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Abstract

In this paper we present CASM, a language based on Abstract State
Machines (ASM), and its optimizing compiler. ASM is a well-
defined (formal) method based on algebraic concepts. A distinct
feature of ASM is its combination of parallel and sequential ex-
ecution semantics. This makes it an excellent choice to formally
specify and verify micro-architectures. We present a compilation
scheme and an implementation of a runtime system supporting ef-
ficient execution of ASM. After introducing novel analysis tech-
niques we present optimizations allowing us to eliminate many
costly operations.

Benchmark results show that our baseline compiler is 2-3 mag-
nitudes faster than other ASM implementations. The optimizations
further increase the performance of the compiled programs up to
264%. The achieved performance allows our ASM implementation
to be used with industry-size applications.

Categories and Subject Descriptors D3.4 [Programming Lan-
guages]: Processors — compilers, optimization, code generation

Keywords ASM, compilation, optimization, redundancy elimina-
tion, parallelism

1. Introduction

ASM is a formal method well suited to formalize semantics of
micro-processors [24], programming languages [16] and instruc-
tion set simulators [18]. Formal specifications are a precondition
for thorough verification of safety-critical embedded systems. We
intensively use our ASM implementation (CASM) in a compiler
verification project [17] as the formal foundation for the required
proofs. Precise machine models for various micro-processors com-
monly used in embedded systems have been developed. These
CASM models can be used to synthesize instruction set simula-
tors. Available tools for ASM have the major drawback that they
do not perform well enough to handle industry-size applications. In
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this paper we introduce an optimizing CASM compiler and present
two effective optimizations. Ultimately the compiler is applied to
a CASM formalization of the MIPS instruction set to synthesize
compiled simulations for industry-size applications.

The remainder of the paper is structured as follows: In section[2]
we introduce other implementations of ASM. Section [3| gives an
overview of the CASM language and the most important features
influencing the compilation. An overview of the CASM compiler
is given in section 4] and section 3] describes the optimizations. We
report on the performance in section [6l Section [7] discusses future
work and section[§lfinally concludes the paper.

2. Related Work

ASMs were introduced by Gurevich (originally named evolving
algebras) in the Lipari Guide [12]. Core concepts of ASMs are the
algebraic state and rules, which describe exactly how the state is
changed by means of updates applied to the state. Evaluation of
a rule itself is side-effect free, a concept introduced in functional
programming.

The ideas of ASMs were further developed by Gurevich and
others at Microsoft Research resulting in a powerful specifica-
tion language called AsmL [14]. AsmL is designed to be sim-
ple, precise, executable, testable, inter operable, integrated, scal-
able and analyzable. The language is statically typed, supports ob-
ject oriented features, has call-by-value semantics and supports ex-
ceptions. An efficient compiler for .NET has been developed and
the language has been fully integrated into the .NET framework
and the Microsoft development environment [J]. The tool envi-
ronment comprehends parameter generation for providing method
calls with parameter sets, finite state machine generation from an
ASM, sequence generation for deriving test sequences and runtime
verification for testing if an implementation performs conforming
to the model. The tool environment around AsmL is the most ad-
vanced currently available.

One of the most performance critical issues in ASMs is the
problem of partial updates. Gurevich and Tillmann discussed the
problem in detail and showed how concurrent data modifications
can be implemented efficiently [13]. Similar problems occur in ver-
sion control systems on software merging [20]. Techniques which
work only on the delta (the differences) of the data sets inspire op-
timizations on efficient update implementation in ASMs.

Castillo describes the ASM Workbench in [9]. Similar to CASM
he added a type system to his language. The ASM Workbench
is implemented in ML[] in an extensible way. Castillo describes
an interpreter and a plugin for a model checker, which allows
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to translate certain restricted classes of abstract state machines to
models for the SMVA model checker.

Schmid describes compiling ASM to C++ [23]. The compiler
uses the ASM Workbench language as input. He proposes a double
buffering technique avoiding implementing update sets at all. This
approach is limited to parallel execution semantics only, though.
CASM uses a so called pseudo state (more details are in section
to implement update sets efficiently.

Schmid also introduced AsmGofer in [22]. AsmGofer is an
interpreter for an ASM based language. It is written in the Goferf]
language (a subset of Haskell) and covers most of the features
described in the Lipari guide. The author notes however that the
implementation is aimed at prototype modeling and too slow for
performance critical applications.

Anlauff introduces XASM, a component based ASM language
compiled to C [3]. The novel feature of XASM is the introduction
of a component model, allowing implementation of reusable com-
ponents. XASM supports functions implemented in C using the ex-
tern keyword. CASM does not feature modularization, but can be
extended using C code as well. XASM was used as the core of the
gem-mex system, a graphical language for ASMs.

Farahbod designed CoreASM, an extensible ASM execution
engine [10]. The CoreASM project is actively maintained and has a
large user base. The CASM language is inspired by the CoreASM
language, but over time they have diverged significantly.

Praun, Schneider and Gross presented an algorithm for load
elimination in the presence of side-effects, concurrency and pre-
cise exceptions [21]. Even the most conservative variant without
side-effect and concurrency analysis can eliminate up to 55% of
the loads and whole program analysis in an ahead-of-time Java
compiler can increase the reduction up to 70%. Barik and Sarkar
achieve performance improvements up to a factor of 1.76 in a just-
in-time compiler for the parallel language X10 in the Jikes RVM
applying interprocedural load elimination [4]. Our optimizations
also aim at redundancy elimination in concurrent (parallel execu-
tion) context. ASM’s partial updates can be treated in a similar way
as side-effects. This work demonstrates the high levels of redun-
dancy elimination possible in such systems.

3. The CASM Language

This section gives a brief description of ASM based programming
languages in general and highlights features specific to CASM. An
excellent introduction to the formal semantics of ASM languages
is given by Borger and Schmid in [7]. More details on the CASM
language can be found in [19].

3.1 Semantics of ASM Based Languages

The core concepts of ASM are the state and the transactional
semantics of language statements. Based on algebraic concepts the
state of the machine is modeled using functions. The function is
a mathematical object and has a domain and a range. A null-ary
function is, roughly speaking, a global variable in C-like languages.
N-ary functions can best be thought of as hash-maps. In contrast
to C-like languages, functions are always defined on their whole
domain. Functions take the special value undef on arguments for
which no value has been defined explicitly. The name of a function
together with concrete arguments is called a location.

Statements of an ASM language are evaluated using the current
state of the machine (defined by the total of its functions). The
effects of each statement (called an update) will affect the next state
however. All statements of a block are executed in parallel and their
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function x :
function y :

-> Int initially { 2 }
-> Int initially { 3 }

rule swap =
{
X @
y
}

y
X

Listing 1. Swapping of two Values (Parallel Semantics)

function t :
function x :
function y :

-> Int initially { undef }
-> Int initially { 2 }
-> Int initially { 3 }

rule swap =
{

{1
X

2 y
t

y
I}
print t

I

Listing 2. Swapping of two Values (Sequential Semantics)

updates are merged (union) into a so called update set. Applying the
resulting update set to the global machine state is called a step of
the machine.

Listing [1 shows a code snippet swapping the contents of two
null-ary functions utilizing the parallel execution semantics (de-
noted by braces) of CASM. The update set produced by the first
update statement (line 6) is the set { x=3 }. The second update state-
ment (line 7) is evaluated using the same state as the first one, so it
produces the update { y=2 }. When leaving the block the updates
are merged into the update set { x=3, y=2 ).

Parallel updates to the same location (non-empty set intersec-
tion) are a runtime error (a so called inconsistent update). CASM
aborts the execution but we plan to invoke an error handler provided
by the user in a future version.

TurboASM [11] extend ASM with the concept of sequential
composition. Statements in a block using sequential execution se-
mantics (denoted {| and |} in CASM) apply their updates before
the subsequent statement is evaluated. The updates produced by
each of the statements can overwrite each other in the resulting up-
date set. When leaving the sequential block the original state (the
one valid when entering the block) is restored. The intermediate
states only exist temporarily (not the update set though). The ratio-
nale for this behavior is that the machine makes a virtual step after
each statement in a sequential block.

Listing [ illustrates this behavior. Inside the block with se-
quential execution semantics the values of the functions x and y
are swapped using a temporary (function). Because of the sequen-
tial block the update in line 10 is evaluated in an intermediate
state where the update to ¢ (line 8) has been applied. The update
set produced by the whole block therefore is { t=2, x=3, y=2 }.
The changes have not been committed to the global machine state
though. The print statement in line 12 will see the initial value
undef when reading the function .

Procedures are called rules in ASM. A distinct rule (top-level)
is invoked on program startup. When the top-level rule returns the
machine makes a step (and applies the update set to the machine
state). The top-level rule will then repeatedly be executed until the
program explicitly terminates.
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3.2 CASM Specifics

The CASM language is statically typed (to ease programming a
type inference system is implemented). Basic types are integer, sub
range integer, float, rational, reference to rule and string. Custom
types can be constructed using enumerations, tuples and lists. All
functions and rule arguments must be explicitly typed. CASM
performs no implicit type conversions. Builtins are used to convert
boolean and enumeration types to integer representations. Integers
can also be converted to boolean and enumeration types (for which
a range check is performed). Variables (bindings created by let
rules) may be typed explicitly but if they are not, their types will
be inferred.

The original ASM specifies call-by-name semantics for rule
invocation (procedure call). Call-by-name can be compiled using
thunks [6], but doing so is not very efficient. We introduce a CASM
specific call rule implementing call-by-value semantics.

The common control-flow statements, i.e. if-then-else, case,
direct and indirect (using rule references) subroutine invocation
(call rule) are available. As all state is global in CASM the only
variables are values (expressions) bound to names (lef rule).

CASM offers a set of built-in functions to operate on lists and
stacks and can be extended with custom C functions. All built-ins
must be side-effect free though.

3.3 Loops

Due to CASM’s transactional semantics a loop counter can not
be implemented. Commonly known loop constructs are therefore
not part of the language. One way to express iterated execution
is to utilize the property that the top-level rule will be executed
repeatedly. This also solves the loop counter issue as after each
iteration of the top-level rule the update set is applied to the state,
which allows to model a loop counter. The semantics of the forall
rule (forall var in range) is that the body is executed for each value
(assigned to var) of the range in parallel.

The other way to implement a loop is by means of the iterate
rule which sequentially composes the result of the loop body un-
til the update set of a single iteration is empty. Iterate basically
searches the fix-point of its body.

3.4 Notes for Implementors

The key issues to deal with when implementing an ASM language
are: infinite domains for functions, n-ary functions, transactional
and parallel semantics, intermediate and temporary states. One
needs to implement a lookup mechanism for locations which is
relative to the current state. Updates have set semantics. They need
to be merged and must be checked for inconsistency. On the other
hand the language is side-effect free.

4. The CASM Implementation

We developed a CASM interpreter and a CASM to C source-to-
source compiler. Both the interpreter and the compiler are imple-
mented in C++ and share the frontend and some parts of the runtime
system.

4.1 Frontend

The abstract syntax tree (AST) is built using a Yacc parser. Type in-
ference is performed on the AST using apriori known types (func-
tions, built-ins, arguments) and propagates them through the AST.
For all untyped variables inferred types are calculated. When a
fix-point is reached the computed types are checked for complete-
ness and consistency. The only difficulties are arising from the spe-
cial value undef (which is compatible to all types) and empty list
constants (as the type of the list element is undetermined). The
typed AST can either be interpreted by a recursive AST interpreter

(CASM-i) or can be compiled. In the remainder of this section we
describe the compiler.

4.2 Backend

The typed AST is used by the code generator to emit low-level
C code (source-to-source translation). For each rule of the CASM
program a distinct compile unit is emitted which allows parallel
compilation. The emitted code is designed to allow good optimiza-
tions by a C compiler.

Code generation is (with exception of lookups and updates, see
straight forward. For each CASM rule the compiler emits a C
function, which is split when the compile unit becomes too large.
CASM control-flow constructs (i.e. if, case and call) are mapped
to their C counterparts. The forall and iterate rules are translated to
corresponding C loops. All iterations of a forall loop are considered
to be executed in parallel, while the iterations of an iterate rule
behave like being executed in sequential execution mode. The code
generator adds a surrounding block with appropriate semantics
(if needed) and merges the updates produced by each iteration
accordingly.

CASM variables (i.e. let rule and rule arguments) are mapped
to (scoped) local variables. Expression trees are translated in post-
order fashion (this is possible as CASM is side-effect free). The
temporaries are stored in local variables called registers. Each reg-
ister has a unique name derived from a numbering of the AST
nodes. Our assumption is that the C compiler will be able to very
efficiently compile such code.

4.3 Runtime

This section describes the implementation of an efficient runtime
system for an ASM language. This section also motivates the opti-
mizations.

4.3.1 Dynamic Memory Allocation

Only functions and updates need to be allocated dynamically. Due
to the transactional semantics of ASM languages the life-span of an
update is exactly one step of the machine. A pre-allocated memory
pool is used to store updates until a step is made and all updates are
committed to the function storage. This pool can simply be reused
in subsequent steps (dump-allocation). The runtime therefore has
virtually no memory management overheads.

4.3.2 Storage for CASM Functions

Set operations are necessary to properly implement functions. All
locations not explicitly defined otherwise have the special value
undef (demanding an is-element-of set operation). A distinct hash-
map (with linear probing) is used as storage for each function. The
function arguments are concatenated to form the key. Each slot
of the map has two special properties, undef and branded. The
undef property is set if the location has the special value undef.
An update may set a previously defined location to undef, so such
locations need to be tracked explicitly. A slot is branded when its
corresponding location is accessed for the first time. (Branding
allows to use other default values than undef, CASM supports
this feature). The runtime uses the slot’s address, which must be
guaranteed to be stable, as a unique identifier.

After each step of the machine the hash-map can safely be
enlarged should the load factor have become too large. In the
rare case that during a single step the hash-map would overflow,
additional memory is allocated. In-between the next machine step
the hash-map is resized and the overflow memory gets merged.

If a sub range integer type is used for the domain of a CASM
function, an array is used as function storage instead of a hash-map
(for reasonable sizes of the domain). An additional bit is needed to
keep track of the special value undef.



{
stmit
{| stmty ; stmits |}
{l stmty ; stmits |}
}

Listing 3. Interleaving PAR/SEQ

4.3.3 Updates and Pseudo States

Due to the interleaving of parallel and sequential execution seman-
tics the state used to evaluate a statement and the state affected by
its updates are in general not equal [11]. Listing [3] illustrates the
problem. stmt; and the sequential blocks containing stmts and
stmty are in a parallel block. Therefore they are evaluated under
the same state So, their updates however are applied to different
states. While updates produced by stmt; are applied to the So, up-
dates produced by stmtz are used to create a temporary state S1.
The sequential composition with stmts may modify updates pro-
duced by stmt2 and only the resulting update set will be applied
to So. The same situation arises with stmts and stmts. As e.g.
stmts4 may contain a nested parallel block a tree-like structure of
states is created. The nesting of update sets is very similar to nested
transactions in software transactional memory (STM) [1]. The ma-
jor difference is that an STM transaction aborts when reading an
object for which a commit is pending while in ASM read access
can never fail. Multiple updates to the same location in a parallel
context is a runtime error (inconsistent update) in CASM.

Our assumption is that the number of updated locations (in
a single ASM step) is much smaller than the whole state of the
program. We therefore do not duplicate the state but keep track of
all updates produced so far in a data structure called update set.
When looking up a location the runtime has to query the update set
for updates affecting the current state (due to sequential execution
semantics).

We use the notation of pseudo state to keep track of updates
affecting the current state. The pseudo state is a counter which
is increased (at runtime) when a block with different execution
semantics is entered. When a block is left (and control-flow returns
into a block with different execution semantics) the update set is
merged into the update set of the surrounding block. This is a
serialization of the (partial) parallel execution semantics of ASM.
Initially the system starts in parallel execution state, so pseudo state
0 denotes a block with parallel execution semantics. When entering
a block with sequential semantics pseudo state will be increased to
1. By construction this counter is odd when executing a block with
sequential execution semantics and even when in parallel mode.

The update set is implemented as a hash-map. The keys are 64
bit values, the lower 16 bits are the pseudo state of the block the
update originates from, the remaining bits are the lower bits of the
slot used to store the location. (This limits the number of nested
states to 65536. The number of locations is limited to 2 to the power
of 48. The maximum memory utilization of CASM therefore is 256
TiB, which is sufficient for any realistic application.)

Additionally the slots in the update set are forming a linked list
with the latest update being the head. This property is used when
merging update sets. Figure[I] shows the update set data structure.

4.3.4 Lookup and Update

A lookup for a specific location first needs to query the functions
storage to acquire the address of the slot. This address and the
current pseudo state are used to query the update set for any
updates to this location which may be visible in the current state.
By construction of the update set the corresponding keys can be
efficiently calculated using the current key. The sequential states

lookup: O(#ps), merge: O(#updates), insert&collision: O(1)
last update
&update .

key “-.... Pseudo state (16 bit)
Tl Address (48 bit)

Figure 1. Update Set

are all odd numbered pseudo states with a number that is lower than
the current one. The complexity of this operation is linear in the
number of active pseudo states (dynamic nesting depth of parallel
and sequential blocks).

An update also needs to query the functions storage to acquire
the address of the slot corresponding to the location. This address
and the current pseudo state form the key for the update set. If the
slot in the update set already contains a value the further behavior
depends on the current pseudo state. In sequential execution mode
(odd pseudo state) the value will be overwritten, in parallel mode
an inconsistent update error is triggered. The complexity of the
inconsistency check is constant.

4.3.5 Merging of Update Sets

When leaving a block (with different execution semantics) the list
property of the update set is exploited to efficiently merge all up-
dates into the surrounding update set. The list is traversed back-
wards until the first update not belonging to the current update set
is found (encoded in the lower 16 bits of the key). All updates are
removed from the update set and re-inserted with the pseudo state
part of their key reduced by one. Merging of update sets produced
by sequential blocks may trigger inconsistent update errors as they
are re-inserted into an update set with parallel execution semantics.
The complexity of merging is linear in the size of the update set to
be merged.

5. The Optimizing Compiler

In this section we describe the analyses and transformations per-
formed by the optimizer. The optimizer is divided into multiple
passes. Analyses only identify and mark opportunities while the
transformations actually perform the changes.

5.1 Lookup and Update Elimination

The hash-maps used to implement the update set and functions are
obviously very expensive in terms of performance. In this section
we describe two optimizations called lookup elimination and up-
date elimination that aim to reduce the number of hash-map opera-
tions. The first observation is that lookups from a parallel execution
context will always retrieve the same value (for same locations). In
such situations only the first lookup needs to query the function
storage and the update set to retrieve the value. The second obser-
vation is that, in sequential execution context, updates and lookup
behave like local variables in the language C.



{ {
local X_3 = X(3) in

if X(3) = 3 then if X_3 = 3 then

skip skip
if X(3) = 4 then if X_3 = 4 then
skip skip
} }

Table 1. Redundant Lookup and its Elimination

local L_1 = foo in
{l {l
X(4) := foo X(4) := L_1
if X(4) > 0 then if L_1 > 0 then
skip skip
I} I}

Table 2. Preceded Lookup and its Elimination

{1 {l
X(5) foo
X (5) bar X(5) := bar

Table 3. Redundant Update and its Elimination

The idea is to introduce so called local locations. That is a rule-
local storage which will be used by optimized lookup and update
code. Once fetched, the local location can be used by subsequent
lookups without the overheads of a hash-map. Table [ illustrates
the basic idea (local is not a valid CASM keyword).

Another pattern which allows the elimination of a lookup arises
from updates (to the same location) preceding the lookup in a
sequential context. In this case the value to be retrieved is known
already and can be propagated instead of performing an expensive
lookup. We call this pattern a preceded lookup for an example see
table2]

Update elimination tries to reduce the number of updates stored
in the update set. If a specific location is updated multiple times in
a sequential context, only the last update will be committed to the
state. All preceding updates can safely be omitted. See table [3] for
an example.

5.2 PAR/SEQ Control Flow Graph

We use an extension to the control flow graph (CFG) called the
PAR/SEQ CFG to capture the nested parallel and sequential execu-
tion semantics. The nodes of this CFG are the instructions as they
will be generated by the code generator, therefore it captures the se-
mantics of the serialized statements. Forall rule bodies are executed
in parallel leaving iterate as the only loop construct. We currently
treat iterate as a black-box, like a call, hence our PAR/SEQ CFG is
cycle free.

First we describe the generation of the PAR/SEQ CFG and
discuss its properties later.

The PAR/SEQ CFG is generated from the AST representation
of a single rule. Each node has a unique label, a type (e.g. IF,
UPDATE, expression), the execution context (parallel or sequen-
tial) and its state nesting depth. The state nesting depth is a simple
counter which is increased when entering a block and decreased
when leaving (very similar to pseudo states described in[d33). Our
extension is to add synthetic nodes into the CFG when entering or
leaving a block and when the control-flow of if-then-else merges.
The state nesting depth of the synthetic nodes is the state nesting
depth of the containing block.

[0] 0: r6__ =x state

use: r10__ use: r6__

[0]2:17__ = y(rl0__) [ state

use: r7__

[0]3:r5__=r6_

CASM Example

[116:r15__=3 function x : -> Int
> function y : Int -> Int
j use: r15__
- init main
[1]7:x:=r15__
l v rule main= {
if x > y(2) then
[1]8:121__ =3 | luse: x {l
l x := 3
y(3) := x
[1]19:122__=x 1}
> print x
use: 122__ }

[1710: y(r21__) :=r22__ use: X

[0] 12: end

[0] 13: 126__ = x

use: 126__

[0] 14: Sprint r26__

main

Figure 2. PAR/SEQ CFG (with use/def)

In figure 2] the PAR/SEQ CFG generated by the compiler and
the corresponding CASM program is shown. Nodes filled with
color correspond to CASM statements and white nodes result from
expressions. Blue encodes parallel execution semantics and green
is sequential. The nodes are labeled with their state nesting depth
(in square brackets) followed by a unique id and their content.
Examples for synthetic nodes are nodes number 5, 11 and 12.
Results of the use/def analysis are shown as well and will be
explained later.

5.3 PAR/SEQ Use/Def Analysis

We use a modified version of the classic use/def analysis called
PAR/SEQ Use/Def to identify and categorize state lookups. It is
based on the results of a state-unaware reaching-definition analysis
[2]. Variables can be treated very simply (CASM is side-effect free,
variables are bound and never updated). A lookup is the occurrence
of a function name on the right side of an expression node. For
each lookup its local definitions are considered. If there is no local
definition the (expensive) hash-map operation must be performed,
we call this a state-lookup. The occurrence is marked as such.
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function x : -> Int function x : -> Int
rule foo = rule foo =
local L_1 = x in // 1 lookup
{l {l
print x // 1 lookup print L_1
x = x+1 // 1 redundant update, 1 redundant lookup local L_2 := L_1+1 in
x := x*x // 1 update, 2 preceded lookups x := L_2xL_2 // 1 update
I} I}
Listing 4. Original Source Listing 5. After Optimization
If there is exactly one definition we mark the lookup as local-
lookup. Such lookups are candidates for the lookup elimination
pass.
Multiple definitions are not analyzed any further. At the point
the control-flow merges a virtual node performing a pseudo-
definition of the location will be added by the lookup elimination
pass (similar to phi nodes in SSA). Multiple subsequent lookups
to the same location therefore see only one definition and can be Cp [ cf [T in [T le [ 7| ue 7] sk

further optimized.

5.4 Lookup Elimination

For a local-lookup the decisive question is: what is the execution
semantics of the inner-most block containing the definition and the
use? The analysis discovers all paths in the PAR/SEQ CFG and
records the state nesting depth of each node. The nice property
is that the node with the smallest number is their common inner-
most block (called common state). This property holds because the
synthetic nodes act like virtual instructions ensuring that each path
of the CFG goes through its containing block. In a way this encodes
the least common dominator into each path.

If the common state has parallel execution semantics the effects
of the definition is not visible. These kinds of lookups are marked
as state-lookup which are handled separately. If the common state
is sequential and there is only one path in the CFG the location is
promoted to a local one. We call this pattern a preceded lookup and
the transformation is shown in table 2]

For each location marked as state-lookup the number of occur-
rences in a rule is counted. If there are more than 2 occurrences the
location is speculatively promoted to a local one and the lookup is
hoisted to the outer-most block possible. The scope of variables
used to calculate the location are boundaries for hoisting. This
transformation is speculative because a lookup from a rarely ex-
ecuted path can be moved to a more frequently executed one.

5.5 Update Elimination

Updates in the same sequential block are considered for elimina-
tion. The nodes of each sequential block of a rule are traversed
backwards and updates to locations are recorded. When there are
multiple updates to the same location all but the last one are re-
moved. The generic pattern is shown in table 3]

5.6 An Example

We want to illustrate the effects of theses optimizations on a small
example. Listing@lshows a small CASM rule which prints the value
of the function x and afterwards updates it to the value (z + 1) to
the power of 2. For printing the value a lookup is performed (line
6). This lookup is the very first lookup of that location in this rule,
so it can’t be eliminated. In line 7 the value of x is increased by
one. Again a lookup is performed, but this one is redundant and
can be eliminated. The function x is then updated to contain the
incremented value. This update is followed by another one and can
therefore be eliminated. In line 8 finally the square is calculated
and x is updated to the new value. To calculate the square value

Figure 3. Compiler Passes

x is looked up twice. Theses lookups are preceded ones, as x was
updated in line 7.

The optimizing compiler rewrites the source as given in listing[3]
(though this isn’t valid CASM syntax). The only lookup of x is now
performed in line 4. This value (L_1) is used for printing (line 6)
and to compute another local location (L_2) in line 7. This local
location is used to eliminate the preceded lookups in line 8. Line 7
does not update x any more. The update to the local location does
not involve the update set and is therefore a very cheap operation.
In line 8 the two lookups are replaced by usage of the local location
L_2, which does not involve update set operations.

In this small example the number of lookups was reduced from
4 to 1 and the number of updates from 2 to 1.

5.7 Supporting Optimizations

Lookup and update elimination strongly depend on i) exact analysis
results for all paths ii) locations to be known at compile time, which
is achieved by inlining.

The semantics of the call rule allows inlining by replacing the
invocation with the AST tree of the inlined rule. Rule arguments
must be evaluated (call-by-value) which can be achieved by adding
let nodes to the AST. Maybe the names of an inlined rule’s local
variables (/et) need to be renamed.

Because the CASM language is side-effect free, the analysis
framework is able to perform constant folding for all built-ins.
Using C macros we are even able to reuse the implementation in
the analysis framework. Due to constant propagation a lot of dead
code is identified and is removed as well.

Figure [3] gives an overview of the schedule of all transforma-
tions. Constant propagation (cp) and constant folding (cf) are exe-
cuted before the inliner (in) is invoked. They may resolve indirect
calls so the inliner is more effective. Afterwards lookup elimination
(le) is performed until a fix point is reached. The reason for iterating
lookup elimination is that the added pseudo-definitions may enable
further optimizations. Elimination of preceded lookups may have
propagated constants and therefore a fix point of those 4 optimiza-
tions is searched. Finally update elimination (ue) is performed and
lookups, which have been hoisted to the beginning of the rule, are
sunk (sk) to the least common dominator of all their (remaining)
uses.
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6. Evaluation
6.1 Baseline Compiler

In this section we evaluate the quality of the baseline compiler. For
this purpose we compare it to other available implementations of
ASM based languages, namely CoreASM and AsmL. CoreASM is
an interpreter written in Java while the AsmL language is compiled
to .NET code. A small suite of programs each stressing a different
implementation detail of ASM languages has been implemented for
each language.

The bubblesort program (a very naive implementation of the
well known sorting algorithm) performs many steps with small up-
date sets. It aims to benchmark the effectiveness of applying update
sets to ASM functions. Fibonacci uses dynamic programming to
calculate the well known numbers. It benchmarks rule invocation
(recursive) and has a moderate size of the update set. Quicksort
(the sorting algorithm) makes heavy use of sequential execution,
although the update sets are very small. The sieve program is an
implementation of Eratosthenes’ famous prime number sieve. This
program heavily stresses the implementation of the update set, ev-
erything is executed sequentially producing large update sets. The
benchmark program gray calculates Gray codes for a given word
length. It is the program with the most output and a mix of se-
quential execution, rule invocation and numeric operations. Trivial
is the trivial program, immediately exiting without any operation.
It is used to measure startup overheads of the various implementa-
tions.

The performance of the various implementations varies a lot.
We use small data sets for the interpreters and larger sets for the
compilers to have measurable execution times.

For benchmarking we use the CASM compiler (rev. 1a092c)
and gcc 4.7.2 (as shipped with Ubuntu 12.10). We do not perform
any CASM specific optimizations and disable optimizations of the
C compiler (-O0 flag). The CASM interpreter (CASM-i) is the
same version as the compiler.

The CoreASM engine version used is 1.5.6-beta using the com-
mand line driver Carma 0.7.3 (latest release). We executed Core-
ASM using Java 1.7 with the 64 bit Server VM (23.7-b01).

Microsoft’s AsmL implementation compiles to .NET code and
is freely available on http://asml.codeplex.com/, We down-
loaded version 80132 and followed their build instruction using Vi-
sual Studio C# 2005 Express Edition.

The benchmarks involving small data sets were executed on a
Core 17-Q820 @1.73 GHz with 8 GiB memory under 64 bit Ubuntu
12.10. For the large data sets a dual boot system (Core 17-2600k
@3.4 GHz, 8GiB memory) using 64 bit Windows 7 Enterprise SP1
and 64 bit Ubuntu 13.10 was used. We report on the average of 10
runs and started the AsmL binary once before the benchmark to
exclude overheads induced by the NET framework[i.

Our own implementation of a CASM interpreter (CASM-i) is
designed to have very low startup times and is used to execute
small programs only. It is used in the compiler verification project.
The baseline compiler is a magnitude faster than the interpreter (up
to 60 times) which is a good indicator that the baseline compiler
performs well.

When it comes to performance CoreASM is clearly inferior to
the other implementations. Programs compiled by our compiler
perform up to 2500 times better and even our interpreter is one
order of magnitude faster. The focus of CoreASM are high level
models though.

The AsmL results are varying a lot. For fibonacci performance
is on par with the CASM compiler (still 35% slower, though).
But fibonacci is also the benchmark putting the least pressure on

4 http://msdn.microsoft.com/en-us/library/cc656914 (v=vs.110) .aspx
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Figure 4. CASM relative Performance (Compiler as Baseline,
smaller is better, log-scale)

ASM specifics. It uses mostly recursive function invocation with a
comparably small update set. Bubblesort is slower by a moderate
factor of 2 while sieve is slower by a factor of 900. A detailed
examination showed that AsmL has quadratic runtime for increased
sizes of the sieve. The main difference in the two programs is that
bubblesort executes a large number of machine steps each with a
small update set, while sieve exactly executes one step. The update
set produced by sieve is quite large (the whole array) and a lot of
updates need to be merged sequentially. This indicates that AsmL is
not optimized for this case and agrees with the observed behavior of
quicksort (small sequential update sets) and gray (moderate sized
sequential update sets). Overall the performance of AsmL compiled
programs is significantly lower than programs compiled by the
CASM compiler.

Figure [ shows the relative performance (with CASM compiler
being the baseline) of the 4 implementations, please note the loga-
rithmic scaling of the y axis. Numeric values are found in table (4]
The CASM baseline compiler is by far the best performing ASM
implementation.

6.2 Optimizing Compiler

In this section we evaluate the effectiveness of lookup and update
elimination and investigate the scalability of the CASM compiler.
We compare the performance data of our baseline compiler with
the optimizing version. The other ASM implementations are simply
not capable of executing programs of the desired size.

6.2.1 The Application

To create a large realistic benchmark we translate binary MIPS pro-
grams into a CASM representation and compile them to native code
(that is a kind of compiled simulation). A Python script performs
a very simple basic block analysis and a CASM rule is emitted
for each identified basic block of the program. We add a semantic
model of the MIPS architecture originally developed for compiler
verification and provide a top-level executing the program’s basic
blocks. The basic structure of a program generated this way is pre-
sented in listing[6]

The benchmark programs are taken from the well known
MiBench [15] suite. As our optimizations perform aggressive in-
lining we only want to optimize the kernel of the applications to


http://asml.codeplex.com/
http://msdn.microsoft.com/en-us/library/cc656914(v=vs.110).aspx

small data sets
trivial sieve  quicksort gray

large date sets

fibonacci  bubblesort sieve  quicksort gray fibonacci  bubblesort
CASM 0.0865 | 0.0857 0.0842  0.0882 0.0854 0.0859 | 0.0822 0.586 0.7702 3.0436 2.5458
AsmL 0.1292 74.39 3.0628 24.3702 4.1752 5.2748
CASM-i 0.0048 0.10 0.0212  0.2287 0.0107 0.0466 1.05 35.41 40.83 79.17 95.43
CoreASM | 1.3604 13.82 32.51 57.61 67.24 213.62
Table 4. Execution Time CoreASM, AsmL, CASM
enum FieldValues = { FV_RT, FV_IMM, FV_RS, % 000
function BLOCK : -> Int 100 00 contribution ‘ ’ LOC‘ L
function GPR : Int -> Int 800
function (static) PARG: Int * FieldValues -> Int 600
initially { 50
[0x80001000 ,FV_RT] -> 28, 400
[0x80001000 ,FV_IMM] -> 32769, 200
[0x80001000 ,FV_RS] -> 0,
L 0 0
function (static) BASICBLOCK: Int -> RuleRef
w Stflégb {0 Figure 5. Rule Contribution and Size - Rijndael
701 -> @bb_701,
%
rule andi(addr : Int) =
let rs = PARG(addr, FV_RS) in 100 ’DDcontribution ‘ ’+LOC‘ 10
let rt = PARG(addr, FV_RT) in
let imm = PARG(addr, FV_IMM) in
call write_reg
(rt, BVand (32, GPR(rs), BVze( 16, 32,imm))) 50 5
rule bb_0 =
BLOCK : =630
11 bb_call (@lui, 0x80001000) N o . -
2211 bb_ile (@b‘;ibltfal ., 0x80001004) Figure 6. Rule Contribution and Size - Dijkstra
call bb_call (@addiu, 0x80001008)
|}
%
rule run_program =
{l 100 U 0 contribution ‘ ’~><—LOC ‘ 40
call (BASICBLOCK(BLOCK))
if trapped then 30
program(self) := undef
|} 50 20
Listing 6. Compiled Simulation in CASM 10
0 OO0 o e e 0

keep the increase in code size small. Our code generator can in-
strument the code to collect profiling information measuring the
total execution time of each CASM rule (including time spent in
invoked rules). Applying a simple heuristic all rules contributing at
least 1% to the total runtime have been selected for optimization.
Our assumption is that the effects on code size by inlining are small
but the achieved effect (in terms of performance gains) large.
Lookup and update elimination work best on large rules so their
impact should be high if the frequently executed rules are large and
low for small rules. Figure [3] depicts the contribution of a rule’s
execution time to total program execution time (bars) and their size
in LOC (crosses) for the rijndael program. (The rule contributing
100% to total program execution time is the top-level rule, the
second bar is a dispatching rule. All further bars correspond to
basic blocks or instructions.) Note that two of the most contributing
rules each have 1000 LOC. We expect to see a high impact of
lookup and update elimination for the rijndael program. Figure
[7] on the other hand shows that the patricia program has many
small rules and the first large rule does not contribute much to
total execution time. A high impact can not be expected. Figure
shows the same diagram for the dijkstra program. Medium sized

Figure 7. Rule Contribution and Size - Patricia

rules with moderate contribution. We expect our optimizations to
have an impact for this program.

6.2.2 Results

We use 3 configurations of our compiler in this evaluation. Baseline
is without CASM specific optimizations and without optimizations
of the C compiler (-O0). The configuration titled O0 has CASM
specific, but no C compiler optimizations (-O0). O3 has CASM
and full C compiler optimizations (-O3). The benchmarks were
executed on Xeon E5504 @ 2.00GHz with 8GiB memory (on the
Infragrid cluster F). We used gcc 4.4.7 on a Red Hat Enterprise
Linux Server release 6.4 for compilation. Due to the shared nature
of the cluster we report on the best of 10 runs here. MiBench’s
small data sets have been used for all but the search benchmark.
Table 3] lists for each benchmark program the total number of
rules and the number of rules optimized as well as the total number

Shttp://hpc.uvt.ro/infrastructure/infragrid/
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rules optimizations

opt total cp lookup update
basicmath | 30 4097 1440 236 22
bf 43 1226 8060 889 451
cre 17 3501 416 56 7
dijkstra 20 5455 494 52 1
patricia 23 5864 761 150 0
gsort 21 5393 720 65 1
rawcaudio | 38 3293 656 65 1
rawdaudio | 29 3293 656 65 1
rijndael 32 3431 | 42452 4394 2864
search 28 3239 2086 274 5
sha 26 3291 2840 381 3
susan 29 5337 7570 1192 224
toast 23 7812 6803 885 53
untoast 40 7812 1840 264 17

total LOC C binary MiB

Cfiles | w/oopt fullopt | w/oopt full opt
basicmath 4104 | 531769 +1357 29 35
bf 1233 | 179890  +10369 9.1 11
cre 3508 | 419546 +679 24 29
dijkstra 5462 | 691294 +866 38 46
patricia 5871 | 694523 +622 39 48
gsort 5400 | 641228 +1328 36 44
rawcaudio 3300 | 402138 +901 23 27
rawdaudio 3300 | 402138 +946 23 27
rijndael 3438 | 524481 +49198 26 32
search 3246 | 419649 +4660 23 28
sha 3298 | 408628 +5506 23 28
susan 5344 | 727943  +10029 28 46
toast 7819 | 972261  +10903 53 64
untoast 7819 | 972261 +3401 53 64

Table 5. CASM Optimizations

w/o opt | full opt

LOC casm sec sec

basicmath 136871 8.16 18.10
bf 48693 3.67 50.06
cre 109625 3.50 4.24
dijkstra 208337 5.78 6.73
patricia 180455 5.60 7.57
gsort 165011 5.08 6.60
rawcaudio 106716 3.23 4.69
rawdaudio 106716 3.30 4.10
rijndael 149435 4.82 | 218.23
search 122043 3.18 5.62
sha 104539 3.25 8.42
susan 187091 5.46 50.19
toast 261206 7.22 45.78
untoast 261206 7.50 10.18

Table 6. CASM Compiler Statistics (compile time)

of optimizations performed. We report on the number of constant
propagations (cp), lookup eliminations and update eliminations. As
expected we see a large number of optimizations performed in the
rijndael program. Although patricia is doing well in numbers the
effects do not materialize due to the disadvantageous distribution
of block contribution to the total runtime.

In table[Blthe size of the test programs in LOC and the compila-
tion times with and without optimizations are listed.

In table [7] we summarize the output produced by the CASM
compiler. Generally we are generating a single C file for each rule
but are merging smaller rules to reduce the number of files. For ri-
jndael we see the by far largest increase in code size with moderate
10%. The increase in the size of the binary is approximately 20%.

To assure that the observed behavior is not solely due to opti-
mizations of the C compiler we report on the effects of compiling
optimized CASM programs with and without compiler optimiza-
tions. Figure [8] shows the relative impact of CASM optimizations
with and without optimizations by the C compiler. The relative per-
formance is clearly decreased but our optimizations still account
for a factor of 2 (rijndael) to at least 1% for patricia. (On a side
note: by using well-known compiled simulation techniques (e.g.
[8]) the size of the basic blocks can be enlarged from which our
compiler would profit immediately.) In figure Qlthe overall speedup
factors for the applications are shown along with absolute perfor-
mance data. The speedup is relative from the non-optimized ver-
sion to the fully optimized one. We are able to achieve factors 6

Table 7. Generated Output Statistics
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Figure 8. Impact of CASM Optimizations

and above here. For rijndael (factor 5.44) more than 50% of this
speedup is due to CASM optimizations (the rest is due to the C
compiler).

The MHz value relates the total number of simulated MIPS
instructions to the absolute runtime of the programs We are able
to achieve simulation speeds above 3 MHz which is an impressing
result. The numbers also indicate that the performance without
optimizations would be approximately 500 kHz. Search and susan
show very low performance here. This is due to the very short
execution time of these two programs (5 and 4 seconds). The
startup time of the programs is approximately 1 second (the initial
memory state of the MIPS programs (data section) is initialized by
a CASM rule producing updates) therefore a significant reduction
of simulation speed is expected.

The experimental data show a huge performance increase
achieved by the CASM compiler. A speedup of more than fac-
tor 6 can be achieved. We showed that the C code generated by the
CASM compiler can be very efficiently optimized. Our novel op-
timizations lookup elimination and update reduction can increase
program performance up to 264%. This shows that they are highly
effective.



Speedup (factor)

Figure 9. Improvements and Total Performance

7. Future Work

We are currently working on an inter-procedural analysis frame-
work to reduce the amount of inlined code. Also the scope of the
update elimination should be increased from sequential block scope
to whole rule scope. Due to the highly effective constant propaga-
tion and constant folding we also see a large potential in imple-
menting common subexpression elimination.

8. Conclusion

In this paper we introduced the Abstract State Machine based lan-
guage CASM. We described the implementation of the runtime sys-
tem and the compilation to C code. The novel PAR/SEQ Control
Flow Graph representation and PAR/SEQ Use/Def Analysis based
on it were presented. We then discuss how these data structures
can be used to eliminate expensive runtime operations of ASM
implementations. In a thorough evaluation we demonstrated that
our baseline compiler alone outperforms other available implemen-
tations (including Microsoft’s AsmL compiler) by 2-3 orders of
magnitude. Finally we demonstrate the effectiveness of our code-
generation achieving an overall speedup of up to factor 6. Our novel
optimizations lookup and update elimination contribute up to 264%
to the overall performance gain.
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