
Ox:
An Attribute-Grammar Compiling System

based on Yacc, Lex, and C:

User Reference Manual

by Kurt M. Bischoff

November 14, 1993
©1992, 1993 Kurt M. Bischoff

Revised: May 25, 2022

CONTENTS 1

Contents

1 Overview of Use 3

2 Preliminary 4

3 Attribute declarations 4
3.1 Semantics of attribute declarations 6

4 Rules and attribute occurrences 6

5 Attribute definitions 7
5.1 Inherited vs. synthesized attributes 7
5.2 Attribute reference sections in the Y-file 8

5.2.1 Explicit mode . 8
5.2.2 Implicit mode . 9
5.2.3 Mixed mode . 9

5.3 Attribute reference sections in the L-file(s) 10
5.3.1 Generality of Ox . 10
5.3.2 Ox adaptation to Lex’s line-oriented syntax 10
5.3.3 Resolution of ambiguity regarding token returned 12

5.4 Cycles . 13

6 Translation into C code 13

7 Temporal behavior of Ox-generated evaluators 14
7.1 Stack operations . 14
7.2 Placement of generated code . 14
7.3 Decoration and the ready set . 15
7.4 Pruning and global variables . 15
7.5 Parse tree visualization . 16

8 Programming style 16

9 Postdecoration traversals 18
9.1 Example: infix to prefix translation 18
9.2 General description . 20

9.2.1 Traversal specifications . 20
9.2.2 Traversal action specifications 20

10 Ox macros 22
10.1 Macro definitions . 22
10.2 Macro uses . 22

CONTENTS 2

10.3 Example . 23

11 Automatic generation of copy rules 24
11.1 Example . 26

12 File-level organization of Ox evaluators 27
12.1 Conventions of naming Ox output files 27
12.2 Review: combining the outputs of Yacc and Lex 27
12.3 Combined use of Ox, Yacc, and Lex 27
12.4 Typical command sequences . 28

13 Command-line options and other points 28
13.1 Error recovery . 28
13.2 Stripping Ox constructs . 29
13.3 Preventing execution of attribute definition code 29
13.4 Parse tree statistics . 29

14 Example: an integer calculator 30

15 Example: a binary number translator 32

16 Example: translation to postfix and prefix 34

A Using Ox with non-Lex lexical analyzers 36
A.1 Default context-sensitivity of L-file compilation 36
A.2 Ox compilation of C-coded lexical analyzers 36

A.2.1 Example . 37

B Traversal semantics 40

C List of reserved words and reserved file names 42

D Summary of command-line options 43

E Lex- and Yacc-compatible tool interoperation 46

F Using Graphviz for parse tree visualization 50
F.1 The default parse tree configuration 51
F.2 Specifying cgraph node structure . 52
F.3 Example: the integer calculator, revisited 53

References 57

Index 59

1 OVERVIEW OF USE 3

1 Overview of Use

Lex and Yacc are powerful and widely-used tools for the automatic generation of
language recognizers. Lex accepts a set of user-written regular expressions and writes
a C program that performs lexical analysis according to those expressions. Yacc
translates user-written grammar rules into C source code for a syntax analyzer.
While they afford “hooks” for execution of hand-coded C-language semantic actions,
Lex and Yacc provide little other facility for automatic implementation of language
semantics.

Attributed parse trees are often used as data structures in evaluators for lan-
guages. Often the language implementer hand-crafts code for building, traversing,
and evaluating attributes of parse trees, and for parse tree memory management.
A Yacc specification defines a context-free language and a mapping from the set of
legal sentences to the set of parse trees, but code for parse tree management is not
generated automatically by Yacc.

The Ox1 user can specify a language using the familiar languages of Lex and Yacc,
or take an existing Lex/Yacc specification, and add semantics to the language by
augmenting the specification files with declarations and definitions of typed attributes
of parse tree nodes.

That specification constitutes an attribute grammar, and from it Ox can auto-
matically generate an evaluator written in Yacc, Lex, and C. For a given input, the
evaluator builds a parse tree, determines an order of evaluation for attributes of the
tree, and performs, for each attribute, the semantic action required to evaluate it.
This parse tree is managed independently of any trees managed by hand-written C
code, but information may be moved between the evaluator-managed tree and any
global data structure.

Additionally, the Ox user can easily specify parse tree traversals that are per-
formed after evaluation of the tree’s attributes and that refer to those attributes.
Such traversals greatly simplify tasks such as code generation and the gathering of
compilation statistics.

The language designer is freed from the tedious and error-prone details of writing
code for parse tree management. Ox-generated evaluators use memory-management
techniques that bring large time-efficiency gains over hand-built evaluators that use
the common technique of calling malloc once for each parse tree node. Also, Ox
provides security by testing the definition for consistency and completeness, and
the evaluator performs tests to ensure that a circular definition has not prevented
evaluation of attributes.

Ox is a compiler that accepts two or more files, and translates these into files

1The name “Ox” originated as a homophone for an acronym for “An Attribute Grammar
Compiling System”. It was noticed later that every yak is an ox and that Ox generalizes the
function of Yacc.

2 PRELIMINARY 4

suitable for input to Lex2 and Yacc. With few exceptions, all Lex-input/Yacc-input
pairs of files that constitute recognizers or translators are legal inputs to Ox. Thus
much existing software is amenable to modification using Ox, and implementations
that use Ox can be converted stepwise by hand to “pure” Lex/Yacc implementations.
This makes Ox well-suited to language designers, experimenters, and implementers
already familiar with Lex, Yacc, and C.

2 Preliminary

It is assumed that the reader is familiar with the use of Yacc [Johnson 1975],
Lex [Lesk 1975], and C [KR 1988]; Ox syntactic constructs are described mainly
as augmentations of the languages accepted by those tools.3 Prior acquaintance
with the basic ideas of attribute grammars (for instance, as found in [Waite 1984] or
[Aho 1986]) is helpful.

An Ox input specification consists of at least two files: a syntactic specification
(which resembles a Yacc input specification and is called a Y-file) that Ox translates
into a Yacc input specification, and one or more lexical specifications (which resemble
Lex input specifications and are called L-files) that Ox translates into Lex input
specifications. Usually there is exactly one L-file, but an evaluator that uses more
than one lexical analyzer [Lesk 1975] may be constructed by submitting to Ox more
than one L-file. This manual presents descriptions of the Ox-specific constructs that
may appear in these files, as well as pertinent underlying concepts. These constructs
are illustrated mainly by using fragments of three examples of Ox input specifications,
the complete texts of which appear in sections 14, 15, and 16.

Within Ox-specific constructs, C-style and C++-style comments may appear
anywhere whitespace may appear. The identifiers visible to user-written code within
the Ox-generated skeleton source are prefixed by yyy, so the user can avoid name
conflicts within the generated evaluator by abstaining from the use of identifiers that
begin with yyy.

3 Attribute declarations

As described in [Johnson 1975], the definition section of a Yacc input specification
is the part that precedes the first %% mark, and in it the user may declare the start

2The general descriptions in this manual assume the use of a Lex-based lexical analyzer. It is
possible, however, to use Ox with lexical analyzers hand-written in C: details are given separately
(in appendix A).

3“Yacc”, “Lex”, and “C” can, in this manual, be taken to mean “Yacc, BYacc [BYacc], BtY-
acc [BtYacc], Bison [Bison] or Msta [Msta]”; “Lex, Flex [Flex] or RE/flex [REflex]”; and “C or
C++” respectively. See appendix E for Ox interoperability issues with Lex- and Yacc-compatible
tools.

3 ATTRIBUTE DECLARATIONS 5

symbol, tokens, associativities, unions, C code sections, etc. The Y-file contains such
a definition section, and in it are permitted all of the constructs of a Yacc definition
section, as well as Ox attribute declarations4. An attribute declaration consists of
the reserved word @attributes followed by {, an attribute declaration list, }, and a
list of grammar symbols.

Suppose that a grammar has a symbol bitlist and the following attribute dec-
laration:

@attributes {float value; int scale,length;} bitlist

Then the Ox evaluator, when building a parse tree node labeled bitlist, allocates
storage for a float named value and integers named scale and length.

An attribute declaration list (in the previous example, the part between curly
braces) resembles a C structure declaration list. Digit strings and C-style identifiers,
as well as the following characters and reserved words, arranged according to C/C++
type specifier syntax, are legal in attribute declaration lists5:

() * : ; , [] ... :: & < > struct union enum char short

int long float double signed unsigned void const volatile

register static restrict _Bool _Complex _Imaginary class

typename wchar_t bool @void

Any fundamental or derived type permitted in a C/C++ program may be used as an
attribute type specifier6. In addition, the attribute type specifier @void defines an at-
tribute with no value, and is intended for those situations where the only information
of importance is a dependent / dependee relationship between attributes.

Yacc input specifications often contain C code sections between %{ and %}, and
these are also permitted in Ox input specifications. Any name given meaning as
a type by a struct, class, union, or typedef declaration, or by a #define in a
previous C code section may be used as an attribute type specifier.

The list of grammar symbols following } is a possibly empty list of Yacc tokens
(including character constants) and nonterminals, members of the list being sepa-
rated by whitespace.

4Yacc declarations (e.g., uses of the reserved words %token, %left, %right, %nonassoc, etc.)
must precede all Ox declarations.

5Curly braces may not appear, so structures, unions, and classes may not be defined within an
attribute declaration list.

6Currently, only default constructors for a C++ class type (struct, class, or union) will be
called from within Ox-generated skeleton code. If a parameterized constructor is required, it must
be called within the evaluation part of each definition of an attribute with that type through use
of a placement new operator .

4 RULES AND ATTRIBUTE OCCURRENCES 6

3.1 Semantics of attribute declarations

An attribute declaration informs Ox that each symbol in the grammar symbol list
has attributes of the names and types appearing in the attribute declaration list. If
a appears in the attribute declaration list and s appears in the grammar symbol list,
then a is said to belong to s or to be an attribute of s. Each grammar symbol has
its own attribute name space. When the evaluator creates a node labeled by one of
the listed symbols, it allocates storage of the specified type for each of the named
attributes. A storage location so allocated is called an attribute instance (concisely,
an instance) in the parse tree. Instances may be said to belong to nodes.

4 Rules and attribute occurrences

Yacc grammar rules (productions), and the objects of return statements in Lex
actions (each such object being a token), are here referred to generically as rules .
Since Ox accepts the constructs of Yacc and Lex, and passes these unchanged, the
corresponding constructs of Ox input specifications are also called rules. Each rule
is viewed as a sequence of grammar symbols, the object of each return statement in
a Lex action being a sequence consisting of a single grammar symbol. The leftmost
symbol of a rule is called the left-hand side (LHS). The right-hand side (RHS)
comprises the rule’s other symbols.

A symbol’s position in a rule together with an attribute of that symbol consti-
tute an attribute occurrence (concisely, an occurrence) in that rule. If the attribute
in question is a, the occurrence is said to be an occurrence of a. Supposing the
@attributes declaration of section 3 and the rule:

num : bitlist DOT bitlist

the attribute occurrence scale of the leftmost appearance of bitlist is denoted in
Ox code as bitlist.0.scale, while the attribute occurrence scale of the rightmost
appearance of bitlist is denoted bitlist.1.scale.

In general, attribute occurrences are named by a grammar symbol, followed by
a period, followed optionally by a non-negative decimal integer and another period,
followed by the name of an attribute of that symbol. The integer and the second
period are needed only when a given grammar symbol appears more than once in the
rule, in which case those distinct appearances are numbered from left to right with
consecutive increasing integers starting with 0. For a symbol X with an attribute a,
X.a is a synonym for X.0.a.

A given rule and an attribute occurrence in that rule constitute an attribute
occurrence in the grammar.

5 ATTRIBUTE DEFINITIONS 7

5 Attribute definitions

For each rule, the Ox user may provide an attribute reference section, delimited
by @{ and @}, and optionally containing definitions of attribute occurrences of the
given rule. Attribute occurrences may be defined therein in terms of the rule’s other
attribute occurrences and C code such as global variables, constants, macros, and
function calls.

5.1 Inherited vs. synthesized attributes

An attribute occurrence o in a rule R is synthesized if and only if

1. o is on the LHS of R and the attribute reference section of R contains a
definition of o, or

2. o is on the RHS of R and the attribute reference section of R contains no
definition of o.

An attribute occurrence o in a rule R is inherited if and only if

1. o is on the LHS of R and the attribute reference section of R contains no
definition of o, or

2. o is on the RHS of R and the attribute reference section of R contains a
definition of o.

An error message is issued if an attribute is found to have both synthesized and
inherited occurrences in the grammar. An attribute is synthesized if and only if it
has at least one occurrence, and its every occurrence is synthesized. An attribute
is inherited if and only if it has at least one occurrence, and its every occurrence is
inherited. It follows from the above that the grammar’s start symbol may have only
synthesized attributes. Referring to returned tokens as rules emphasizes the equal
status of tokens and nonterminals, inasmuch as each kind of symbol (except the start
symbol) may have both synthesized and inherited attributes. Since each symbol has
a distinct name space (section 3.1), same-named attributes of different symbols are
different attributes, and may differ as to whether they are inherited or synthesized.

For each parse tree node except the root node, two rules of the Ox input specifi-
cation are of particular interest. The home rule is the rule applied at the node, i.e.,
the rule whose LHS is the label of the given node, and whose RHS symbols are the
labels of the children of the node. The parent rule is the rule applied at the node’s
parent. The attribute definition of a synthesized attribute instance of a given node
is associated with the node’s home rule (i.e., it appears in the attribute reference
section for that rule), and definitions of inherited attribute instances are similarly
associated with the parent rule.

5 ATTRIBUTE DEFINITIONS 8

In a legal input specification, each attribute of a symbol appearing in a rule is
either synthesized or inherited, but not both, so the definitions of all attributes “fit
together” completely and without contradiction.

5.2 Attribute reference sections in the Y-file

The rules section of a Yacc file follows the first %% mark [Johnson 1975], and contains
the productions (rules) of the grammar. As mentioned above, the Ox user may
augment each rule by an attribute reference section, each of which is delimited by
@{ and @}, and which contains zero or more attribute definitions . When present, the
attribute reference section is the last item (other than a terminating semicolon) in a
rule.7 Conceptually, an attribute definition has a dependency part and an evaluation
part , but syntactically, the parts may be combined or separate. There are three
modes of expression of attribute definitions, and different modes may be used within
a single attribute reference section. Each attribute definition begins with a definition
mode annunciator (@e, @i, or @m,).

5.2.1 Explicit mode

In this, the most powerful and most verbose attribute definition mode, an attribute
definition takes the form of @e (mnemonic for explicit) followed by a dependency
expression (which expresses the dependency part of the definition) followed by an
evaluation part. In the following example, the attribute reference section contains
three attribute definitions, each expressed in the explicit mode:

num : bitlist DOT bitlist

@{ @e num.value : bitlist.0.value bitlist.1.value;

@num.value@ = @bitlist.0.value@ + @bitlist.1.value@ ;

@e bitlist.0.scale : ;

@bitlist.0.scale@ = 0 ;

@e bitlist.1.scale : bitlist.1.length ;

@bitlist.1.scale@ = -@bitlist.1.length@ ;

@}

;

A dependency expression makes explicit the constraints on the order of execu-
tion of evaluation parts and is a non-empty list of attribute occurrences of the rule,
followed by a colon, followed by a possibly empty list of attribute occurrences and a
terminating semicolon. The occurrences to the left of the colon are said to depend
upon (hence are called dependents of) those to the right, and are the occurrences
defined in the given attribute definition. The occurrences to the right are called
dependees of those on the left. An evaluation part immediately follows the semicolon

7Thus it does not precede any Yacc action or the Yacc reserved word %prec in the rule, and
any following identifier must be the LHS of the next rule.

5 ATTRIBUTE DEFINITIONS 9

of the dependency expression, and is basically a C statement8 that may contain at-
tribute references , each of which is an attribute occurrence enclosed within @ symbols.
Attribute references behave as C variables, and all of the usual C operators, such as
those for arithmetic, logical, and pointer operations, may be applied to them, as in
a C program9.

The Ox evaluator chooses an evaluation order such that the evaluation parts for
all of the dependees in the definition are executed before those of the dependents.
Usually there is a single dependent in a given attribute definition, but in some cases,
code may be made more compact by placing more than one attribute occurrence in a
dependent list, thereby combining the definitions of those in the list. The evaluation
part is executed on behalf of the dependents taken as a set, rather than once for
each dependent. This is known as solving the attribute instances corresponding to
the occurrences in that set.

5.2.2 Implicit mode

The implicit mode, which is the usual mode of expressing attribute definitions, syn-
tactically combines the dependency part with the evaluation part. The following Ox
code is equivalent to that of the preceding example.

num : bitlist DOT bitlist

@{ @i @num.value@ = @bitlist.0.value@ + @bitlist.1.value@;

@i @bitlist.0.scale@ = 0;

@i @bitlist.1.scale@ = -@bitlist.1.length@;

@}

;

In this mode, an attribute definition takes the form of @i (mnemonic for implicit)
followed by an evaluation part. The mode annunciator @i informs Ox that the
definition has a single dependent, namely the first attribute occurrence referenced in
the evaluation part. The dependees in the definition consist of all other attribute
occurrences referenced in the evaluation part.

5.2.3 Mixed mode

Mixed mode attribute definitions are announced by @m (mnemonic for mixed) fol-
lowed by a dependency part, consisting of one or more attribute occurrences (the
dependents in the definition) with a terminating semicolon, followed by an evalua-
tion part. The attribute occurrences referenced in the evaluation part, except those
that also appear between @m and the semicolon, are taken to be the dependees in the

8An evaluation part may consist of either a single C statement or a C compound statement.
9Ensuring that a dependent attribute is assigned a value in an evaluation part is the responsi-

bility of the Ox user—it is not checked by Ox. Particular attention should be given to the loops
and conditionals within an evaluation part.

5 ATTRIBUTE DEFINITIONS 10

definition. Thus the dependents are given explicitly and the dependees implicitly.
The code in the following example has the same meaning as that in the previous two.

num : bitlist DOT bitlist

@{ @m num.value ;

@num.value@ = @bitlist.0.value@ + @bitlist.1.value@;

@i @bitlist.1.scale@ = - @bitlist.1.length@;

@m bitlist.0.scale ; @bitlist.0.scale@ = 0;

@}

;

5.3 Attribute reference sections in the L-file(s)

Definitions of inherited attributes of tokens are associated with rules appearing in
the Y-file, while their synthesized attributes are defined in the L-file(s). Ox compiles
the Y-file before compiling the L-file(s). If a given attribute occurrence of a token
is not defined in the Y-file, then the attribute is taken to be synthesized.

Lexical rules are associated with return statements in Lex actions. After the
terminating semicolon of each such statement, there may appear a possibly empty
attribute reference section, delimited by @{ and @}, in which are defined all of the
synthesized attributes of the returned token.

Note that each point of return from yylex() must be explicit in the sense that
the text must bear the C reserved word return. In particular, returns must not be
done within C macros, unless the L-file is passed through the C preprocessor prior
to compilation by Ox. Guaranteeing this property of yylex() is the responsibility
of the Ox user—it is not checked by Ox.

5.3.1 Generality of Ox

The class of attribute grammars accepted by Ox is restricted only as follows: syn-
thesized attributes of tokens do not have dependees. Attribute definitions in the
L-file(s) can thus be written more simply than in the Y-file: each attribute occur-
rence is defined by referring to it in C code, exactly once in the attribute reference
section associated with the return statement, as in the following example (wherein
CONST’s only synthesized attribute is val):

[0-9]+ return(CONST); @{ sscanf(yytext,"%ld",&@CONST.val@); @}

Thus mode declarations and dependency expressions are unnecessary in the L-file(s).

5.3.2 Ox adaptation to Lex’s line-oriented syntax

When Ox is compiling the L-file and has recognized a rule (i.e., the object of a
return statement), if the returned token has synthesized attributes, Ox looks for an

5 ATTRIBUTE DEFINITIONS 11

attribute reference section following the return statement. Ox’s rules for recognizing
attribute reference sections in the L-file are adapted from the way Lex actions are
terminated: Ox gives up looking for an attribute reference section when it pairs the
rightmost right curly brace in the action with the leftmost left curly brace, or when
it encounters a newline unprotected by curly braces. Newlines are insignificant inside
attribute reference sections.

Examples of correct and incorrect syntax are shown below. All of the correct
forms shown are semantically equivalent to one another.

• incorrect (attribute reference section appears to the right of the rightmost curly
brace):

[a-zA-Z]+ { count(); return ID; } @{ @ID.name@ = id(); @}

• incorrect (attribute reference section not part of rule, since the Lex action is
terminated by an unprotected newline):

[a-zA-Z]+ count(); return ID;

@{ @ID.name@ = id(); @}

• correct:

[a-zA-Z]+ { count(); return ID; @{ @ID.name@ = id(); @} }

• correct:

[a-zA-Z]+ return ID; @{ count(); @ID.name@ = id(); @}

• correct:

[a-zA-Z]+ { count(); return ID;

@{ @ID.name@ = id(); @}

}

• correct:

[a-zA-Z]+ count(); return ID; @{

@ID.name@ = id();

@}

5 ATTRIBUTE DEFINITIONS 12

5.3.3 Resolution of ambiguity regarding token returned

A slight difficulty arises in rules like

return(yytext[0]);

and

return(cond ? TOKEN1 : TOKEN2);

for which Ox cannot determine at evaluator-generation time which token will be
returned.

In the first case, wherein no declared token or character constant is recognized
in the returned expression, Ox assumes that the token returned has no attributes,
and issues a warning like:

ox: scan.l: warning: line 8: ambiguous form of return of token.

unknown node type--assuming no attributes.

In the second case, wherein more than one declared token or character constant
is recognized, the node appended to the tree during evaluation is of the type of the
declared token or character constant appearing leftmost in the expression. Ox issues
a warning like:

ox: scan.l: warning: line 8: ambiguous form of return of token.

multiple tokens in object of return statement.

The above warnings should be taken seriously, because the conditions of which they
warn can result in the generated evaluator attempting to access attribute instances
that are nonexistent or of the wrong type. These kinds of warnings are most often
seen when first converting an existing Yacc/Lex translator to Ox.

A condition causing one of the above-described warnings may be tolerated if the
Ox user verifies that for the rule (i.e., object of the return statement) in question:

• all of the tokens that can be returned for the rule are contained in the
grammar-symbol list (section 3) of a single attribute declaration.

• no token that can be returned for the rule appears in a grammar-symbol list
of an attribute declaration.

6 TRANSLATION INTO C CODE 13

5.4 Cycles

It is easy to write an attribute grammar such that some attribute instance of some
parse tree has a chain of dependencies that leads back to itself. Such a grammar
is called circular , and such a chain of dependencies is called a cycle. For such a
tree, there is an attribute instance that the evaluator cannot begin to solve until
that instance has already been solved. A cycle also makes it impossible to solve any
attribute instance that has a chain of dependencies leading to an instance involved
in the cycle. Circularity is usually not intended by the evaluator designer. A general
circularity test performed at evaluator-generation time would require exponential
running time for some inputs [Jazayeri 1975]. Polynomial-time tests for special kinds
of non-circularity are known, but the present version of Ox deals with the problem
by checking for cycles at evaluation time.

6 Translation into C code

Ox translates attribute declarations into C structure declarations. If the Y-file con-
tains a Yacc %union semantic value type declaration, Ox augments that declaration
with an Ox semantic value type member consisting of the union of the structure
declarations translated from all of the attribute declarations. Ox also supports the
Bison ”%define api.value.type union” directive as the mechanism for defining
the semantic value type. The semantic value type definition mechanisms supported
by Yacc:

#define YYSTYPE <C type specifier> (default: int)
or

typedef <C type specifier> YYSTYPE;

are not supported, since Ox cannot, in general, detect these definitions. Ox does not
support the Bison semantic value type definition mechanisms:

%define api.value.type variant

%define api.value.type {<C type specifier>}

If no explicit semantic value type is defined, Ox will generate a %union semantic
value type declaration consisting of the single Ox semantic value type member.

Ox generates an error message if a reference to a Yacc positional semantic value
pseudo variable ($$, $1, $2, etc.) is detected in a Yacc action or an Ox attribute
reference section without an explicit semantic type declaration. This error is most
often seen when first converting an existing Yacc/Lex translator to Ox.

The evaluation expression of each attribute definition is copied verbatim into Ox’s
output, except that attribute references are translated into parenthesized references
to C variables.

7 TEMPORAL BEHAVIOR OF OX-GENERATED EVALUATORS 14

7 Temporal behavior of Ox-generated evaluators

7.1 Stack operations

Inasmuch as an ordinary Yacc/Lex recognizer employs an LR parsing algorithm
[Aho 1986], each input entails a sequence of lookaheads, shifts, and reductions, and
a stack of parser states is maintained. Ox generates an evaluator whose yyparse

function goes through the same sequence of lookaheads, shifts, and reductions as
does yyparse() of the ordinary Yacc/Lex recognizer.

The Ox evaluator, in building a parse tree, maintains a stack of subtrees that
are created within Ox-generated Yacc semantic actions, utilizing the yyparse() se-
mantic stack management mechanism. The operations on the stack of Ox subtrees
are thus automatically synchronized with the operations yyparse() performs on its
stack of parser states. Parsing operations involving the “marker nonterminals” (see
[Johnson 1975]) inserted into the grammar by Yacc are ignored by Ox.

The evaluator maintains its stack of subtrees as follows. Lookaheads coincide with
calls to yylex(). Just before a return is executed in a Lex action, a leaf node is
created in yylval by Ox-generated code, and any synthesized attribute instances are
solved. At a shift operation, the subtree corresponding to that leaf node is pushed
onto the stack by the standard yyparse() shift handling of the yylval semantic
value. Ox-generated code in a Yacc action at the end of each rule’s RHS uses the
zero or more subtrees on the semantic stack corresponding to the RHS symbols as
the children of a newly-created node, yielding a new subtree in yyval corresponding
to the rule’s LHS symbol. The root of the new subtree is given a label to indicate
the production being applied at the node. At each reduction, the RHS subtrees are
popped from the stack and the new LHS subtree is pushed onto the stack by the
standard yyparse() reduce handling of the yylval semantic value. The parse tree
is completed upon end of input together with reduction to the start symbol.

7.2 Placement of generated code

Code for parse tree management and attribute evaluation is placed in Yacc and Lex
actions in Ox’s output. If a given rule in the Y-file has an ordinary Yacc action, the
Ox-generated code is placed after any programmer-supplied C code contained in the
action. If a given rule in the Y-file lacks a Yacc action, an action is created, and the
Ox-generated code is placed there. The actions so created are introduced only at the
ends of rules, so Yacc does not create a marker nonterminal for the action, and the
LALR(1) property of the grammar is unaffected.

When an attribute reference section in an L-file contains definitions for more than
one attribute occurrence, code for implementing those definitions is executed in the
same order in which the definitions appear in that section.

7 TEMPORAL BEHAVIOR OF OX-GENERATED EVALUATORS 15

For the attribute occurrences defined in the Y-file, Ox and the Ox-generated eval-
uator perform analyses to determine when to execute the code segment that evaluates
a given attribute. The order of execution of the code segments associated with the
definitions in a given attribute reference section is determined by the dependencies
of the definitions, and is not necessarily related to the order of appearance of the
definitions.

Some attribute occurrences, for example those that have no dependees, are eval-
uated as part of the generated Yacc action executed just prior to reduction by the
associated production. Definitions of such occurrences are allowed to reference the
Yacc positional semantic value pseudo variables ($$, $1, $2, etc.). Ox issues an error
message if an attribute occurrence referencing a pseudo variable cannot be evaluated
at production reduction time.

7.3 Decoration and the ready set

The Ox evaluator maintains a set of attribute instances that are ready to be solved,
i.e., those whose every dependee has been solved, but which have not themselves been
solved. During parsing of the input, it is possible to remove an attribute instance
from this ready set , solve it, and then check whether the solving of that instance has
caused any of its dependents to be ready to be solved. Instances that are thus made
ready are then placed in the ready set. Repeating this process until the ready set is
empty is known as decoration. Following a decoration, further parsing of the input
may result in creation of parse tree nodes and insertion of attribute instances into the
ready set. Scheduling of decorations is performed automatically by the evaluator.
Evaluation of a given syntactically-correct input involves at least one decoration,
performed after the final reduction to the start symbol.

In specialized cases, e.g., if the evaluator is intended for interactive operation, it is
likely that automatic scheduling of decorations will not be adequate. The evaluator
designer may place the @decorate reserved word immediately following the @{ at the
beginning of an attribute reference section to force decoration to occur at the end of
the Yacc action executed just prior to reduction by the associated production. For
instance, in a line-oriented interactive language application, this could be done in a
grammar rule that handles the top level processing for a each line of input, e.g., the
rule recognizing the completed input line, including the ending newline character.

7.4 Pruning and global variables

An Ox evaluator, by default, implements a run-time memory optimization that de-
pends on the incremental decoration implementation described in section 7.3 above.
The optimization forces decorations to occur more frequently than would otherwise
be scheduled by the evaluator: after every reduction by the parser of a production.
When all attributes associated with the nodes of a sub-tree of the parse have been

8 PROGRAMMING STYLE 16

completely evaluated, the evaluator assumes that there is no further need for those
nodes and they are pruned (removed from allocated memory).

As noted previously, the execution order of individual attribute value compu-
tations is determined by the dependencies specified in the attribute definitions. In
cases where one or more global variables are involved in the computations of non-root
attributes, Ox is unaware of any ordering dependencies that may exist, and the gen-
erated attribute evaluation schedule may very well violate those hidden depedencies.
Pruning can mask problems associated with hidden ordering dependencies between
non-root attributes and global variables. For example, an attribute value represent-
ing the table index from a lookup in a global table will depend on the existance of the
desired table entry. If that table entry is populated by some other attribute compu-
tation, there is an attribute evaluation order dependency hidden from Ox. Pruning
may accidentally force the attribute value computations to occur in the expected
order (creating the table entry prior to looking up and finding the table entry).

Ox provides the -d command-line option to suppress pruning, although the auto-
matic scheduling of incremental decorations may still mask such hidden dependency
problems. It is strongly recommended that global variables not be used as interme-
diate values in non-root attribute computations for this reason.

7.5 Parse tree visualization

If Ox is invoked with the -t command-line option, the generated evaluator10 includes
code to build an internal visual representation of a parse tree, using the cgraph
library [Gansner 2014] [North 2014] from the Graphviz [Graphviz] package. The
cgraph data structures must be initialized prior to execution of any of the generated
parse tree management code. Ox provides the function yyyinit for this purpose. For
a generic (non-Lex) hand-written scanner (see appendix A.2), the user must ensure
that yyyinit() is executed prior to any of the parse tree management code added
by Ox. An Ox-generated Lex scanner takes care of this automatically.

8 Programming style

Definitions of attribute grammar, (for instance those in [Lorho 1988] and
[Waite 1984]) employ no notion of execution sequence. The usual Ox programming
style involves defining synthesized attribute occurrences of tokens in terms of yytext
and yyleng and other such data structures of the lexical analyzer. Then the at-
tribute definitions of each production are written only in terms of constants and
other attribute occurrences of that production. For a given sentence, the synthe-
sized attribute instances of the tokens then completely determine the values of all

10The C preprocessor macro name YYYOX TREE is #defined’d in the generated evaluator source
so that user-written code can test for use of the -t command-line option.

8 PROGRAMMING STYLE 17

attribute instances of the parse tree. The attribute instances of the root node are
often of particular interest, and their definitions often contain code that copies their
values to global C variables, so that they may be used in code executed after the
return from yyparse().

Since attribute definitions in Ox code may contain any C code, the Ox program-
mer may deviate from the safe approach described above by using non-root attribute
definitions that read and write global variables. Before attempting the use of side
effects, the programmer should be familiar with the material of section 7. Preference
should be given to the use of inherited attributes to pass values down from root node
global attribute instances.

The order of evaluation of attributes is, by design, not explicit in the Ox in-
put specifications. It is not recommended, and usually it is not convenient, to use
attribute definitions for order-sensitive side effects such as code generation. A com-
mon general approach to translation is to build and decorate a parse tree (mean-
while performing some of the checks for semantic errors), and to then make one or
more determinate-order tree traversals for final error checks, gathering of compilation
statistics, code generation, etc. Ox has a facility for specification of such traversals,
and this is the topic of section 9.

9 POSTDECORATION TRAVERSALS 18

9 Postdecoration traversals

The idea of decoration was described in section 7.3. Postdecoration refers to any
time after the final decoration of the parse tree, which follows parsing of a correct
input. This section shows how the Ox user can cause postdecoration traversals , each
of which permits access (in a user-specified order) to the tree’s attribute instances11.

9.1 Example: infix to prefix translation

The problem of parsing infix arithmetic expressions, and their translation to prefix
form serves to introduce Ox’s postdecoration traversal facility.

The tokens of the example language are determined by the following L-file:

%{

#include "y.tab.h"

#include "oxout.h"

%}

%%

[\n\t\f]* ;

[0-9]+ return(CONST); @{ sscanf(yytext,"%d",&@CONST.val@); @}

\(return('(');

\) return(')');

\+ return('+');

* return('*');

. fprintf(stderr,"illegal character\n");

%%

11Pruning (see section 7.4) is suppressed if a postdecoration traversal is defined, since the traver-
sal may need to visit the entire attributed tree.

9 POSTDECORATION TRAVERSALS 19

The following Y-file completes the specification of the evaluator.

%token CONST

%left '+'

%left '*'

@attributes {int val;} CONST

@traversal @lefttoright @preorder LRpre

%{

#include "oxout.h"

#include <stdio.h>

%}

%%

expr : expr '*' expr /* rule 1 */

@{ @LRpre printf(" * "); @}

| expr '+' expr /* rule 2 */

@{ @LRpre printf(" + "); @}

| '(' expr ')' /* rule 3 */

| CONST /* rule 4 */

@{ @LRpre printf(" %d ",@CONST.val@); @}

;

%%

int main()

{yyparse();

printf("\n");

}

The sequence: @traversal @lefttoright @preorder LRpre specifies that a left-
to-right preorder traversal of the parse tree be performed by the evaluator after the
final decoration, and that the traversal be identified as LRpre. Note that LRpre is
programmer-defined, and is not an Ox reserved word.

Each attribute reference section in the above Y-file contains a traversal action
specifier starting with the traversal mode annunciator @LRpre, which is defined in
the above-mentioned @traversal specification.

When the LRpre traversal reaches a node at which rule 1 is applied, an asterisk
is printed, then each subtree rooted at a child of the node is traversed, the leftmost
subtree first. The behavior of the traversal at a node at which rule 2 is applied is
the same, except that a plus sign is printed instead of an asterisk. When LRpre

reaches a node for rule 3, no traversal action is performed, but the children of the
node are traversed recursively as described above for nodes for rules 1 and 2. The

9 POSTDECORATION TRAVERSALS 20

val attribute of the CONST child is printed when a node for rule 4 is reached. No
action is performed during a traversal of a subtree that consists of a terminal node.

9.2 General description

9.2.1 Traversal specifications

The Ox programmer may place one or more traversal specifications in the Y-file
definition section. Such a specification consists of the reserved word @traversal,
followed by a traversal specifier sequence and a non-empty sequence of identifiers,
the identifiers being separated by whitespace. A traversal specifier sequence may
contain the following traversal specifiers (in any order):

• at most one of: @postorder, @preorder

• at most one of: @lefttoright, @righttoleft

• optionally: @disable

If neither @postorder nor @preorder appears in the sequence, the traversal is pos-
torder by default. A left-to-right traversal is specified by default when neither
@lefttoright nor @righttoleft appears.

Following the final decoration, the parse tree is traversed once for each traversal
specification. The order of performing the traversals corresponds to the order of
appearance of the traversal specifications. The @disable reserved word causes the
generated evaluator to skip any traversal in whose specification it appears, which
may be useful for debugging.

The code fragment:

@traversal @preorder LRpre

@traversal LRpost

appearing in the Y-file definition section specifies that, after the final decoration,
the generated evaluator is to perform a left-to-right preorder traversal named LRpre,
followed by a left-to-right postorder traversal named LRpost.

9.2.2 Traversal action specifications

In addition to attribute definitions (section 5.2), the attribute reference sections of
the Y-file may contain traversal action specifications . Each of these consists of a
traversal mode annunciator , followed by a sequence of dynamic traversal modifiers
and a traversal action. A traversal mode annunciator is @ followed immediately by
the name of a previously-declared traversal.

Suppose traversal specifications of LRpre and LRpost as above. Then in the code
fragment:

9 POSTDECORATION TRAVERSALS 21

s : expr

@{ @LRpost printf("\n"); /* 1 */

@LRpost @revorder (1) printf("postfix: "); /* 2 */

@LRpre @revorder (1) printf("\n"); /* 3 */

@LRpre printf("prefix: "); /* 4 */

@}

;

the attribute reference section has four traversal action specifications and no attribute
definitions. Each specification is announced by either @LRpre or @LRpost. Each of
the printf statements constitutes a traversal action. The form of a traversal action
is that of a C code fragment12, except that it may contain references to the attribute
occurrences of the associated rule.

The second and third specifications each have @revorder (1) as a dynamic
traversal modifier. A dynamic traversal modifier is either @revorder or @revdirection,
followed by a parenthesized expression that conforms to C syntax, except that it may
refer to the rule’s attribute occurrences. @revorder and @revdirection may each
occur at most once in a given traversal action specification. If @revdirection ap-
pears in two traversal action specifications within a given attribute reference section,
the two specifications must have different annunciators. Dynamic traversal modifiers
are used to override the traversal specifications of a given traversal when it reaches
a given kind of node. The modifier @revorder expr means roughly “reverse order
if expr”. When the LRpre traversal reaches a node at which the rule “s : expr”
is applied, the expression “(1)” is evaluated, and because it is nonzero, the third
traversal action, which prints a line feed, is executed as if LRpre were a postorder
traversal, i.e., after the recursive traversal of the subtree rooted at the node’s sole
child. The execution of the fourth traversal action, “printf("prefix: ");” is not
affected by any dynamic traversal modifier, and occurs according to LRpre’s (static)
specification, i.e., before the traversal of the child subtree.

When the LRpost traversal reaches a node at which the rule “s : expr” is ap-
plied, the second traversal action is executed, the traversal proceeds to the child
subtree, then the first traversal action is executed.

The preceding description is generally sufficient for understanding postdecoration
traversals, but appendix B contains a pseudocode description that describes the
behavior somewhat more formally.

Facility for inorder traversal is to be implemented in future versions of Ox.

12A traversal action may consist of either a single C statement or a C compound statement.

10 OX MACROS 22

10 Ox macros

Ox’s input specification may be such that the same or similar text appears in more
than one place in attribute reference sections. There is a macro substitution feature
that can be used to decrease verbosity in such cases.

10.1 Macro definitions

Ox macros are defined in the Y-file definition section. Such a definition consists of
the @macro reserved word, an identifier (the name of the macro), a left parenthesis,
a parameter list, a right parenthesis, the body of the macro, and the @end reserved
word. The parameter list is a possibly empty sequence of identifiers, delimited by
commas. Each identifier is a sequence of letters and digits, beginning with a letter.

The body of the macro is a segment of arbitrary text, terminated by the first
occurrence of @end. When inside a comment or a string, or when preceded immedi-
ately by the backslash escape character, an occurrence of @end is considered part of
the macro body (hence does not terminate the macro). Such a backslash character
is deleted from the macro body.

10.2 Macro uses

Ox macros are used only in attribute reference sections and in other Ox macros.
Substitution occurs where a macro use is encountered outside of a string, comment,
or attribute name.

A macro use consists of the name of a previously-defined macro, and an argument
list in parentheses. The argument list is a possibly empty sequence of text fragments,
delimited by commas. In expanding a macro use, each text fragment is substituted
for each occurrence in the macro body of the corresponding parameter in the macro
definition. Paired parentheses, and commas enclosed within paired parentheses, may
occur within a macro use text fragment. If commas, parentheses, or backslashes are
to appear otherwise in a text fragment, they must be preceded by backslash escape
characters, which are removed during substitution.

It is not necessary that the definition of a macro precede that of another macro
in which it is used, as no macro substitution occurs until Ox processes the attribute
reference sections. The body of a macro may contain nested macro uses.

10 OX MACROS 23

10.3 Example

The following excerpts from a Y-file illustrate the use of Ox macros.

...

@macro exprdefs(op)

@i @expr.1.env@ = @expr.env@;

@i @expr.2.env@ = @expr.env@;

@i @expr.type@ = typeResolve(@expr.1.type@,@expr.2.type@);

@i @expr.value@ = exprEval(op,@expr.type@,@expr.1.type@,@expr.2.type@,

@expr.1.value@,@expr.2.value@

);

@end

@macro typeResolve(type1,type2)

((type1 == type2) ? type1 : FLOATTYPE)

@end

...

%%

...

expr : expr '*' expr

@{ exprdefs('*') @}

| expr '/' expr

@{ exprdefs('/') @}

| expr '+' expr

@{ exprdefs('+') @}

| expr '-' expr

@{ exprdefs('-') @}

;

...

The identifier exprEval referenced in the definition of the exprdefs macro is the
name of either a C macro or C function. The Ox macro typeResolve above contains
no Ox-specific constructs and, as a matter of style, could have been declared instead
as a C macro or C function.

11 AUTOMATIC GENERATION OF COPY RULES 24

11 Automatic generation of copy rules

Often a Y-file has attribute definitions that function only to copy an instance be-
longing to one node to a like-named instance belonging to the node’s parent or child.
Large attribute grammars tend to have many such definitions, which are sometimes
called copy rules . The situation is conspicuous when contextual information is moved
leafward via inherited attributes.

The Ox user may place the following construct in the Y-file definition section:

@autoinh <ID list>

where <ID list> is a whitespace-separated list of attribute names. Suppose that
attrbID is such an attribute name, and the above construct is followed by an
@attributes declaration whereby attrbID is declared as an attribute of the gram-
mar symbol gSym. Then Ox knows that attrbID is an inherited attribute of gSym.
Further, for any rule having gSym on the RHS, Ox searches that rule’s attribute
reference section for definitions of the RHS occurrences of attrbID. When such a
definition is missing, Ox checks whether the LHS has an occurrence of attrbID. If
so, Ox generates definitions that copy that LHS occurrence to each RHS attrbID

occurrence that lacks a definition. If there is no such LHS occurrence, Ox issues an
error message.

There is an analagous construct for automatic generation of definitions of syn-
thesized occurrences:

@autosyn <ID list>

When the @autosyn construct is used, Ox tries to supply missing definitions of
synthesized occurrences by searching the RHS for same-named occurrences. If exactly
one such RHS occurrence is found, Ox generates a definition to copy it to the LHS,
otherwise there is an error.

The above-described constructs have a global character in that a single @autosyn
or @autoinh declaration can easily be used to supply missing definitions for all oc-
currences of attributes of a given name. These reserved words may be used in a more
conservative way that generates missing definitions only for occurrences belonging
to a selected set of grammar symbols:

11 AUTOMATIC GENERATION OF COPY RULES 25

Attribute declarations are written as usual, except that @autoinh or @autosyn
may appear before the attribute’s type specifier (i.e., after { or ;). Where <ID list>
is the usual comma-separated list of attribute names, and attrbID is a member of
<ID list>:

@attributes {
...
@autoinh <typespec> <ID list> ;
...

}
<grammar symbol list>

declares attrbID as an inherited attribute whenever it occurs in a symbol in
<grammar symbol list>. Further, this instructs Ox to attempt to supply missing
definitions of such occurrences by copying from the LHS. The @autosyn reserved
word may be used locally in an analagous manner.

For safety in the use of @autosyn and @autoinh, Ox provides the @warn reserved
word. When it immediately follows @autosyn or @autoinh, Ox issues a warning for
each definition supplied by virtue of the preceding @autosyn or @autoinh. @warn is
mainly to be used when modifying the attribute grammar.

11 AUTOMATIC GENERATION OF COPY RULES 26

11.1 Example

The following code fragment in the Y-file definition section:

...

@autoinh env

@attributes {struct env *env;

regNumType maxRegNum;

}

execElem statement

@autosyn maxRegNum

@attributes {struct env *env;

@autoinh regNumType regNum;

regNumType maxRegNum;

struct sym *formParamList;

struct sym *func;

lineNumType line;

}

actParamList

@attributes {struct env *env;

@autosyn @warn struct sym *varLoc,*funcLoc;

regNumType regNum;

regNumType maxRegNum;

}

block blockElemList

...

causes Ox to attempt to automatically supply missing definitions for occurrences of:

• env for execElem, statement, actParamList, block, and blockElemList

• maxRegNum for actParamList, block, and blockElemList

• regNum for actParamList

• varLoc for block and blockElemList, with warning

• funcLoc for block and blockElemList, with warning

12 FILE-LEVEL ORGANIZATION OF OX EVALUATORS 27

12 File-level organization of Ox evaluators

12.1 Conventions of naming Ox output files

By default, Ox translates the Y-file into a file named oxout.y destined for processing
by a Yacc-compatible parser generator. The L-file(s) are translated into files destined
for a Lex-compatible lexer generator. If there is exactly one L-file, its corresponding
output file is named oxout.l. If there is more than one L-file, the corresponding
outputs are sequentially named oxout1.l, oxout2.l, etc.

12.2 Review: combining the outputs of Yacc and Lex

In developing an ordinary (i.e., non-Ox) Yacc/Lex evaluator, y.tab.c and lex.yy.c

can be compiled immediately into an executable file by placing the line

#include "lex.yy.c"

in a C-code section of the Yacc input specification [Lesk 1975].
Alternatively, Yacc can be instructed (by using the -d command-line option) to

produce a separate file y.tab.h that contains declarations needed by both y.tab.c

and lex.yy.c The two files may then be compiled separately if the line

#include "y.tab.h"

is placed in a C-code sections of the Lex input specification. The two resulting object
files can then be linked to produce an executable file.

12.3 Combined use of Ox, Yacc, and Lex

There are certain declarations that must be visible from all of the files produced by
Ox. By default, Ox produces files suitable for separate compilation, inasmuch as the
Yacc-destined file and the Lex-destined file(s) each contain the common declarations.
Ox also supports the one-step development approach described above. By placing -h

on Ox’s command line, the designer calls for generation of a file oxout.h containing
the common declarations, which are then absent from Ox’s other output files. In
this case, the line

#include "oxout.h"

is placed in the Y-file.

13 COMMAND-LINE OPTIONS AND OTHER POINTS 28

12.4 Typical command sequences

The following sequence of shell commands is an example of the separate compilation
approach described. In this example, Ox translates the Y-file ev.Y into oxout.y

and the L-file ev.L into oxout.l. The last command of the sequence links the two
object files, yielding the executable file ev.

ox ev.Y ev.L

yacc -d oxout.y

lex oxout.l

cc -c y.tab.c

cc -c lex.yy.c

cc -o ev y.tab.o lex.yy.o -ll -ly

The following command sequence does a one-step compilation.

ox -h ev.Y ev.L

yacc oxout.y

lex oxout.l

cc y.tab.c -ll -ly

13 Command-line options and other points

This section describes some fine points, mostly related to Ox command-line options.
Use of those options is summarized in appendix D.

13.1 Error recovery

Yacc has provisions for building parsers that attempt to recover from syntax errors,
and the designer can use the Yacc reserved-words error, yyerrok, and yyclearin

to implement such error recovery [Johnson 1975]. When a parser that employs such
techniques detects a syntax error, it may attempt to recover by popping items from
its stack or by discarding tokens. The Ox evaluator’s semantic stack operations are
synchronized with those of the Yacc-generated parser (see section 7.1). When the
evaluator is built using error, yyerrok, and yyclearin, and a syntax error occurs,
this synchronization is not lost, since yyparse() manages both stacks. However,
especially if the evaluator makes use of global variable side effects (see section 8), it
is possible for the evaluator’s data structures to become corrupted in such cases.

Ox provides the function yyyabort to prevent such chaos. The parser calls
yyerror() upon any syntax error, and the designer can write yyerror such that
yyyabort() is executed at least once each time yyerror() is called. Any syntax
error will then cancel further execution of all evaluator code, and yyparse() can
continue safely. Use of yyyabort() is unnecessary but harmless if the Y-file makes
no use of the reserved-words error, yyerrok, and yyclearin.

13 COMMAND-LINE OPTIONS AND OTHER POINTS 29

13.2 Stripping Ox constructs

Occasionally, the designer may wish copies of the Y-file and L-file(s) free of Ox-
specific constructs. Suppose, for instance, that changes to the underlying grammar
are under consideration, and that it is desired to test whether the new grammar has
parsing conflicts. To satisfy Ox semantics might require writing attribute definitions
for any new rules. Ox’s output on oxout.y could then be submitted to Yacc to test
for parsing conflicts.

To avoid the above-mentioned writing of attribute definitions, the designer can
use Ox’s -S command-line option, which filters all Ox-specific constructs from the
inputs and yields files acceptable to Yacc and Lex. The original copies of the
Y-file and L-file(s) are unchanged, but the Ox outputs on oxout.* contain neither
Ox constructs nor the usual Ox-generated parse tree management code.

13.3 Preventing execution of attribute definition code

Faulty user-written code in attribute reference sections may cause abnormal termi-
nation of the evaluator. For instance, dereferencing a stray pointer may corrupt the
evaluator’s data structures and cause it to falsely report a cycle during attribute
evaluation. The -n command-line option is a debugging feature that can be used to
isolate the effects of anomalous attribute definition code. When Ox is used with this
option, the generated evaluator uses the ready set as usual to determine an evalua-
tion order for attribute instances, and still checks for cycles. Each time it is ready to
solve an instance, however, it stops short of executing the code for the definition of
that instance. When -n is used, the designer should take special notice of the effects
upon other translation phases of such suppression of semantic analysis.

13.4 Parse tree statistics

Placing -u on Ox’s command line causes generation of an evaluator that prints, for
each input, statistics regarding the parse tree built for the input. These include
numbers of:

• terminal nodes and their attribute instances,

• nonterminal nodes and their attribute instances,

and other statistics.

14 EXAMPLE: AN INTEGER CALCULATOR 30

14 Example: an integer calculator

This section has Ox code for an evaluator of simple expressions involving multipli-
cation and addition. Since the grammar has only synthesized attributes, the Ox
implementation offers little advantage over one that uses only Yacc and Lex; it is
presented as a very easy example of Ox usage.

The L-file specifies that the tokens are digit strings, parentheses, ’*’, and ’+’:

%{

/* expr.L: L-file for a simple expression language */

#include "y.tab.h"

#include "oxout.h"

%}

%%

[\n\t\f]* ;

[0-9]+ return(CONST); @{

sscanf(yytext,"%ld",&(@CONST.val@)); @}

\(return('(');

\) return(')');

\+ return('+');

* return('*');

%%

14 EXAMPLE: AN INTEGER CALCULATOR 31

The grammar is disambiguated by use of Yacc’s %left reserved word. Each parse
tree node labeled by s, e, or CONST has an integer attribute instance named val.
Use of the global variable sVal obviates postdecoration traversal.

/* expr.Y: Y-file for a simple expression language */

%left '+'

%left '*'

%token CONST

@attributes {long val;} s e CONST

%{

#include "oxout.h"

long sVal;

%}

%%

s : e

@{ @i sVal = @s.val@ = @e.val@; @}

;

e : e '+' e

@{ @i @e.0.val@ = @e.1.val@ + @e.2.val@; @}

;

e : e '*' e

@{ @i @e.0.val@ = @e.1.val@ * @e.2.val@; @}

;

e : '(' e ')'

@{ @i @e.val@ = @e.1.val@; @}

;

e : CONST

@{ @i @e.val@ = @CONST.val@; @}

;

%%

int main()

{yyparse();

printf("%ld\n",sVal);

}

The following command sequence is used to build an executable file calc from the
above specifications:

bash-3.2$ ox -h expr.Y expr.L

bash-3.2$ yacc -d oxout.y

bash-3.2$ lex oxout.l

bash-3.2$ cc -c y.tab.c

bash-3.2$ cc -c lex.yy.c

bash-3.2$ cc -o calc y.tab.o lex.yy.o -ly -ll

15 EXAMPLE: A BINARY NUMBER TRANSLATOR 32

15 Example: a binary number translator

This illustrates the use of Ox to build an evaluator based on an example attribute
grammar that appears in the seminal paper on the subject [Knuth 1968]. The input
(after removal of whitespace) is either a nonempty string of binary digits or two such
strings separated by a period. This input is interpreted as a binary representation
of a floating point number, which is then printed on the standard output in its base-
ten form. Removing the Ox-specific constructs and the printf statement from the
source below yields a pair of files that constitute a semantics-free recognizer of binary
numbers.

Construction of this evaluator follows the separate compilation approach de-
scribed in section 12.

Following is the text of the L-file:

%{

#include "y.tab.h"

%}

%%

[0] return ZERO;

[1] return ONE;

\. return DOT;

[\n\t\v] ;

. {fprintf(stderr,"illegal character\n");

exit(-1);

}

Here is the text of the Y-file:

%token ZERO ONE DOT

@attributes {float value; int scale;} bit

@attributes {float value; int scale,length;} bitlist

@attributes {float value;} num

%start num

%{

#include <stdio.h>

float numValue;

%}

15 EXAMPLE: A BINARY NUMBER TRANSLATOR 33

%%

bit : ZERO

@{ @i @bit.value@ = 0;

/* value is synthesized for bit. */

/* scale is inherited for bit. */

@}

;

bit : ONE

@{ @i @bit.value@ = twoToThe(@bit.scale@);

@}

;

bitlist : bit

@{ @i @bitlist.value@ = @bit.value@;

@i @bit.scale@ = @bitlist.scale@;

@i @bitlist.length@ = 1;

/* value and length are synthesized for bitlist. */

/* scale is inherited for bitlist. */

@}

| bitlist bit

@{ @i @bitlist.0.value@ = @bitlist.1.value@ + @bit.value@;

@i @bit.scale@ = @bitlist.0.scale@;

@i @bitlist.1.scale@ = @bitlist.0.scale@ + 1;

@i @bitlist.0.length@ = @bitlist.1.length@ + 1;

@}

;

num : bitlist

@{ @i numValue = @num.value@ = @bitlist.0.value@;

@i @bitlist.scale@ = 0;

/* value is synthesized for num. */

@}

| bitlist DOT bitlist

@{ @i numValue = @num.value@ =

@bitlist.0.value@ + @bitlist.1.value@;

@i @bitlist.0.scale@ = 0;

@i @bitlist.1.scale@ = - @bitlist.1.length@;

@}

;

%%

int main()

{if (!(yyparse()))

printf("%30.15f\n",numValue);

}

float twoToThe(in) /* returns 2 raised to the power in */

int in;

{if (in < 0) return (1.0 / twoToThe(-in));

if (in == 0) return 1.0;

else return (2.0 * twoToThe(in - 1));

}

16 EXAMPLE: TRANSLATION TO POSTFIX AND PREFIX 34

16 Example: translation to postfix and prefix

In this example, the generated evaluator is to perform two postdecoration traversals,
one for printing the prefix form of a given infix expression, and one for printing the
postfix form. The tokens of the language are specified as follows:

%{

/* L-file for translation of infix expressions */

#include "y.tab.h"

#include "oxout.h"

char *lexeme()

{char *dum;

dum = (char *)malloc(yyleng+1);

strcpy(dum,yytext);

return dum;

}

%}

%%

[\n\t\f]* ;

[0-9]+\.?[0-9]* return(CONST); @{ @CONST.lexeme@ = lexeme(); @}

[A-Za-z_][A-Za-z_0-9]* return(ID); @{ @ID.lexeme@ = lexeme(); @}

\(return('(');

\) return(')');

\+ return('+');

* return('*');

\/ return('/');

\- return('-');

%%

The first traversal performed is named LRpre, and the second is named LRpost. By
default, both are left-to-right traversals. LRpost is a postorder traversal by default.
LRpre is specified as a preorder traversal.

/* Y-file for translation of infix expressions to prefix and postfix */

%token ID CONST

%start s

%left '+' '-'

%left '*' '/'

@attributes {char *lexeme;} ID CONST

@traversal @preorder LRpre

@traversal LRpost

16 EXAMPLE: TRANSLATION TO POSTFIX AND PREFIX 35

%{

#include "oxout.h"

#include <stdio.h>

%}

%%

s : expr

@{ @LRpost printf("\n");

@LRpost @revorder (1) printf("postfix: ");

@LRpre @revorder (1) printf("\n");

@LRpre printf("prefix: ");

@}

expr : expr '*' expr

@{ @LRpost printf(" * ");

@LRpre printf(" * ");

@}

| expr '+' expr

@{ @LRpre printf(" + ");

@LRpost printf(" + ");

@}

| expr '/' expr

@{ @LRpost printf(" / ");

@LRpre printf(" / ");

@}

| expr '-' expr

@{ @LRpost printf(" - ");

@LRpre printf(" - ");

@}

| '(' expr ')'

| ID

@{ @LRpost printf(" %s ",@ID.lexeme@);

@LRpre printf(" %s ",@ID.lexeme@);

@}

| CONST

@{ @LRpost printf(" %s ",@CONST.lexeme@);

@LRpre printf(" %s ",@CONST.lexeme@);

@}

;

%%

int main()

{yyparse();

}

A USING OX WITH NON-LEX LEXICAL ANALYZERS 36

A Using Ox with non-Lex lexical analyzers

A.1 Default context-sensitivity of L-file compilation

Unless instructed otherwise, Ox searches each L-file for return statements in the
context of C-coded Lex actions. Since the string return must be ignored outside
of that context (for instance, in a Lex regular expression), the default behavior of
Ox compilation is to assume that the L-file conforms to the syntax of a (possibly
Ox-augmented) Lex file. Thus Ox recognizes the three return statements in the
following (unaugmented) fragment of an L-file:

...

renames return(TK_RENAMES);

return return(TK_RETURN);

reverse return(TK_REVERSE);

...

as points of return of tokens by yylex(). Ox’s sensitivity to the context of the string
return in the second Lex regular expression above prevents its erroneous recognition
as a point of return from the lexical analyzer.

A.2 Ox compilation of C-coded lexical analyzers

Ox always ignores the string return in the context of C/C++ comments and string
constants. When given the -G command-line option preceding the name of an L-
file, it ignores return only in those contexts. Thus a file containing C code may
be augmented with attribute reference sections and input to Ox as an L-file. The
occurrences of the string return must coincide exactly with returns of tokens.

A USING OX WITH NON-LEX LEXICAL ANALYZERS 37

A.2.1 Example

Suppose it is desired to convert to Ox a translator that uses the following C code for
its lexical analyzer:

#include <stdio.h>

#include <string.h>

#include "y.tab.h"

#define bufsize 80

char buf[bufsize];

char *lexBuf;

char *lexeme(inString)

char inString[];

{return strcpy((char *)malloc(1+strlen(inString)),inString);}

int yylex()

{char *bufp = buf;

while ((*bufp = getchar()) != EOF)

{if (bufp == (buf + bufsize - 1))

{fprintf(stderr,"exceeded buffer\n"); exit(-1);}

if ((*bufp == ' ') || (*bufp == '\n') ||

(*bufp == '\t') || (*bufp == '\f')

)

{if (bufp == buf) continue; else break;}

if (!isalnum(*bufp)) {fprintf(stderr,"illegal character\n"); exit(-1);}

bufp++;

}

if (bufp != buf)

{*++bufp = '\0';

lexBuf = lexeme(buf);

bufp = lexBuf;

if (isalpha(lexBuf[0]))

{while (*bufp != '\0')

if (isdigit(*bufp++))

{fprintf(stderr,"illegal string\n"); exit(-1);}

return (IDENT);

}

if (isdigit(lexBuf[0]))

{while (*bufp != '\0')

if (isalpha(*bufp++))

{fprintf(stderr,"illegal string\n"); exit(-1);}

return (ICONST);

}

}

return 0;

}

A USING OX WITH NON-LEX LEXICAL ANALYZERS 38

The C reserved word return occurs in the file exactly four times. Only two
of these occurrences correspond to returns of tokens by the lexical analyzer. The
approach is to excise from the file a section of code containing those two occurrences
(and no others), place that code section it in a separate file, and submit the new file
to Ox as a non-Lex L-file, by using the -G option. Ox translates the new file and
places it on oxout.l. The excised code is replaced in the original file by the line:

#include "oxout.l"

Here is the L-file, which has been augmented by two attribute reference sections:

if (isalpha(lexBuf[0]))

{while (*bufp != '\0')

if (isdigit(*bufp++))

{fprintf(stderr,"illegal string\n"); exit(-1);}

return (IDENT); @{ @IDENT.string@ = lexBuf; @}

}

if (isdigit(lexBuf[0]))

{while (*bufp != '\0')

if (isalpha(*bufp++))

{fprintf(stderr,"illegal string\n"); exit(-1);}

return (ICONST); @{ @ICONST.string@ = lexBuf; @}

}

A USING OX WITH NON-LEX LEXICAL ANALYZERS 39

Here is the skeleton of the lexical analyzer, which now #includes the files oxout.h
and oxout.l:

#include <stdio.h>

#include <string.h>

#include "y.tab.h"

#include "oxout.h"

#define bufsize 80

char buf[bufsize];

char *lexBuf;

char *lexeme(inString)

char inString[];

{return strcpy((char *)malloc(1+strlen(inString)),inString);}

int yylex()

{char *bufp = buf;

while ((*bufp = getchar()) != EOF)

{if (bufp == (buf + bufsize - 1))

{fprintf(stderr,"exceeded buffer\n"); exit(-1);}

if ((*bufp == ' ') || (*bufp == '\n') ||

(*bufp == '\t') || (*bufp == '\f')

)

{if (bufp == buf) continue; else break;}

if (!isalnum(*bufp)) {fprintf(stderr,"illegal character\n"); exit(-1);}

bufp++;

}

if (bufp != buf)

{*++bufp = '\0';

lexBuf = lexeme(buf);

bufp = lexBuf;

#include "oxout.l"

}

return 0;

}

B TRAVERSAL SEMANTICS 40

B Traversal semantics

The behavior of postdecoration traversals was illustrated in the examples of section
9.2. In view of those examples, the C-like pseudocode in this appendix holds no
surprises, but describes such behavior somewhat more formally. The traversals are
carried out by a single call of doTraversals (below) after the final decoration.

enum orderType {PREORDER,POSTORDER};

enum directionType {LEFTTORIGHT,RIGHTTOLEFT};

enum orderType staticOrder(traversal T)

{if (@preorder appears in the traversal specification of T)

return PREORDER;

return POSTORDER;

}

enum directionType staticDirection(traversal T)

{if (@righttoleft appears in the traversal specification of T)

return RIGHTTOLEFT;

return LEFTTORIGHT;

}

int isDisabled(traversal T)

{if (@disable appears in the traversal specification of T)

return 1;

return 0;

}

B TRAVERSAL SEMANTICS 41

void pdTrav(parse_tree_node N, traversal T)

{grammar_rule R; /* the rule applied at N */

enum orderType order[Z]; /* Z >= # of traversal action specs

for T in R */

enum directionType direction;

int i,j,k;

R = the grammar rule applied at N;

let the traversal actions for T in the attribute reference section

of R be numbered from 0 to k-1;

for (i=0; i<k; i++)

{if (the ith traversal action specifier has no @revorder)

order[i] = staticOrder(T);

else if ((the expression associated with @revorder) == 0)

order[i] = staticOrder(T);

else if (staticOrder(T) == POSTORDER)

order[i] = PREORDER;

else

order[i] = POSTORDER;

if (the ith traversal action specifier has no @revdirection)

direction = staticDirection(T);

else if ((the expression asociated with @revdirection) == 0)

direction = staticDirection(T);

else if (staticDirection(T) == LEFTTORIGHT)

direction = RIGHTTOLEFT;

else

direction = LEFTTORIGHT;

}

for (i=0; i<k; i++)

if (order[i] = PREORDER)

execute the ith traversal action;

number the children of N from left to right

with integers from 0 to j-1;

if (direction == LEFTTORIGHT)

for (i=0; i<j; i++) pdTrav(the ith child of N,T);

else

for (i=j-1; i>=0; i--) pdTrav(the ith child of N,T);

for (i=0; i<k; i++)

if (order[i] = POSTORDER)

execute the ith traversal action;

}

void doTraversals()

{int i,k;

parse_tree_node r;

r = the root of the parse tree;

k = the number of traversals;

number the traversals from 0 to k-1, according to

the order of appearance of their specifications;

for (i=0; i<k; i++)

if (!isDisabled(the ith traversal))

pdTrav(r,the ith traversal);

}

C LIST OF RESERVED WORDS AND RESERVED FILE NAMES 42

C List of reserved words and reserved file names

The Ox reserved words are as follows:

@{

@}

@attributes

@autoinh

@autosyn

@decorate

@disable

@e

@end

@i

@lefttoright

@m

@macro

@postorder

@preorder

@revdirection

@revorder

@righttoleft

@traversal

@void

@warn

The following file names in the current directory are reserved for use by Ox:

oxout.h (when using -h option)
oxout.y

oxout.l (when using exactly one L-file)
oxout1.l, oxout2.l, oxout3.l, ... (when using more than one L-file)

D SUMMARY OF COMMAND-LINE OPTIONS 43

D Summary of command-line options

The Ox command line takes the form:

ox { option } Y-file [-G] L-file { [-G] L-file }

By default, Ox generates an output file for each file mentioned on the command-
line. The Y-file generates a parser specification file oxout.y suitable for processing
by a Yacc-compatible parser generator. A single L-file generates a lexer specifica-
tion file oxout.l suitable for processing by a Lex-compatible lexer generator. More
than a single L-file generates lexer specification files sequentially named oxout1.l,
oxout2.l, etc.

The -G annunciator and the options are described as follows:

--help Show the Ox command line usage summary, and exit.

-b, --prefix=basename
Use basename instead of oxout for constructing Ox source output filenames.

-c Generated evaluator does not produce cycle reports.

-d Generated evaluator does not do automatic pruning.

-G L-file
L-file contains a generic (i.e., non-Lex) scanner hand-written in C. Except
for attribute reference sections, the L-file must conform to Lex & C syntax.
The return reserved word is recognized in any context other than comments
and string literals. See appendix A.

-h Produce an Ox header file oxout.h to be #included in a code section (be-
tween %{ and %}) in the Y-file or L-file(s). This permits one-step compilation
of the parser and scanner(s). When this option is not used, Ox places the
header information in each output file rather than in a separate header file.
See section 12.3.

-j Save bad output files. Ox normally skips writing output files if there is an
error.

-L, -l, --noline

Suppress generation of #line directives; #line directives specified by the
user will be retained.

-n Generate an evaluator that determines an evaluation order and checks for
cycles, but does not execute the code that evaluates attribute instances. See
section 13.3.

-p, --name-prefix=prefix
Use prefix instead of yyy for constructing Ox-generated external symbols.

D SUMMARY OF COMMAND-LINE OPTIONS 44

-S, --strip

Strip Ox-specific constructs from the Y-file and L-file(s) and place the pure
Yacc and pure Lex results on oxout.y and oxout*.l, respectively. See
section 13.2.

-t Generate an evaluator that builds an internal visual representation of a parse
tree; the evaluator must be linked with libcgraph. See section F.

-u Generate an evaluator that prints parse tree memory usage statistics for each
input. See section 13.4.

-V, --version

Show the Ox version number, and exit.

--header-prefix=basename
Use basename instead of oxout for constructing the Ox header source output
filename (overrides --prefix=basename, if present).

--lex-prefix=basename
Use basename instead of oxout for constructing the Ox lexer source output
filename (overrides --prefix=basename, if present).

--parse-prefix=basename
Use basename instead of oxout for constructing the Ox parser source output
filename (overrides --prefix=basename, if present).

--reentrant-parser, --pure-parser

Compile Y-file assuming it is a reentrant (pure) parser; compile each L-file
accordingly: the lexer communication variable yylval is passed as a
YYSTYPE * value to yylex() from a reentrant parser. If Flex is used to
generate the scanner, it must be invoked with either the --bison-bridge or
the --c++ command-line option.

--language=[C|C++]

Compile Y-file and each Lex L-file with C or C++ as the target language
(default: --language=C). This option overrides any prior target language
choice on the command line. This option can be overridden for Y-file by a
subsequent occurrence of one of the target parser generator options below.
This option can be overridden for each Lex L-file by a subsequent occurrence
of one of the target lexer generator options below.

--bison[=C|C++]

Compile Y-file for Bison in C (default, unless --language=C++ precedes
on the command line) or C++; if C++ then bison --language=c++ (or
equivalent) must be used for oxout.y (implies --reentrant-parser).

--btyacc[=C|C++]

Compile Y-file for BtYacc in C (default, unless --language=C++ precedes
on the command line) or C++.

D SUMMARY OF COMMAND-LINE OPTIONS 45

--byacc[=C|C++]

Compile Y-file for BYacc in C (default, unless --language=C++ precedes on
the command line) or C++.

--msta[=C|C++]

Compile Y-file for Msta in C (default, unless --language=C++ precedes on
the command line) or C++; if C++ then msta -c++ must be used for
oxout.y.

--yacc[=C|C++]

Compile Y-file assuming only Yacc functionality in C (this is the default for
a Y-file, unless --language=C++ precedes on the command line) or C++.

--flex[=C|C++]

Compile each Lex L-file for Flex in C (default, unless --language=C++ pre-
cedes on the command line) or C++; if C++ then flex --c++ (or equiva-
lent) must be used for each oxout.l.

--lex[=C|C++]

Compile each Lex L-file assuming only Lex functionality in C (this is the
default for a Lex L-file, unless --language=C++ precedes on the command
line) or C++.

--reflex[=C++]

Compile each Lex L-file for RE/flex in C++.

The filename extension used for each type of output file (parser specification, header,
and lexer specification) is based on the corresponding input filename extension, as
follows:

• For a 1-character (or omitted) input filename extension, the output filename
extensions .y, .h, or .l are used, respectively.

• For an input filename extension with exactly 2 identical characters, the output
filename extensions .yy, .hh, or .ll are used, respectively.

• Otherwise, the output filename extension is constructured using the input file-
name extension, converted to lower case, and with the first character replaced
by y, h, or l, respectively.

If a target parser generator is not specified on the command-line, the target will
be inferred from the first occurrence of a directive that is unique to a supported
target parser generator during processing of the Y-file definition section. If no such
directive is seen in the definition section, the default target (Yacc) is assumed. An
occurrence of a directive that is inconsistent with the target is a syntax error.

E LEX- AND YACC-COMPATIBLE TOOL INTEROPERATION 46

E Lex- and Yacc-compatible tool interoperation

In general, Ox is interoperable with the Lex, Flex and RE/flex lexer generators, and
with the Yacc, BYacc, BtYacc, Bison and Msta parser generators.

Ox makes use of the following Lex- and Yacc-compatible declarations and directives
in analysis and generation of the evaluator code:

%token, %term, %left, %right, %nonassoc, %precedence

Ox identifies the terminal symbols of the grammar from these declarations.
Character literal symbols are always terminal symbols, whether or not they
are declared.

%token <name> <"literal string token">
This Bison extension defines <"literal string token"> as an alias for
the token <name>, and both can be used interchangeably in further decla-
rations or in the grammar rules. Ox recognizes this extension, and likewise
treats <"literal string token"> as an interchangeable alias for the to-
ken <name> in attribute declarations and occurrences.

%union { ... }
Ox augments a Yacc %union semantic value type declaration with an Ox-
generated semantic value type member that is the union of the Ox-generated
attribute implementations. This added member does not interfere with the
original Yacc %union semantic value type members.

%define api.namespace {<namespace>}
This Bison directive specifies the namespace for the parser class, replacing
the default value yy; implies %language "C++".

%define api.parser.class {<name>}
This Bison directive specifies the name of the parser class, replacing the
default value parser; implies %language "C++".

%define api.pure <purity>
This Bison directive requests generation of a reentrant (pure) parser, if
<purity> is true, full, or omitted. Each L-file is compiled accordingly:
the lexer communication variable yylval is passed as YYSTYPE * value to
yylex() from a reentrant parser.

%define api.token.prefix {<prefix>}
This Bison directive adds <prefix> to named symbols when generating
their definition in C. If the ”%define api.value.type union” directive is

E LEX- AND YACC-COMPATIBLE TOOL INTEROPERATION 47

given, the member name of the generated semantic value type union cor-
responding to a named symbol with a declared type is the prefixed symbol
name. Ox recognizes this directive and treats prefixed symbol names as
aliases for the named symbols in attribute occurrences.

%define api.value.type union

This Bison directive interprets the tags of grammar symbol type declarations
as types, rather than as member names of the %union semantic value type,
and generates the semantic value type union (YYSTYPE) from those types.
The Ox-generated semantic value type is used as the tag for the Ox-generated
grammar start symbol.

%define namespace {<namespace>}
Same as %define api.namespace {<namespace>}.

%define parser class name {<name>}
Same as %define api.parser.class {<name>}.

%language "<language>"
This Bison directive specifies the programming language for the generated
parser. Ox supports "C" and "C++" (case insensitive); the %language "C++"

directive implies %define api.pure.

%option bison-bridge

This Flex and RE/flex L-file option directs Ox to reference yylval as a
YYSTYPE * value in the generated oxout*.l file, for use with a Bison or
BYacc reentrant parser.

%parse-param {<parameter declaration>}, %param {<parameter declaration>}
These Bison and BYacc directives specify <parameter declaration> be
added as a parameter to the signature of yyparse() (and yylex(), etc.).
The syntax for <parameter declaration> is the same as for the formal
parameter of a C function prototype. Subsequent directives accumulate,
in order of appearance. Ox recognizes this directive and ensures that the
parameter can be referenced within any attribute evaluation part.

%pure-parser

This Bison and BYacc directive requests generation of a reentrant parser.
Each L-file is compiled accordingly: the lexer communication variable yylval
is passed as YYSTYPE * value to yylex() from a reentrant parser.

%skeleton "<file>"
This Bison directive specifies the skeleton file to use. Ox supports filename
extensions .c (implies %language "C") and .cc (implies %language "C++").

E LEX- AND YACC-COMPATIBLE TOOL INTEROPERATION 48

Specific interoperability issues of note:

• Ox passes through all %option directives supported by Flex and RE/flex.

• Ox passes through most %-directives supported by Bison, BYacc, BtYacc and
Msta, but not all %-directives that require Ox to take some action are supported.

• Ox works with the Bison and BYacc reentrant parser skeletons; however, the
Ox evaluator skeleton (currently) uses global variables and so the generated
evaluator is not reentrant.

• Ox works with the Bison push and GLR parser skeletons, with the BYacc and
BtYacc backtracking parser skeletons, and with the Msta LR(k>1) parsing
skeleton.

• Ox works with the Flex, RE/flex, Bison, BtYacc and Msta C++ skeletons.

• A reference to a Bison and BYacc positional location pseudo variable (@$,
@1, @2, etc.), is allowed within an attribute occurrence definition that can be
evaluated at production reduction time, as for a Yacc positional semantic value
pseudo variable.

• Ox accepts the Bison named reference syntax for semantic value and location
pseudo variables ($NAME, @NAME, $[NAME], @[NAME]), interchangeably with po-
sitional semantic value and location pseudo variables.

• BYacc and BtYacc inherited attributes may be used in evaluator specifications,
but references to inherited attributes may not be used within Ox attribute
occurrence definitions.

• Ox passes through the following literal C/C++ code blocks:

– %{ ... %}
– %top { ... } (Flex, RE/flex)

– %class { ... } (RE/flex)

– %printer { ... } (Bison)

– %@ { ... } (BtYacc)

– %location { ... } (BtYacc)

– %position { ... } (BtYacc)

– %local { ... } (Msta)

– %import { ... } (Msta)

– %export { ... } (Msta)

E LEX- AND YACC-COMPATIBLE TOOL INTEROPERATION 49

– %intial-action { ... } (BYacc, BtYacc, Bison)

– %code { ... } (BYacc, Bison)

– %code top { ... } (BYacc, Bison)

– %code requires { ... } (BYacc, Bison)

– %code provides { ... } (BYacc, Bison)

– %destructor { ... } (BYacc, Bison)

• Ox does not support the following RE/flex directives:

– %option bison-complete

– %bison-complete

• Ox does not support the following Bison directives:

– %define api.token.automove

– %define api.token.constructor

– %define api.value.type variant

– %define api.value.type {type }
– %merge <merge function name>

• Ox does not recognize the Msta regular right-part grammar rule syntax.

F USING GRAPHVIZ FOR PARSE TREE VISUALIZATION 50

F Using Graphviz for parse tree visualization

The Graphviz [Graphviz] package enables creation, manipulation, layout, rendering
and visualization of attributed graphs. The libraries and programs in the package use
the DOT language as a common external textual representation of graphs. The ex-
ternal representation of graph, node and edge objects, and the corresponding internal
representation of those objects, can be annotated with DOT language attribute-value
pairs to tailor graph layout, rendering and display.

The Ox -t command-line option results in the inclusion of code in the evaluator
to build an internal visual representation of a parse tree, using only the cgraph
library[Gansner 2014][North 2014]. It is up to the user to use the capabilities of the
Graphviz package to layout and render for display the internal visual representation
within the evaluator, or to serialize the internal representation into a file for external
processing.

Any graph, node or edge object attribute-value pair set by an evaluator can be
changed, and other attribute-value pairs can be added, by user-written code. User-
defined node and edge objects can also be added to create more elaborate visual
decoration external to the default visual representation. Changes or additions can
also be accomplished by post-processing the DOT language external representation.

Ox provides the global variable yyyTreeVizGraph (type: Agraph t *) for ac-
cessing the cgraph graph object representing the parse tree. Ox also provides the
Node-Image Object (NIO) pseudo attribute13 (type: Agnode t *) for all grammar
symbols as syntactic sugar for accessing the corresponding cgraph node object (and
any attached edge objects) during evaluation. The NIO pseudo attribute can occur in
traversal actions or in the evaluation parts of attribute definitions. It is not included
in attribute dependency computations.

The parse tree internal visual representation is constructed during the initial
bottom-up parsing phase of the evaluator. Consequently, the terminal node accessed
within an L-file attribute reference section will not have an in-edge connecting its
parent nonterminal node, since that parent node will not yet have been created. The
nonterminal node corresponding to the LHS symbol accessed within a Y-file attribute
reference section will have an out-edge connecting each child node (corresponding to
an RHS symbol). However, it may or may not have an in-edge connecting its parent
nonterminal node, depending on the order of evaluation determined by Ox for the
attribute definition in which the NIO pseudo attribute occurs. Modifications involving
in-edge objects are better left to traversal actions.

Modification of the cgraph data structures via an NIO pseudo attribute, other than
via cgraph functions, is not recommended. It is possible to corrupt the parse tree
internal visual representation if the cgraph data structures are not fully understood.

13In the absence of the Ox -t command-line option, a warning diagnostic will be issued if NIO
is declared as an attribute. In the presence of the -t command-line option, an explicit declaration
of an NIO attribute is disallowed.

F USING GRAPHVIZ FOR PARSE TREE VISUALIZATION 51

F.1 The default parse tree configuration

Ox creates a non-strict (multiple edges allowed between two nodes) directed graph
to represent a parse tree, with the following graph object attribute-value pairs:

• ordering = out

• outputorder = breadthfirst

• label = Ox-generated evaluator parse tree

• labeljust = left

• rankdir = LR

• splines = polyline

Edge objects are created with names Edgei . Node objects representing parse tree
terminal nodes are created with names Leafi , and those representing nonterminal
nodes are created with names Nodei 14.

Edge objects are created with the following attribute-value pairs:

• arrowhead = none

• style = dashed,bold

Node objects are created with the following attribute-value pairs:

• label = the corresponding Yacc grammar symbol name

• style = bold

• shape = record15 (nonterminal) or Mrecord16 (terminal)

A record node is a structured collection of rectangles containing user-defined text,
defined by the node object label attribute value. Defining a record structure is a
simple way to add textual decoration programmatically.

14In each object category (Edge, Leaf, Node), i begins with 1.
15The record shape is a rectangle.
16The Mrecord shape is a rectangle with rounded corners.

F USING GRAPHVIZ FOR PARSE TREE VISUALIZATION 52

F.2 Specifying cgraph node structure

A record-based node label value has the following syntax:

recordLabel = field (‘|’ field)*
field = fieldId | ‘{’ recordLabel ‘}’
fieldId = [‘<’ portName ‘>’] [literal]
portName = literal

Lexical and semantic details:

• The characters ‘|’, ‘{’, ‘}’, ‘<’, ‘>’ and ‘\’ must be escaped with a ‘\’ character
to appear as a literal character in a record-based node label value. Spaces
are interpreted as separators between tokens, and so also must be escaped to
appear as a literal character.

• The optional portName in a fieldId is used to specify the field of a record-
based node to which to attach an edge. Internally, the edge object headport
(tailport) attribute value is the portName to which the head (tail) of the
edge object is attached.

• The literal in a fieldId is used as the text for the field; it supports the line
division escape sequences ‘\n’ (centered), ‘\l’ (left-justified) and ‘\r’ (right-
justified).

• Visually, a record is a box, with fields represented by alternating rows of hor-
izontal or vertical subboxes. Flipping between horizontal and vertical layouts
is done by nesting fields within braces ”{. . . }”.

• The initial orientation of a record node depends on the graph object rankdir
attribute value. If this attribute has value TB or BT, corresponding to vertical
layouts, the top-level fields in a record are displayed horizontally. If, however,
this attribute has value LR (the default) or RL, corresponding to horizontal
layouts, the top-level fields are displayed vertically.

• For the default parse tree layout, a record with label ”A | B | C | D” will
have the fields oriented top to bottom, while ”{A | B | C | D}” will have them
oriented left to right.

The DOT language also supports HTML-like label values, which generalize record-
based label values. If a node object has the attribute shape set to the value none

or plaintext, then the HTML value of the node’s label attribute will define the
node’s shape. If the node object has any other shape (with the exception of point),
the HTML value of the node’s label attribute will be embedded within the node as
for an ordinary literal label. HTML label values provide a more elaborate mechanism
for decorating an individual node, but have a more complex syntax and are not dealt
with further here.

F USING GRAPHVIZ FOR PARSE TREE VISUALIZATION 53

F.3 Example: the integer calculator, revisited

The internal representation is serialized into the DOT language external representa-
tion into a file by user-written code using the cgraph function agwrite(). Revisiting
the example from section 14, this modified main() program will write the DOT
language representation of a parse tree into the file default-treeout.gv.

#include <graphviz/cgraph.h>

int main()

{FILE *treeout = fopen("default-treeout.gv","w");

yyparse();

agwrite(yyyTreeVizGraph,treeout);

printf("%ld\n",sVal);

}

The command to link the executable file calc with libcgraph is shown below, followed
by a sample execution with output, the Graphviz dot command to layout and render
the file default-treeout.gv into a Portable Network Graphics image format file
(other formats are supported), and then the parse tree image generated:

bash-3.2$ cc -o calc y.tab.o lex.yy.o -ly -ll -lcgraph

bash-3.2$./calc <<< '4*9+(8+0)*8+2'

102

bash-3.2$ dot -Tpng default-treeout.gv -o default-treeout.png

The global yyyTreeVizGraph is initialized within yyyinit(); once yyyinit() has
been called, yyyTreeVizGraph can be accessed within user-written code during or af-
ter the parsing phase (during or after attribute evaluation). Since yyyTreeVizGraph
is not modified by agwrite(), the internal visual representation can be further mod-
ified after invoking agwrite().

F USING GRAPHVIZ FOR PARSE TREE VISUALIZATION 54

Note that the internal visual representation can also be laid out and rendered
within the evaluator with one of many supported image formats in the Graphviz
package into a file. The gvc library [Gansner 2014] from the Graphviz package in-
cludes the functions gvlayout() and gvRender() or gvRenderFilename() that can
be used for this purpose.

The following change to the attribute reference section in the L-file rule for pat-
tern [0-9]+ of the section 14 example will add the value of each CONST token to the
parse tree terminal node visual representation.

[0-9]+ return(CONST); @{

{long val; char leaf_label[20];

sscanf(yytext,"%ld",&val); @CONST.val@ = val;

snprintf(leaf_label,sizeof(leaf_label),"CONST|%ld",val);

agset(@CONST.NIO@,"label",leaf_label);}

@}

Revising the main() program to write the DOT language representation into the file
modleaf-treeout.gv, and changing the label associated with the parse tree:

#include <graphviz/cgraph.h>

int main()

{FILE *treeout = fopen("modleaf-treeout.gv","w");

yyparse();

agattr(yyyTreeVizGraph, AGRAPH, "label",

"AG parse tree w/ modified terminal nodes");

agwrite(yyyTreeVizGraph,treeout);

printf("%ld\n",sVal);

}

and using the dot command to layout and render that file, as above, this parse tree
image is generated:

F USING GRAPHVIZ FOR PARSE TREE VISUALIZATION 55

The addition of the traversal actions shown below to the Y-file of the section 14
example will add decorations to the parse tree nonterminal node visual representa-
tions showing the calculations represented by the corresponding rule.

/* expr.Y: Y-file for a simple expression language */

%left '+'

%left '*'

%token CONST

@attributes {long val;} s e CONST

@traversal PV

%{

#include "oxout.h"

long sVal;

%}

%%

s : e

@{ @i sVal = @s.val@ = @e.val@;

@PV {snprintf(node_label,sizeof(node_label),

"s|result=%ld",@s.val@);

agset(@e.NIO@,"label",node_label);} @}

;

e : e '+' e

@{ @i @e.0.val@ = @e.1.val@ + @e.2.val@;

@PV {snprintf(node_label,sizeof(node_label),

"e|%ld+%ld=%ld",@e.1.val@,@e.2.val@,@e.0.val@);

agset(@e.0.NIO@,"label",node_label);} @}

;

e : e '*' e

@{ @i @e.0.val@ = @e.1.val@ * @e.2.val@;

@PV {snprintf(node_label,sizeof(node_label),

"e|%ld*%ld=%ld",@e.1.val@,@e.2.val@,@e.0.val@);

agset(@e.0.NIO@,"label",node_label);} @}

;

e : '(' e ')'

@{ @i @e.val@ = @e.1.val@;

@PV {snprintf(node_label,sizeof(node_label),"e|(%ld)",@e.1.val@);

agset(@e.0.NIO@,"label",node_label);} @}

;

e : CONST

@{ @i @e.val@ = @CONST.val@;

@PV {snprintf(node_label,sizeof(node_label),"e|%ld",@e.val@);

agset(@e.NIO@,"label",node_label);} @}

;

%%

F USING GRAPHVIZ FOR PARSE TREE VISUALIZATION 56

#include <graphviz/cgraph.h>

int main()

{FILE *treeout = fopen("modnode-treeout.gv","w");

yyparse()

agattr(yyyTreeVizGraph, AGRAPH, "label",

"AG parse tree w/ modified nonterminal & terminal nodes");

agwrite(yyyTreeVizGraph,treeout);

printf("%ld\n",sVal);

}

Using the dot command to layout and render the DOT language file, as before, this
parse tree image is generated:

REFERENCES 57

References

[Johnson 1975] Stephen C. Johnson, Yacc: Yet Another Compiler Compiler,
Computing Science Technical Report No. 32, AT&T Bell Lab-
oratories, Murray Hill, New Jersey, 1975. Reprinted as PS1:15 in
UNIX Programmer’s Manual, Usenix Association, 1986.

[Lesk 1975] M.E. Lesk and E. Schmidt, Lex–A Lexical Analyzer Generator,
Computing Science Technical Report No. 39, AT&T Bell Lab-
oratories, Murray Hills, New Jersey, October 1975. Reprinted
as PS1:16 in UNIX Programmer’s Manual, Usenix Association,
1986.

[KR 1988] Brian W. Kernighan and Dennis M. Ritchie, The C Programming
Language, 2nd Ed. Prentice-Hall, 1988.

[Waite 1984] William M. Waite and Gerhard Goos, Compiler Construction,
Springer-Verlag, 1984.

[Aho 1986] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, Compilers:
Principles, Techniques, and Tools, Addison-Wesley, 1986.

[Jazayeri 1975] M. Jazayeri, W.F. Ogden, and W.C. Rounds, The Intrinsic Ex-
ponential Complexity of the Circularity Problem for Attribute
Grammars, Communications of the ACM, Vol. 18, No. 12, pp.
697-706, December 1975.

[Lorho 1988] Pierre Deransart, Martin Jourdan, and Bernhard Lorho, At-
tribute Grammars: Definitions, Systems, and Bibliography, Lec-
ture Notes in Computer Science, v. 323, Springer Verlag, 1988.

[Knuth 1968] Donald E. Knuth, Semantics of Context-Free Languages Mathe-
matical Systems Theory, Vol. 2, No. 2, pp. 127-145, 1968.

[Gansner 2014] Emden R. Gansner, Using Graphviz as a Library (cgraph
version), August 21, 2014, available online here: https://

graphviz.gitlab.io/_pages/pdf/libguide.pdf.

[North 2014] Stephen C. North, Emden R. Gansner, Cgraph Tutorial, February
7, 2014, available online here: https://graphviz.gitlab.io/

_pages/pdf/cgraph.pdf.

[Graphviz] The Graphviz distribution and documentation can be found on
https://graphviz.gitlab.io.

https://graphviz.gitlab.io/_pages/pdf/libguide.pdf
https://graphviz.gitlab.io/_pages/pdf/libguide.pdf
https://graphviz.gitlab.io/_pages/pdf/cgraph.pdf
https://graphviz.gitlab.io/_pages/pdf/cgraph.pdf
https://graphviz.gitlab.io

REFERENCES 58

[Flex] The Flex distribution can be retrieved from https://github.

com/westes/flex/.

[REflex] The RE/flex distribution can be retrieved from https://

github.com/Genivia/RE-flex/.

[Bison] The Bison distribution can be retrieved from http://www.gnu.

org/software/bison/.

[BtYacc] The BtYacc distribution can be retrieved from https://github.

com/ChrisDodd/btyacc/.

[BYacc] The BYacc distribution can be retrieved from http://

invisible-island.net/byacc/.

[Msta] Msta is part of the programming language Dino distribution, and
can be retrieved from https://github.com/dino-lang/dino/.

https://github.com/westes/flex/
https://github.com/westes/flex/
https://github.com/Genivia/RE-flex/
https://github.com/Genivia/RE-flex/
http://www.gnu.org/software/bison/
http://www.gnu.org/software/bison/
https://github.com/ChrisDodd/btyacc/
https://github.com/ChrisDodd/btyacc/
http://invisible-island.net/byacc/
http://invisible-island.net/byacc/
https://github.com/dino-lang/dino/

Index

@{, 7, 8, 10, 15
@}, 7, 8, 10
@$, @1, @2, ..., (positional loca-

tion pseudo variable), 48
@attributes, 5, 6
@autoinh, 24, 25
@autosyn, 24, 25
@disable, 20
@e, 8
@i, 8
@lefttoright, 20
@m, 8
@postorder, 20
@preorder, 20
@revdirection, 21
@revorder, 21
@righttoleft, 20
@warn, 25
$NAME, @NAME, $[NAME], @[NAME],

..., (named reference seman-
tic value and location pseudo
variable), 48

$$, $1, $2, ..., (Yacc positional
semantic value pseudo vari-
able), 13, 15

oxout.*, 27
oxout?.l, 27
%left, 5
%nonassoc, 5
%right, 5
%token, 5

agwrite, 53
agwriteagwrite, 53
ambiguous form of return of to-

ken, 12
attribute

inherited, 7
synthesized, 7

attribute (as belonging to a sym-

bol), 6
attribute declaration, 5
attribute definition, 8

dependency part of, 8
evaluation part of, 5, 8
explicit mode, 8
implicit mode, 9
mixed mode, 9

attribute definition modes, 8
attribute grammar

class of AGs accepted by Ox,
10

execution sequence not explicit
in, 16

attribute instance, 6
solving an, 9

attribute instance (as belonging to
a node), 6

attribute instances
ready set of, 15

attribute occurrence, 6
dependees of an, 8
dependents of an, 8
inherited, 7
synthesized, 7

attribute reference, 9
attribute reference section, 7, 10
attribute reference section delim-

iters, 7, 8, 10

circular grammar, 13
code generation, 17
command-line options, 43
command-line syntax, 43
comments, 4
copy rule, 24
cycle (in an attributed parse tree),

13
cycle detection, 13

declaration

59

INDEX 60

attribute, 5
decoration, 15
defined, attribute occurrence, 8
definition

attribute, 8
definition mode annunciator, 8
dependee, 8
dependency expression, 8
dependency part

of a mixed mode attribute def-
inition, 9

of an attribute definition, 8
of an explicit mode attribute

definition, 8
of an implicit mode attribute

definition, 9
dependent, 8
depends upon, 8
dynamic traversal modifier, 20

error, 28
evaluation part

of a mixed mode attribute def-
inition, 9

of an attribute definition, 5, 8
of an explicit mode attribute

definition, 8
of an implicit mode attribute

definition, 9
example

Knuth’s classical, 32
very easy, 30

execution sequence not explicit in
attribute grammars, 16

explicit mode annunciator, 8
explicit mode attribute definition,

8

file names
Ox output, 27

final decoration, 15, 18

global variables

reference to C’s, 17
Graphviz, 16, 50, 53, 54

header file oxout.h, 27
home rule, 7

implicit mode annunciator, 9
implicit mode attribute definition,

9
inherited attribute, 7
inherited attribute occurrence, 7
instance

attribute, 6

Knuth’s classical example, 32

L-file, 4, 10, 11, 14, 18, 27–30, 32,
36, 38, 42–47, 50, 54

LALR(1) property preserved by Ox
compilation, 14

left-hand side, 6
lex.yy.c, 27
LHS (left-hand side), 6
libcgraph, 16, 50, 53
libgvc, 54

macros, 22
macros forbidden for return of yylex,

10
mixed mode annunciator, 9
mixed mode attribute definition, 9
mode

attribute definition, 8
mode annunciator

@e (explicit), 8
@i (implicit), 8, 9
@m (mixed), 8, 9
definition, 8
traversal, 19

NIO, 50

occurrence
attribute, 6

INDEX 61

options
command-line, 43

parent rule, 7
placement new operator, 5
postdecoration, 18
postdecoration traversal, 18
pruning, 15, 16, 18
pseudo variable

named reference semantic value
and location, 48

positional location, 48
Yacc positional semantic value,

13, 15

ready set (of attribute instances),
15

reference
attribute, 9

return

from yylex must be explicit, 10
return statements

lexical rules associated with, 10
RHS (right-hand side), 6
right-hand side, 6
rule, 6

home, 7
parent, 7
returned token as a, 6

rules section of a Yacc file, 8

side effects, 17
solving (an attribute instance), 9
synchronization

Ox and Yacc stack, 14, 28
synthesized attribute, 7
synthesized attribute occurrence, 7

token
inherited attributes of a, 10
synthesized attributes of a, 10

traversal
postdecoration, 18

traversal action, 20
traversal action specification, 20
traversal action specifier, 19
traversal mode annunciator, 19, 20
traversal modifier

dynamic, 20
traversal specification, 20
traversal specifier, 20
traversal specifier sequence, 20

Y-file, 4, 5, 8, 10, 13–15, 19, 20,
22–24, 26–29, 32, 43–45, 50,
55

y.tab.c, 27
y.tab.h, 27
yyclearin, 28
yyerrok, 28
yyerror, 28
yyleng, 16
yylex, 10, 14, 36, 44, 47
yylval, 14, 44, 46, 47
yyval, 14
yyparse, 14, 17, 28, 47
yytext, 16
yyyabort, 28
yyyinit, 16, 53
yyyTreeVizGraph, 50, 53

	Overview of Use
	Preliminary
	Attribute declarations
	Semantics of attribute declarations

	Rules and attribute occurrences
	Attribute definitions
	Inherited vs. synthesized attributes
	Attribute reference sections in the Y-file
	Explicit mode
	Implicit mode
	Mixed mode

	Attribute reference sections in the L-file(s)
	Generality of Ox
	Ox adaptation to Lex's line-oriented syntax
	Resolution of ambiguity regarding token returned

	Cycles

	Translation into C code
	Temporal behavior of Ox-generated evaluators
	Stack operations
	Placement of generated code
	Decoration and the ready set
	Pruning and global variables
	Parse tree visualization

	Programming style
	Postdecoration traversals
	Example: infix to prefix translation
	General description
	Traversal specifications
	Traversal action specifications

	Ox macros
	Macro definitions
	Macro uses
	Example

	Automatic generation of copy rules
	Example

	File-level organization of Ox evaluators
	Conventions of naming Ox output files
	Review: combining the outputs of Yacc and Lex
	Combined use of Ox, Yacc, and Lex
	Typical command sequences

	Command-line options and other points
	Error recovery
	Stripping Ox constructs
	Preventing execution of attribute definition code
	Parse tree statistics

	Example: an integer calculator
	Example: a binary number translator
	Example: translation to postfix and prefix
	Using Ox with non-Lex lexical analyzers
	Default context-sensitivity of L-file compilation
	Ox compilation of C-coded lexical analyzers
	Example

	Traversal semantics
	List of reserved words and reserved file names
	Summary of command-line options
	Lex- and Yacc-compatible tool interoperation
	Using Graphviz for parse tree visualization
	The default parse tree configuration
	Specifying cgraph node structure
	Example: the integer calculator, revisited

	References
	Index

