
ISO/IEC DTR 13211–3:2006

Definite clause grammar rules

Editor: Jonathan Hodgson
Email: jpehodgson@verizon.net

July 30, 2015

Introduction

This technical report (TR) is an optional part of the International Standard for
Prolog, ISO/IEC 13211. Prolog manufacturers wishing to implement Definite
Clause Grammar rules in a portable way should do so in compliance with this
technical report.

Grammar rules provide convenient functionality for parsing and processing
text in a variety of languages. They have been implemented in many Prolog
processors. This TR is an extension to the ISO/IEC 13211–1 Prolog standard,
adopting a similar structure. In particular, this TR adds new subclauses to, or
modifies existing subclauses of ISO/IEC 13211–1.

Previous editors and draft documents

• Klaus Däßssler: ISO/IEC 13211 – 3: 2015 Grammar rules in Prolog, ISO,
2010-2015

• Paulo Moura: ISO/IEC DTR 13211– 3:2006 Grammar rules in Prolog,
ISO, 2006-10

• Roger Scowen: N171 — ISO/IEC DTR 13211–3:2004 Grammar rules in
Prolog, ISO, 2004-05

• Tony Dodd: DCGs in ISO Prolog — A Proposal, BSI, 1992

1

INTRODUCTION 2

Contributors

This list needs to be completed; so far we have only included people present
at the ISO meetings collocated with the ICLP (2005, 2006, and 2007), Richard
O’Keefe, and the authors of the drafts cited above.

• Bart Demoen (Belgium)

• David Warren (USA)

• Jan Wielemaker, (Netherlands)

• Joachim Schimpf (UK)

• Jonathan Hodgson (USA)

• Jose Morales (Spain)

• Katsuhiko Nakamura (Japan)

• Klaus Däßler (Germany)

• Manuel Carro (Spain)

• Manuel Hermenegildo (Spain)

• Mats Carlsson (Sweden)

• Mike Covington (USA)

• Paulo Moura (Portugal)

• Per Mildner (Sweden)

• Peter Szabo (Hungary)

• Peter Szeredi (Hungary)

• Pierre Deransart (France)

• Richard O’Keefe (NZ)

• Roger Scowen (UK)

• Tony Dodd (UK)

• Ulrich Neumerkel (Austria)

• Victor Santos Costa (Portugal)

1 SCOPE 3

1 Scope

This TR is designed to promote the applicability and portability of Prolog gram-
mar rules in data processing systems that support standard Prolog as defined in
ISO/IEC 13211–1:1995 and, if supported by the processor, in ISO/IEC 13211–
2:2000, and the two Corrigenda of 13211-1: ISO/IEC 13211-1 Technical Cor-
rigendum 1:2007-11, and ISO/IEC 13211-1 Technical Corrigendum 2:2012-02.
This TR specifies:

a) The representation, syntax, and constraints of Prolog grammar rules

b) A logical expansion of grammar rules into Prolog clauses

c) A set of built-in predicates for parsing with grammar rules

d) A reference implementation.

NOTE — The scope, expressed in clause 1, Scope, of ISO/IEC 13211–1:1995
applies to this TR.

2 Normative references

The following TR contains provisions which, through reference in this text,
constitute provisions of this TR as Part of ISO/IEC 13211.

• ISO/IEC 13211-1:1995

• ISO/IEC 13211-2:2000

• Corrigendum 1 of 13211-1:2006

• Corrigendum 2 of 13211-1:2012

3 Definitions

For the purposes of this TR, the following Definitions are added to the ones
specified in ISO/IEC 13211–1:

3.1 alternative: A compound term with principal functor (;)/2 or with
principal functor (’|’)/2 with each argument being a body (of a grammar-
rule).

3.2 body (of a grammar-rule): See grammar-rule-body

3.3 clause-term: A read-term T. in Prolog text where T has neither prin-
cipal functor (:-)/1 nor principal functor (-->)/2. (This definition replaces
subclause 3.33 of ISO/IEC 13211–1).

3 DEFINITIONS 4

3.4 comprehensive terminal-sequence: see terminal-sequence, compre-
hensive.

3.5 cover, a terminal-sequence by a non-terminal (resp. a body):
A terminal sequence is covered by a non-terminal (resp. a body) if the non-
terminal (resp. the body) generates the terminal sequence. Alternatively if the
non-terminal (resp. body) parses the terminal sequence.

3.6 definite clause grammar: A definite clause grammar is a set of definite
clause non-terminal definitions.

3.7 definite clause non-terminal definition: A definite clause non-terminal
definition is a sequence of grammar-rules.

3.8 expansion (of a grammar-rule): The preparation for execution (cf.
ISO/IEC 13211–1, subclause 7.5.1) of a grammar rule.

3.9 generating (wrt a non-terminal and a definite clause grammar):
Producing a terminal-sequence of that definite clause grammar, obeying semi-
contexts, if any.

3.10 grammar-body-element: A grammar-body-cut (the atom !), or a
grammar-goal, or a non-terminal, or a terminal-sequence.

3.11 grammar-body-not: A compound term with principal functor (\+)/1
whose argument is a body (of a grammar rule).

3.12 grammar-body-sequence: A compound term with principal functor
(’,’)/2 and each argument being a body (of a grammar-rule).

3.13 grammar-goal: A compound term with principal functor {}/1 whose
argument is a goal.

3.14 grammar-rule: A compound term with principal functor (-->)/2.

3.15 grammar-rule-body: A compound term which forms, or is in the
form of, the second argument of a grammar-rule. A grammar-body-sequence,
or an alternative, or a grammar-body-not, or a grammar-body-element, or a
grammar-goal.

3.16 grammar-rule-head: The first argument of a grammar-rule. Either
a non-terminal (of a grammar), or a compound term whose principal functor is
(’,’)/2, where the first argument is a non-terminal (of a grammar), and the
second argument is a semicontext (cf Definition 3.22).

3 DEFINITIONS 5

3.17 new variable with respect to a term T: A variable that is not a
member of the variable set of T.

3.18 non-terminal (of a grammar-rule): A callable term (cf. ISO/IEC
13211–1, Definitions 3.25), i.e., an atom or a compound term, that denotes a
non terminal symbol of a grammar rule.

3.19 non-terminal indicator: A compound term A//N where A is an atom
and N is a non-negative integer, denoting one particular non-terminal (cf 7.13.4).

3.20 parsing (wrt. a definite clause grammar): Successively accept-
ing or consuming terminal-sequences, assigning them to corresponding non-
terminals and obeying semicontexts, if any.

3.21 remaining terminal-sequence: See terminal-sequence, remaining.

3.22 semicontext: A terminal-sequence occurring optionally after the non-
terminal of a grammar-rule-head, constraining parsing (respectively generation)
by this grammar rule.

3.23 steadfastness of a goal wrt. an argument Goal G is steadfast with
respect to argument n of its sequence of arguments, if for any term T that is
the nth argument in the goal, and the goal Gnw that results by replacing T by
a new variable Vnw the execution (cf. ISO/IEC 13211–1, subclause 7.7.1) of G

and (Gnw, Vnw=T) is the same.

3.24 terminal (of a grammar): Any Prolog term that denotes a terminal
symbol of the grammar.

3.25 terminal-sequence: A list (cf. ISO/IEC 13211–1, subclauses 3.99,
6.3.5 and 6.3.1.3) whose first argument, if any, is a terminal (of a grammar),
and the second argument, if any, is a terminal-sequence.

3.26 terminal-sequence, comprehensive: A terminal sequence contain-
ing a prefix, and the prefix covered (cf. Definition 3.5) by a grammar-rule-body,
i.e. accepted resp. generated by phrase/3 (cf 8.18.1) .

3.27 terminal-sequence, remaining: The rest of a comprehensive terminal-
sequence without the leading terminal-sequence covered (cf. Definition 3.5) by
a grammar-rule-body.

3.28 variable, new with respect to a term T: See new variable with
respect to a term T.

4 SYMBOLS AND ABBREVIATIONS 6

4 Symbols and abbreviations

NOTE — No changes from the ISO/IEC 13211–1 Prolog standard.

5 Compliance

5.1 Prolog processor

A conforming Prolog processor shall:

a) Correctly prepare for execution Prolog text which conforms to:

1. the requirements of this TR, and

2. the requirements of ISO/IEC 13211–1, and

3. the implementation defined and implementation specific features of
the Prolog processor,

b) Correctly execute Prolog goals which have been prepared for execution
and which conform to:

1. the requirements of this TR, and

2. the requirements of ISO/IEC 13211–1, and

3. the implementation defined and implementation specific features of
the Prolog processor,

c) Reject any Prolog text or read-term whose syntax fails to conform to:

1. the requirements of this TR, and

2. the requirements of ISO/IEC 13211–1, and

3. the implementation defined and implementation specific features of
the Prolog processor,

d) Specify all permitted variations from this TR in the manner prescribed by
this TR and by the ISO/IEC 13211–1, and

e) Offer a strictly conforming mode which shall reject the use of an imple-
mentation specific feature in Prolog text or while executing a goal.

NOTE — This extends the corresponding subclause of ISO/IEC 13211–1.

5.2 Prolog text

NOTE — No changes from the ISO/IEC 13211–1 Prolog standard.

5.3 Prolog goal

NOTE — No changes from the ISO/IEC 13211–1 Prolog standard.

6 SYNTAX 7

5.4 Documentation

The corresponding subclause in the ISO/IEC 13211–1 Prolog standard is mod-
ified as follows:

A conforming Prolog processor shall be accompanied by documentation that
completes the definition of every implementation defined and implementation
specific feature specified in this TR and in ISO/IEC 13211–1 Prolog.

5.5 Extensions

The corresponding subclause in the ISO/IEC 13211–1 Prolog standard is mod-
ified as follows:

A processor may support, as an implementation specific feature, any construct
that is implicitly or explicitly undefined in this TR or in the ISO/IEC 13211–1
Prolog standard.

A Prolog processor may support additional grammar control constructs, be-
yond the required ones by this standard (cf. 7.14). These additional control
constructs must be treated as non-terminals by a Prolog processor working in
a strictly conforming mode (see 5.1e).

NOTE — Examples for additional grammar control constructs include soft-
cuts and control constructs that enable the use of grammar rules stored on
encapsulation units other than modules, such as objects.

5.5.2 Predefined operators

See subclause 6.3 for the new predefined operators that this TR adds to the
ISO/IEC 13211–1 Prolog standard.

6 Syntax

6.1 Notation

6.1.1 Backus Naur Form

No changes from the ISO/IEC 13211–1 Prolog standard.

6.1.2 Abstract term syntax

The text near the end of this subclause in the ISO/IEC 13211–1 Prolog stan-
dard is modified as follows:

Prolog text (6.2) is represented abstractly by an abstract list x where x is:

a) d.t where d is the abstract syntax for a directive, and t is Prolog text, or

6 SYNTAX 8

b) g.t where g is the abstract syntax for a grammar rule, and t is Prolog
text, or

c) c.t where c is the abstract syntax for a clause, and t is Prolog text, or

d) nil, the empty list.

The following subclause extends, with the specified number, the corresponding
ISO/IEC 13211–1 subclause.

6.1.3 Variable names convention for terminal-sequences

This TR uses variables named S0, S1, ..., S to represent the terminal-sequences
used as arguments when processing grammar rules or when expanding gram-
mar rules into clauses. In this notation, the variables S0, S1, ..., S can be
regarded as a sequence of states, with S0 representing the initial state and the
variable S representing the final state. Thus, if the variable Si represents the
terminal-sequence in a given state, the variable Si+1 will represent the remain-
ing terminal-sequence after parsing Si with a grammar rule.

6.2 Prolog text and data

The first paragraph of this subclause on ISO/IEC 13211–1 is modified as follows:

Prolog text is a sequence of read-terms which denote (1) directives, (2) grammar
rules, and (3) clauses of user-defined procedures.

6.2.1 Prolog text

The corresponding subclause in the ISO/IEC 13211–1 is modified as follows:

Prolog text is a sequence of directive-terms, grammar-rule terms, and clause-
terms.

prolog text = p text

Abstract: pt pt
p text = directive term , p text

Abstract: d.t d t
p text = grammar rule term , p text

Abstract: g.t g t
p text = clause term , p text

Abstract: c.t c t
p text = ;

Abstract: nil

6 SYNTAX 9

6.2.1.1 Directives

Syntactically, there are no changes w.r.t. ISO/IEC 13211–1 Prolog standard,
with the exception of the operator syntax (cf 6.3). For the semantic changes
see 7.4.2 of this TR. Whenever directives are applicable to non-terminals, the
non-terminal indicators (cf 7.13.4), as arguments of these directives, shall be
used like predicate indicators for the predicates, resulting from expanding these
non-terminals.

NOTE — The directives dynamic/1, multifile/1 and discontiguous/1 are
applicable to non-terminal indicators.

6.2.1.2 Clauses

The corresponding subclause in the ISO/IEC 13211–1 is modified as follows:

clause term = term, end

Abstract: c c
Priority: 1201
Condition: The principal functor of c is not (:-)/1
Condition: The principal functor of c is not (-->)/2

NOTE — Subclauses 7.5 and 7.6 define how clauses become part of the database.

The following subclause modifies, with the specified number, the corresponding
ISO/IEC 13211–1 subclause:

6.2.1.3 Grammar rules

grammar rule term = term, end

Abstract: gt gt
Priority: 1201
Condition: The principal functor of gt is (-->)/2

grammar rule = grammar rule term

Abstract: g g

NOTE — Subclause 10 of this TR defines how a grammar rule in Prolog text is
expanded into an equivalent clause when Prolog text is prepared for execution.

7 LANGUAGE CONCEPTS AND SEMANTICS 10

6.2.1.4 Semicontexts

semicontext term = term

Abstract: sc sc
Priority: 1201
Condition: semicontext term is a list

semicontext = semicontext term

Abstract: s s

NOTE — Subclause 10 of this TR, dcg rule/4, first clause, defines how a
semicontext in a grammar rule is expanded when Prolog text is prepared for
execution.

6.3 Terms

Extend the operator table of subclause 6.3.4.4 of ISO/IEC 13211–1 as follows:

Priority Specifier Operator(s)

1105 xfy ’|’

NOTE — The operator (-->)/2, specified in subclause 6.3.4.4 of the ISO/IEC
13211–1 Prolog standard, is used as the principal functor of grammar rules.

7 Language concepts and semantics

The following subclause extends, with the specified number, the corresponding
ISO/IEC 13211–1 subclause:

7.4 Prolog text

7.4.2 Directives

A non-terminal indicator may appear anywhere that a predicate indicator can
appear in the following directives: dynamic/1, multifile/1, and discontiguous/1,
as specified in subclause 7.4.2 of the ISO/IEC 13211–1 Prolog standard.

7.4.4 Grammar rules

A grammar rule term in Prolog text (6.2.1.3) enables suitable clauses to be
added to the database.

The non-terminal indicator NT//N of the non-terminal of the grammar-rule-
head shall not be the non-terminal-indicator of a grammar control construct,
and the predicate indicator NT/M where M is N + 2 shall not be the predicate
indicator of a built-in predicate or a control construct.

7 LANGUAGE CONCEPTS AND SEMANTICS 11

During preparation for execution the Prolog processor converts grammar rule
terms to Prolog procedures of the database. Section 10 of this TR defines a
correspondence between grammar rule terms and suitable clauses of a procedure
in the database.

7.5 Database

7.5.1 Preparing a Prolog text for execution

If a Prolog grammar rule with non-terminal indicator NT//N is prepared for
execution, and a Prolog clause with predicate-indicator NT/M, where M is N
+ 2, is already part of the extended database, or vice versa, then the effect of
this preparation for execution shall be implementation dependent.

7.13 Grammar rules

7.13.1 Terminals and non-terminals

In grammar rule bodies, one or more terminals are represented by terms directly
contained in lists in order to distinguish them from non-terminals. The empty
terminal sequence (empty list) is possible. Non-terminals are represented by
callable terms.

NOTE — In the context of a grammar rule, terminals represent tokens of some
language, and non-terminals represent sequences of tokens (see, respectively,
Definitions 3.23 and 3.17).

7.13.1.1 Example

A simple grammar consisting of 11 grammar rules, parsing or generating termi-
nal sequences of the form

[the, dog, runs]

[the, dog, barks]

[the, dog, bites]

[the, nice, cat, barks]

is given by:

sentence --> noun_phrase, verb_phrase.

verb_phrase --> verb.

noun_phrase --> article, noun.

noun_phrase --> article, adjective, noun.

article --> [the].

adjective --> [nice].

noun --> [dog].

7 LANGUAGE CONCEPTS AND SEMANTICS 12

noun --> [cat].

verb --> [runs].

verb --> [barks].

verb --> [bites].

Here the symbols sentence, verb phrase, verb etc. denote non-terminals,
whereas runs, nice, cat etc. denote terminals.

7.13.2 Format of grammar rules

A grammar rule has the format:

GRHead --> GRBody.

where GRHead, the grammar-rule-head (cf. Definition 3.15), can be rewritten by
GRBody, its grammar-rule-body (cf. Definition 3.14). The head and the body
of grammar rules are constructed from terminals and non-terminals, including
special non-terminals, the grammar control constructs. The grammar-rule-head
is a non-terminal, or a non-terminal, followed by a terminal-sequence (a semi-
context, see 7.13.3):

NonTerminal --> GRBody.

NonTerminal, Semicontext --> GRBody.

If NonTerminal is a grammar control construct its effect shall be implementa-
tion dependent.
The effect of a Semicontext which is not a terminal-sequence shall be imple-
mentation dependent.

The control constructs that may be used in a body are described in subclause
7.14. An empty body is represented by an empty terminal sequence:

GRHead --> [].

NOTE — There is no (-->)/1 form for grammar rules.

7.13.3 Semicontext

7.13.3.1 Description

A semicontext is a terminal-sequence (see 3.25), which follows, separated by a
comma, the non-terminal of the head of a grammar rule (see 3.16). The termi-
nals of the semicontext make up a prefix of the remaining terminal-sequence.

7 LANGUAGE CONCEPTS AND SEMANTICS 13

7.13.3.2 Examples

Assume we need rules to look-ahead one or two tokens that would later be
consumed next. This could be accomplished by the following grammar rules:

look_ahead(X), [X] --> [X].

look_ahead(X, Y), [X,Y] --> [X,Y].

When used for parsing, procedurally, these grammar rules can be interpreted
as, respectively, consuming, and then restoring, one or two terminals.
Another example may be a small grammar rule with semicontext:

phrase1, [word] --> phrase2, phrase3.

After preparation for execution this may occur in the database as follows.

phrase1(S0, S):-

phrase2(S0, S1),

phrase3(S1, S2),

S = [word | S2].

NOTES

1 In case of parsing with phrase1, as soon as phrase2 and phrase3 have
successfully parsed the comprehensive terminal-sequence (input list), the termi-
nal word is prefixed to the remaining terminal-sequence. word is then the first
terminal to be consumed in further parsing after phrase1. Thus further parsing
is constrained by the semicontext.

2 The concepts comprehensive terminal-sequence resp. remaining terminal-
sequence are often called input list resp. output list. This is misleading, because
it only considers the case of parsing using a grammar. There a terminal list shall
be parsed wrt. non-terminals, and there will be a remainder after the parsing
step. The inverse case, generating sentences by expanding grammars, where the
comprehensive terminal-sequence is the output list, is ignored by such wording.

3 There are cases, where the remaining terminal-sequence is the comprehen-
sive terminal-sequence. See, e.g. the following grammar rule. There maybe a
trailing terminal-sequence, however, as the following example shows.

nt,[word] --> [].

which may be expanded by preparation for execution to:

nt(S0, S) :- S = [word|S0]).

This non-terminal nt represents an empty terminal sequence (cf. 7.14.1), but
constrains further parsing to take place with word as next token.

7 LANGUAGE CONCEPTS AND SEMANTICS 14

4 It should be noted that phrase/2 (cf 8.18.1.3) cannot succeed when ap-
plied to a grammar rule, whose head contains a non empty semicontext, as in
the case above.

5 Some processors allow a cut in the semicontext; e.g.

a, !, [word] --> b.

Moving this cut to the end of the grammar body, c.f. a, [word] --> b, !.

leads to identical execution. Thus this TR does not permit a cut in the semi-
context.

7.13.4 Non-terminal indicator

A non-terminal indicator is a compound term //(A, N) where A is an atom and
N is a non-negative integer.

The non-terminal indicator //(A, N) indicates the non-terminal of the head of
a grammar rule where A is an atom, representing the non-terminal, and N is its
arity, a non-negative integer

NOTES

1 In Prolog text, including ISO/IEC 13211–1 and this TR, a non-terminal
indicator //(A, N) is normally written as A//N or as (A)//N depending on
whether or not A is an operator (cf. 7.1.6.6 of 13211–1).

2 The concept of non-terminal indicator is similar to the concept of predi-
cate indicator defined in subclauses 3.131 and 7.1.6.6 of the ISO/IEC 13211–1
Prolog. Non-terminal indicators may be used in exception terms thrown when
processing or using grammar rules. In addition, non-terminal indicators may ap-
pear at some places, where a predicate indicator as defined in ISO/IEC 13211–1
can appear. See 7.4.2. Furthermore non-terminal indicators may be used in a
predicate property . In particular, using non-terminal indicators in predicate di-
rectives allows the details of the expansion of grammar rules into Prolog clauses
to be abstracted.

7.13.4.1 Examples

For example, given the following grammar rule:

sentence --> noun_phrase, verb_phrase.

The corresponding non-terminal indicator for the grammar rule left-hand side
non-terminal is sentence//0.

7 LANGUAGE CONCEPTS AND SEMANTICS 15

:- multifile(sentence//0).

Thus grammar rules for sentence//0 may be distributed over several files.

7.14 Grammar control constructs

This definition of each grammar control construct gives its logical meaning and
the procedural effects, if any, of executing it wrt. its arguments after preparing
it for execution.

Expansion of grammar control constructs is not simply a replacement by Prolog
control constructs. For the expansion of every grammar control construct there
is a formal definition in subclause 10.

The correspondence between the following subclauses and the corresponding for-
mal definitions is given by the argument of the clauses of predicate dcg constr/1

or, respectively, by the principal functor of the first argument of the clauses of
predicate dcg cbody/4 in subclause 10

After preparation for execution of Grammar Rules, named “Grammar Rule ex-
pansion” or “expansion” for short, the non-terminals, with exception of phrase//1,
result in control constructs, respectively built-in predicates of ISO/IEC 13211-
1 Prolog. Grammar Rule expansion is defined by using the built-in predicate
phrase/3 (see subclause 8.18.1) and subclause 10.

The following subclauses explicate the linkages between the terminal sequences
upon expansion of the control constructs.
The meaning of phrase/2 is sometimes defined using if and sometimes defined
using iff depending on whether or not semicontext makes a difference. For
phrase/3, only iff is used.

The procedural effects are described using the logical expansion (Section 10).

7.14.1 []//0 – empty terminal-sequence

7.14.1.1 Description

phrase([],S0,S) is true iff S0=S.

7.14.2 (’.’)//2 – terminal sequence

7.14.2.1 Description

(’.’) used as a non-terminal (’.’)//2 separates its first argument, the ter-
minal on its left hand side from the second argument, the terminal sequence on
its right hand side.

7 LANGUAGE CONCEPTS AND SEMANTICS 16

7.14.3 (’,’)//2 – concatenation

7.14.3.1 Description

The grammar body element (A,B) describes the concatenation of A and B.

phrase((A,B), S) is true if S is the concatenation of S1 and S2

where phrase(A, S1) and phrase(B, S2) are true.

More precisely taking semicontext into account,
phrase((A,B), S0,S), is true iff
phrase(A, S0,S1), phrase(B, S1,S) is true.

7.14.4 (;)//2 – alternative

7.14.4.1 Description

The grammar body element (A;B) describes the alternative of A and B.

phrase((A;B), S) is true iff (phrase(A, S) ; phrase(B, S)) is true.

More precisely, taking semicontext into account, phrase((A;B), S0,S), is true
iff (phrase(A, S0,S) ; phrase(B, S0,S)) is true.

NOTE — The effect of comma and semicolon, (’,’)//2, (;)//2, may be un-
derstood best by application of write canonical/1 (see subclause 8.14.2.5 of
ISO/IEC 13211–1) on a grammar rule, containing them:

?- write_canonical((sentence --> subject, verb, object;

object, verb, subject)).

--> (sentence, ;(’,’(subject, ’,’(verb, object)),

(’,’(object, ’,’(verb, subject))))

yes

This may lead to the following Prolog clause after preparation for execution:

sentence(S0, S) :-

(subject(S0, S1),

verb(S1, S2),

object(S2, S)

; object(S0, S3),

verb(S3, S4),

subject(S4, S)

).

7 LANGUAGE CONCEPTS AND SEMANTICS 17

7.14.5 (;)//2 with (->)//2 – if-then-else

7.14.5.1 Description

NOTE – (;)//2 (cf. 7.14.4) serves two different functions depending on whether
or not its first argument is a compound term with grammar control construct
(->)//2. See 7.14.4 for the use of (;)//2 for alternative, when the first
argument of (;)//2 does not immediately contain a grammar control construct
(->)//2.

7.14.5.2 Description

The grammar body element (A -> B ; C) describes one of (A, B) or C

phrase((A -> B ; C), S) is true if
if phrase(A, S,) is true
then

phrase((A, B), S) is true
for the first solution/answer of phrase(A, S,)

else
phrase(C, S) is true.

More precisely taking semicontext into account,
phrase((A -> B ; C), S0,S) is true iff
(phrase(A, S0, S1) -> phrase(B, S1, S) ; phrase(C, S0, S))

is true.

7.14.5.3 Examples

phrase((("1"|"2") -> "3" ; "4"), "13") succeeds

phrase((("1"|"2") -> "3" ; "4"), "23") succeeds

phrase((("1"|"2") -> "3" ; "4"), "4") succeeds

phrase((("1"|"2") -> "3" ; "4"), Xs) succeeds only once unifying Xs

with "13".

phrase((("1"|"2") -> "3" ; "4"), [X]) fails

7.14.6 (’|’)//2 – second form of alternative

7.14.6.1 Description

The grammar body element (A|B) describes the alternative of A and B.

phrase((A|B), S) is true iff (phrase(A, S) ; phrase(B, S)) is true.

7 LANGUAGE CONCEPTS AND SEMANTICS 18

More precisely taking semicontext into account, phrase((A|B), S0,S), is true
iff (phrase(A, S0,S) ; phrase(B, S0,S)) is true.

’|’ used as a non-terminal (’|’)//2 has the same behaviour as (;)//2, when
used for an alternative. See subclause 7.14.4. The use of (’|’)//2 instead of
(;)//2 in an if-then-else, cf 7.14.5, shall be implementation-dependent.

7.14.7 {}//1 – grammar-body-goal

7.14.7.1 Description

The grammar body element {G} describes the empty sequence.

More precisely taking semicontext into account,
phrase({G}, S0, S) is true iff (G, S0 = S) is true.

The non-terminal {G}, with G a Prolog goal, according to ISO/IEC 13211-1:1995,
can appear at any place of a non-terminal inside a grammar-rule-body. After
expansion the braces are omitted, the goal G is unchanged. On execution G is
executed like any Prolog goal.
If G immediately contains a cut (’ !’), this is handled like a grammar-body-cut
(cf. 7.14.10), i.e. the effect of the cut extends outside the non-terminal {G}.

7.14.7.2 Example

phrase({true}, nonlist, S)

succeeds, unifying S with nonlist.

7.14.8 call//1

7.14.8.1 Description

The grammar body element call//1 describes the use of a Prolog predicate
that expects two additional arguments.

phrase(call(G 2), S) is true iff call(G 2, S, []) is true.

More precisely taking semicontext into account, phrase(call(G 2), S0,S) is
true iff call(G 2, S0,S) is true.

7 LANGUAGE CONCEPTS AND SEMANTICS 19

NOTE — Consider the following example for the correspondence for grammar
rules between call//1 and call/3:

atom_charsdiff(Atom, Xs0, Xs):-

atom_chars(Atom, Chars),

append(Chars, Xs, Xs0).

atomchars(Atom) --> call(atom_charsdiff(Atom)).

at_eos_pred([], []).

at_eos --> call(at_eos_pred).

7.14.9 phrase//1

7.14.9.1 Description

The grammar body element phrase(NonTerminal) describes NonTerminal.

phrase(phrase(NonTerminal), S) is true iff phrase(NonTerminal, S) is true.

More precisely taking semicontext into account,
phrase(phrase(NonTerminal), S0,S) is true iff
phrase(NonTerminal,S0,S) is true.

For a definition of the built-in predicate phrase/3 see subclause 8.18.1.

7.14.10 !//0 – grammar-body-cut

7.14.10.1 Description

The grammar body ! describes the empty terminal sequence.

phrase(!, S) is true iff S = [] is true.

phrase(!, S0,S) is true iff S0 = S is true

Implementations conforming to this TR shall not define or use a predicate !/2.

7 LANGUAGE CONCEPTS AND SEMANTICS 20

7.14.11 (\+)//1 – grammar-body-not

The presence of (\+)//1 in grammar rules shall be implementation dependent.

7.14.11.1 Description

If present in a (\+)//1 in grammar rules shall be defined as follows:

The grammar body element \+ GRBody describes the empty terminal sequence.

phrase(\+ GRBody, S) is true iff
\+ phrase(GRBody ,S,), S = [] is true.

phrase(\+ GRBody, S0,S) is true iff
(\+ phrase(GRBody ,S0,), S0 = S) is true.

Implementations conforming to this TR shall not define or use a predicate
(\+)/3.

NOTE — The effect of (\+)//1 can be seen in the following example.

The grammar rule

a --> \+ b.

may be expanded to:

a(S0, S) :- \+ b(S0, _), S0 = S.

7.14.12 (->)//2 - if-then

The effect of (->)//2 in grammar rules except in the first argument of an
alternative (cf. 7.14.5) shall be implementation dependent. If present in the
processor, it is defined as follows.

7.14.12.1 Description

The grammar body element A -> B describes one of (A, B).

phrase((A -> B), S) is true iff phrase((A -> B ; fail), S) is true.

phrase((A -> B), S0,S) is true iff phrase((A -> B ; fail), S0,S) is true.

7 LANGUAGE CONCEPTS AND SEMANTICS 21

7.15 Executing clauses expanded from grammar rules

If a grammar rule to be prepared for execution has a non-terminal indicator
NT//N, and NT is the name of the predicate indicator NT/M, with M is N
+ 2, of a built-in predicate, the result of expansion and the behaviour of the
prepared grammar rule on execution is implementation dependent. This does
not hold for the required non-terminals expanding to built-in predicates defined
in 7.14.

When the database does not contain a procedure, prepared for execution from
one or more grammar rules with non-terminal indicator NT//N during execu-
tion of a goal, prepared for execution from a non-terminal with non-terminal
indicator NT//N, the behaviour of the processor shall be as follows:

If the error handling of the processor is standard conforming as specified
in subclause 7.7.7 of ISO/IEC 13211–1, then the error term as specified in
subclause 7.7.7b of ISO/IEC 13211–1 when the flag unknown is set to error

shall be:

existence_error(procedure, NT/M)

If the error handling of the processor supports definite clause grammar errors,
then the error term shall be:

existence_error(grammar_rule, NT/M)

In other cases the behaviour shall be implementation specific.

NOTES

1 Prolog processors shall report errors resulting from execution of grammar
rules at the same abstraction level as grammar rules whenever possible.

2 Parsing resp. generating of terminal sequences using grammar rules is de-
fined in subclause 8.18.1. Grammar rules are expanded there into Prolog clauses
during preparation for execution, which maps the parsing or generating with a
grammar-rule-body into executing a goal given a sequence of predicate clauses.
See subclause 7.7 of ISO/IEC 13211–1 for details.

8 BUILT-IN PREDICATES 22

8 Built-in predicates

8.18 Grammar rule built-in predicates

8.18.1 phrase/3, phrase/2

8.18.1.1 Description

In the absence of semicontexts phrase(GRBody, S) is true if S is a phrase cov-
ered by the non-terminal or more generally the grammar-rule-body GRBody.

In the absence of semicontexts phrase(GRBody, S0, S)) is true if P is a phrase
covered by the non-terminal GRBody and append(P,S, S0) is true.

In the presence of semicontexts phrase(NonTerminal, S0,S) is true
if

there is a grammar rule Nonterminal, Semicontext --> GRbody

and phrase(GRbody, S0,S1) is true
and append(Semicontext, S1, S) is true.

else
there is no semicontext and there is a grammar rule
Nonterminal --> GRbody and phrase(GRbody, S0,S) is true.

Procedurally phrase(GrBody, S0, S) is executed as
dcg body(GRBody, S0, S, Goal), call(Goal) where dcg body/4) is described
in clause 10.

Execution of the predicate phrase/3 serves two goals: Firstly the final expan-
sion(of a grammar rule) (cf. Definition 3.7), when this has not taken place
earlier, i.e. preparation for execution of its body and arguments; thereafter,
secondly, the execution of the resulting Prolog goals.

NOTE 1 — An A of a B means, construct A is directly contained in construct B.
This is general standard wording for programming languages.

NOTE 2 — The simple grammar of example 7.14.1.1 may be prepared here for
execution.

Then with

GRBody: non-terminal: noun_phrase

S0: comprehensive terminal-sequence: [the, dog, barks]

S: remaining terminal-sequence: [barks]

phrase(noun phrase, [the, dog, barks], [barks]) is true.

8 BUILT-IN PREDICATES 23

If the non-terminal of GRBody, if any, is followed by a semicontext (cf. Definition
3.21), then the semicontext shall be prefixed to the remaining terminal sequence
after having been parsed resp. generated wrt. the non-terminal of GRBody.
Procedurally, phrase(GRBody, S0, S) is executed by calling the Prolog goal
corresponding to the expansion of the grammar-rule-body GRBody, given the
terminal-sequences S0 and S, according to the logical expansion of grammar
rules described in subclause 10. See in particular the clauses for dcg rule/4.

phrase(GRBody, S0, S) shall be steadfast (cf. 3.22) in its third argument S.

8.18.1.2 Template and modes

phrase(+grammar-rule-body, ?comprehensive-terminal-sequence,

?remaining-terminal-sequence)

For definitions of comprehensive-terminal-sequence and remaining-terminal-sequence

see Definitions 3.25 resp. 3.26, for grammar-rule-body see Definition 3.14.

8.18.1.3 Bootstrapped built-in predicates

The built-in predicate phrase/2 provides similar functionality to phrase/3.
The goal phrase(GRBody, S0) is true when all terminals in the terminal-sequence
S0 are consumed and accepted respectively generated.

phrase(GRBody, S0) :-

phrase(GRBody, S0, []).

8.18.1.4 Errors

a) GRBody is a variable
— instantiation error

b) GRBody is neither a variable nor a callable term
— type error(callable, GRBody)

The following two errors are implementation defined if applied to phrase/3,
i.e. no error checking is required on S0 and S by this TR for phrase/3.
If, however, a Prolog processor offers them, their form and consequence
must be the following:

c) S0 is not a terminal-sequence
— type error(terminal sequence, S0)

For phrase/2 error clause c is required.

d) S is not a terminal-sequence
— type error(terminal sequence, S)

NOTE — This relaxation is allowed because handling these errors could
overburden a Prolog processor.

8 BUILT-IN PREDICATES 24

8.18.1.5 Examples

These examples assume that the following grammar rules has been correctly
prepared for execution and are part of the complete database:

determiner --> [the].

determiner --> [a].

noun --> [boy].

noun --> [girl].

verb --> [likes].

verb --> [scares].

noun_phrase --> determiner, noun.

noun_phrase --> noun.

verb_phrase --> verb.

verb_phrase --> verb, noun_phrase.

sentence --> noun_phrase, verb_phrase.

Some example calls of phrase/2 and phrase/3:

| ?- phrase([the], [the]).

yes

| ?- phrase(sentence, [the, girl, likes, the, boy]).

yes

| ?- phrase(sentence, [the, girl, likes, the, boy, today]).

no

| ?- phrase(sentence, [the, girl, likes]).

yes

| ?- phrase(sentence, Sentence).

Sentence = [the, boy, likes]

yes

| ?- phrase(noun_phrase, [the, girl, scares, the, boy], Rest).

Rest = [scares, the, boy]

yes

9 EVALUABLE FUNCTORS 25

9 Evaluable functors

NOTE — No changes from the ISO/IEC 13211–1 Prolog standard.

10 Logical Expansion

:- op(1105,xfy,’|’).

% This program uses append/3 as defined in the Prolog prologue.

% Expands a DCG rule into a Prolog rule, when no error condition applies.

dcg_rule((NonTerminal, Terminals --> GRBody), (Head :- Body)) :-

dcg_non_terminal(NonTerminal, S0, S, Head),

dcg_body(GRBody, S0, S1, Goal1),

dcg_terminals(Terminals, S, S1, Goal2),

Body = (Goal1, Goal2).

dcg_rule((NonTerminal --> GRBody), (Head :- Body)) :-

NonTerminal \= (_, _),

dcg_non_terminal(NonTerminal, S0, S, Head),

dcg_body(GRBody, S0, S, Body).

dcg_non_terminal(NonTerminal, S0, S, Goal) :-

NonTerminal =.. NonTerminalUniv,

append(NonTerminalUniv, [S0, S], GoalUniv),

Goal =.. GoalUniv.

dcg_terminals(Terminals, S0, S, S0 = List) :-

append(Terminals, S, List).

dcg_body(Var, S0, S, Body) :-

var(Var),

Body = phrase(Var, S0, S).

dcg_body(GRBody, S0, S, Body) :-

nonvar(GRBody),

dcg_constr(GRBody),

dcg_cbody(GRBody, S0, S, Body).

dcg_body(NonTerminal, S0, S, Goal) :-

nonvar(NonTerminal),

\+ dcg_constr(NonTerminal),

NonTerminal \= (_ -> _),

NonTerminal \= (\+ _),

dcg_non_terminal(NonTerminal, S0, S, Goal).

% The following constructs in a grammar rule body

10 LOGICAL EXPANSION 26

% are defined in the corresponding subclauses.

dcg_constr([]). % 7.14.1

dcg_constr([_|_]). % 7.14.2 - terminal sequence

dcg_constr((_, _)). % 7.14.3 - concatenation

dcg_constr((_ ; _)). % 7.14.4 - alternative

% 7.14.5 - if-then-else

dcg_constr((_’|’_)). % 7.14.6 - alternative

dcg_constr({_}). % 7.14.7

dcg_constr(call(_)). % 7.14.8

dcg_constr(phrase(_)). % 7.14.9

dcg_constr(!). % 7.14.10

% dcg_constr(\+ _). % 7.14.11 - not (existence implementation dep.)

% dcg_constr((_->_)). % 7.14.12 - if-then (existence implementation dep.)

% The principal functor of the first argument indicates

% the construct to be expanded.

dcg_cbody([], S0, S, S0 = S).

dcg_cbody([T|Ts], S0, S, Goal) :-

dcg_terminals([T|Ts], S0, S, Goal).

dcg_cbody((GRFirst, GRSecond), S0, S, (First, Second)) :-

dcg_body(GRFirst, S0, S1, First),

dcg_body(GRSecond, S1, S, Second).

dcg_cbody((GREither ; GROr), S0, S, (Either ; Or)) :-

\+ subsumes_term((_ -> _),GREither),

dcg_body(GREither, S0, S, Either),

dcg_body(GROr, S0, S, Or).

dcg_cbody((GRCond ; GRElse), S0, S, (Cond ; Else)) :-

subsumes_term((_GRIf -> _GRThen), GRCond),

dcg_cbody(GRCond, S0, S, Cond),

dcg_body(GRElse, S0, S, Else).

dcg_cbody((GREither ’|’ GROr), S0, S, (Either ; Or)) :-

dcg_body(GREither, S0, S, Either),

dcg_body(GROr, S0, S, Or).

dcg_cbody({Goal}, S0, S, (Goal, S0 = S)).

dcg_cbody(call(Cont), S0, S, call(Cont, S0, S)).

dcg_cbody(phrase(Body), S0, S, phrase(Body, S0, S)).

dcg_cbody(!, S0, S, (!, S0 = S)).

dcg_cbody(\+ GRBody, S0, S, (\+ phrase(GRBody,S0,_), S0 = S)).

dcg_cbody((GRIf -> GRThen), S0, S, (If -> Then)) :-

dcg_body(GRIf, S0, S1, If),

dcg_body(GRThen, S1, S, Then).

	Introduction
	Previous editors and draft documents
	Contributors

	Scope
	Normative references
	Definitions
	Symbols and abbreviations
	Compliance
	Prolog processor
	Prolog text
	Prolog goal
	Documentation
	Extensions
	Predefined operators

	Syntax
	Notation
	Backus Naur Form
	Abstract term syntax
	Variable names convention for terminal-sequences

	Prolog text and data
	Prolog text

	Terms

	Language concepts and semantics
	Prolog text
	Directives
	Grammar rules

	Database
	Preparing a Prolog text for execution

	Grammar rules
	Terminals and non-terminals
	Format of grammar rules
	Semicontext
	Non-terminal indicator

	Grammar control constructs
	[]//0 – empty terminal-sequence
	('.')//2 – terminal sequence
	(',')//2 – concatenation
	(;)//2 – alternative
	(;)//2 with (->)//2 – if-then-else
	('|')//2 – second form of alternative
	{}//1 – grammar-body-goal
	call//1
	phrase//1
	!//0 – grammar-body-cut
	("026E30F +)//1 – grammar-body-not
	(->)//2 - if-then

	Executing clauses expanded from grammar rules

	 Built-in predicates
	Grammar rule built-in predicates
	phrase/3, phrase/2

	Evaluable functors
	Logical Expansion

