:*/ ¬P5 ∧ ¬P6 ⇒ ¬P2 ∧ ¬P7,
% L2: over (always) terminating goals
¬P4 ∧ AlwTermPerm ⇒ ¬P3, ¬P8 ∧ AlwTermPerm ⇒ ¬P0,
¬P3 ∧ AlwTermDel ⇒ ¬P2, ¬P7 ∧ AlwTermDel ⇒ ¬P6,
% L3: failing exit points
¬P8 ⇒ ¬P1 ∧ ¬P4, ¬P3 ⇒ ¬P5 ∧ ¬P7,

% Always terminating
AlwTermPerm ⇔ (¬P2∨AlwTermDel) ∧ (¬P3∨0), AlwTermDel ⇔ (¬P6∨0),

% Weights:
NPreds #= min(1,P1+P2) + min(1,P5+P6),
NClauses #= P1+P2+P5+P6,
NPoints #= P0+P1+P2+P3+P4+P5+P6+P7+P8.

