SUPERB Support for Irregular Scientific Computations

Peter Brezany!

'Department of Statistics and Computer
Science, University of Vienna
A-1210 Vienna, Austria

Abstract

Runtime support for parallelization of scientific pro-
grams is needed when some information important for
decisions in this process cannot be accurately deri-
ved at compile time. This paper describes a project
which integrates runtime parallelization with advanced
compile-time parallelization techniques of SUPERB.
Besides the description of implementation techniques,
language constructs are proposed, providing means for
the specification of irregular computations. SUPERB
is an interactive SIMD/MIMD parallelizing system for
the SUPRENUM, iPSC/860 and GENESIS-P machi-
nes. The implementation of the runtime paralleli-
zation is based on the Parti procedures developed at

ICASE NASA.

Introduction
SUPERB (SUprenum ParallelizER Bonn) ([3, 17])

is a semi-automatic parallelization tool for distri-
buted memory multiprocessors, e.g. SUPRENUM,
iPSC/860 and GENESIS-P. Tt is a source-to-source
transformation system which translates Fortran 77
programs into parallel programs written in the Fortran
dialect available on the target machine.

In SUPERB parallelization is guided by a user de-
fined data partition, specifying a set of processors, a
set of distributed arrays and their individual distri-
butions. Distribution of work results from this spe-
cification by the owner-computes-rule, i.e. a process
executes all assignments to array elements mapped to
it.

Accesses to non-local array elements are implemen-
ted via interprocess communication. In SUPERB the
overlap concept is used to describe non-local variables
accessed by a processor. The overlap area of a pro-
cess are all non-local elements in an area around the
rectangular section assigned to that process.

The overlap concept simplifies storage allocation as
well as the optimization of the communication be-

1

*The work described in this paper is being carried out as
a part of the ESPRIT project “An Automatic Parallelization
System for Genesis” funded by the Austrian Ministry for Sci-
ence and Research (BMWF) and the research project "High-
level Programming Support for Parallel Systems” funded by
the Austrian Science Foundation (FWF). The authors assume
all responsibility for the contents of the paper.

Michael Gerndt?

*

Viera Sipkova! Hans P. Zima'

?Zentralinstitut fuer Angewandte

Mathematik, Forschungszentrum Juelich (KFA)

314

D-5170 Juelich, West Germany

tween processors. SUPERB performs an interproce-
dural analysis to determine the maximum overlap area
for each distributed array in the program. This infor-
mation is used to statically allocate storage for copies
of non-local data.

The overlap concept is especially tailored to effi-
ciently handle programs with local computations ad-
hering to a regular pattern. For such programs, the
set of non-local variables of a process can be described
by a small overlap area around its local segment.

However, the overlap concept cannot adequately
handle computations with irregular accesses as they
arise in sparse or unstructured problems, for exam-
ple. Here, subscript functions often depend on data
available at runtime only. Because of the dependence
on runtime data, worst case compile-time assumpti-
ons must be made by SUPERB in most of the cases
mentioned above when determining an overlap des-
cription. This results in the allocation of memory for
any potentially non-local variable and additional over-
head for the resulting communication, part of which
may be superfluous.

To effectively exploit distributed memory systems
for irregular computations, techniques for runtime
parallelization ([6, 7, 12, 13, 14]) have been develo-
ped. Besides these implementation techniques, lan-
guages have been designed, providing means for the
specification of irregular distributions and to support
the efficient compilation of codes from sparse or un-
structured applications [2, 1, 9].

This paper describes a project which is an expe-
riment in integrating these techniques with the ad-
vanced compile-time parallelization techniques of SU-
PERB. In Section 2 related approaches are presented.
Section 3 presents an overview of the integrated paral-
lelization approach in SUPERB. Section 4 introduces
forall loops which are the target of the runtime tech-
niques presented in Sections 5 and 6.

2 Related Work

There are several other research groups working on
runtime parallelization for distributed memory multi-
processors. In our approach compile time techniques,
such as interprocedural distribution analysis, are com-
bined with runtime parallelization. We use the Parti
routines developed at ICASE NASE by Joel Saltz and
coworkers to implement runtime analysis and support
parallel execution.

On top of Parti, Joel Saltz and coworkers develo-
ped a compiler for a language called ARF (ARgua-
bly Fortran). The compiler generates automatically
calls to the Parti routines from distribution annota-
tions and distributed loops with an on clause for work
distribution [16].

The concept of processor arrays and distributing
data across such arrays was first introduced in the
programming language BLAZE [8] in the context of
non-uniform access time shared memory machines.

The Kali programming language and compiler [9]
allows the user to explicitly control data distribu-
tion, parallel execution and load balancing. The user
specifies which loops are to be executed in parallel.
Kali originated the on clause to specify work distribu-
tion for parallel loops. The compiler generates expli-
cit communication statements where enough compile
time information is available. If access patterns are
runtime dependent or array accesses, array distribu-
tion, and work distribution do not fit into the compi-
l[e tiﬁne analysis, runtime parallelization is generated
5, 4].

At the Technical University of Ziirich a compiler
called OXYGEN has been developed for the K2 dis-
tributed memory multiprocessor [11]. The input lan-
guage includes distribution annotations for data and
loop iterations. The entire analysis of communica-
tion among nodes is done at runtime. No compile
time techniques are supported.

3 Functional Overview

The various analysis and transformation techniques
developed to parallelize and vectorize programs, have
been implemented in SUPERB in an interactive envi-
ronment. The user and system can work as a team to
produce good parallel code. During the transforma-
tion process, the user is able to inspect the internal
information, supply special information to the system
and select transformations. For example, it is easy to
find inefficiencies via the inspection of the computed
overlap information, or to identify parallelization in-
hibiting factors by analysing data dependences.

Currently, MIMD parallelization in SUPERB is
performed in eight steps. The steps are illustrated
within a simple example.

Example 1:

program Example
real a(100), b(400), ¢(100), z
integer map(100), index(100)

read (*,*) b
c ... initialization of map and index ...
c ... by some user defined algorithms ...
doi= 390
c(i+2) = b(i-2) + b(i+10)
enddo

;:lo 'i - iexpl, iexp2

z = c(i42) * b(i)

a(index(i)) = b(index(i)+1) + 2
enddo

end

Step 1: Program Splitting.

Program splitting transforms the input program in-
to a host and a node program. All 1/O statements
are collected in the host program, and communication
statements for the corresponding value transfers are
inserted into both programs. In the resulting code,
the host process is loosely synchronised with the node
processes. Thus, the host process may read input va-
lues before they are actually needed in node processes.
Step 2: Marking Some Do Loops as Forall Loops.
The user has the possibility to mark interactively as
forall loops those do loops which he wants to be pro-
cessed by the runtime strategy. After the marking,
the second do loop from Example 1 is transformed to
a forall loop which has the following form:

Example 2:

forall i = iexpl, iexp2

7 = c(i4+2) * b(i)

a(index(i)) = b(index(i)+1) + z
endall

Syntax of foralls does not introduce specification of
the iteration step, because the frond-end of SUPERB
transforms all do loops to a normalized form in which
the iteration step value equals one.

The marked do loop is only transformed to a forall
loop if it fullfills semantic requirements which are spe-
cified in Section 4. The sticking to these features is
checked by services provided by SUPERB, or consul-
ting the user.

Step 3: Data Partitioning.

The user determines individual distributions for se-
lected arrays of the node program. Each distribution
characterizes the decomposition of an array into conti-
guous rectangular parts called segments and the map-
ping of these segments to the processors. SUPERB
provides flexible language means for the specificati-
on of arbitrary block sizes and regular mapping. The
simplest way is to specify only the number of parts.
Thus for the program in Example 1, the data decom-
position specification

part a(4); part b(4); part c(4)

has introduced an implicit declaration of the set
$PROCS of four (node) processors accross which the
data structures are distributed and which will execute
the program. Processors are logically arranged in a
one-dimensional array according to the implicit decla-
ration

processors $PROCS (0:3)

Step 4: Initial Adaptation.
Different kinds of processing are applied to program

parts that are enclosed by forall loops and to the rest
of the node program.

For the program parts, not enclosed by the
forall loops, the initial adaptation distributes the en-
tire work assigned to these node program parts across
the set of all node processors according to the given
array distributions, and resolves accesses to non-local
data via communication. The basic rule governing
the assignment of work to the node processors is that
a node processor is responsible for executing all the
assignments to its local data that occur in the origi-
nal sequential program (owner computes rule). The
distribution of work is internally expressed by masks:
A mask is a boolean guard that is attached to each
statement. A statement is executed iff its mask eva-
luates to true. The mask of a statement is omitted if
it is constant TRUE. After masking has been perfor-
med, the node program parts processed by this tech-
nique may contain references to non-local objects. For
all references which may access a non-local variable a
communication statement EXSR (see [3]) is inserted
which update a private copy of the variable if neces-
sary.

Various analysis techniques are applied to the
forall loops. For each forall loop, the initial adapta-
tion tries to derive the initial work distribution which
we call as automatic work distribution. The specifi-
cation of this distribution appears in the dist clause of
the header of the forall loop (see Section 4). Lists of
variables (distributed and undistributed arrays, and
scalar variables) occurring in the loop body are con-
structed for each forall loop. These lists can be viewed
by the user using information services of SUPERB. In
SUPERB, distributed arrays are classified into distri-
bution classes (see 5.1). A global list of distribution
classes encountered in the forall loops in the whole
program is also constructed in the initial adaptation
phase. The information about the work distribution
derived by the system, and the lists constructed are
stored in the internal representation.

Example 3:

program NODE

real a(100), b(400), ¢(100), =z
integer map(100), index(100)
processors $PROCS (0:3)

receive b
C ... initialization of map and index
doi=3,90
EXSR (b(i+10))
EXSR (b(i-2))
owned(c(i)) — ¢(i) = b(i-2) + b(i+10)
enddo
forall i = iexpl, iexp2 dist on owner

‘ ‘ (a(index(i)))
z = c(i4+2) * b(i)

a(index(i)) = b(index(i)+1) + 2
endall

end

316

The dist on owner clause determines the computati-
on on the processor where the specified data is stored.

Step 5: Work Distribution Specification.

The user can change the automatic work distribution
derived by the system in the initial adaptation phase
to any type of work distribution proposed in Section
4, e.g., he or she can prescribe that the iteration i of
the forall loop will be executed on the processor whose
number is stored in the integer array element map(i).

Example 4:

program NODE

real a(100), b(400), ¢(100), z
integer map(100), index(100)
processors $PROCS (0:3)

c ... initialization of map and index

forall | = iexpl, iexp2 dist on processor
$PROCS(map(i))
z = c(i42) * b(i)

a(index(i)) = b(index(i)+1) + z
endall

end

Specifying suitable work distribution, the user can mi-
nimize load imbalance for the forall loop.

Step 6: Private Variable Specification.

SUPERB forall loops can contain variable declarati-
ons, which declare scalar variables local to the loop
body, with a separate copy of the variable for each
loop iterations. The user can mark some scalar va-
riables appearing in the forall body to be local. If,
e.g., the variable z has been marked, the forall loop is
transformed to the new form.

Example 5:

program NODE

real a(100), b(400), ¢(100), z
integer map(100), index(100)
processors $PROCS (0:3)

C .. initialization of map and index
forall i = iexpl, iexp2 dist on processor
$PROCS(map(i))
real z

7 = c(i4+2) * b(i)

a(index(i)) = b(index(i)+1) + z
endall

end

Step 7: Optimization of parts not enclosed by the
forall loops.

The code resulting from the initial adaptation is
usually not efficient, since the updating is performed
via single-element messages and work distribution is
enforced at statement level. In the optimisation phase,
special transformations are applied to generate more
efficient code. First, communication is extracted from
surrounding do-loops resulting in the fusion of messa-
ges and secondly, loop iterations which do not perform
any computation for local variables are suppressed in
the node processes. Furthermore, SUPERB determi-
nes standard reductions, such as sum, product, ma-
ximum and minimum values of vector elements and
dotproduct of two vectors, and treats them in an effi-
cient way.

Step 8: Code Generation.

In SUPERB, the program that is being parallelized
and all information collected at compile-time are gi-
ven in an internal representation. In the last step,
the back-end adapts the internal representation to the
target Fortran language. Then the reconstructor pro-
duces files with the FORTRAN code of the host and
node programs which can be passed to the sequential
FORTRAN compilers which generate object codes for
the host and node processors.

If a forall loop appears in the program unit proces-
sed, the back-end generates new data structures and
statements for the runtime processing of this loop. All
new constructs are generated on the syntax tree level
using lists which describe the utilization of variables
occurring in the program statements. These lists are
available for every statement and are constructed in
the previous parallelization steps.

A runtime processing strategy based on the
inspector-executor paradigm is used. Each forall loop
is evaluated in two phases. The inspector phase gene-
rates a description of the communication necessary for
the loop. The executor uses this information to per-
form the communication and the execution of the loop
body. Much of the complexity of our implementation
is in the Parti procedures.

The most important part of code generated for the
forall loop from Example 3 can be seen in Example 6.
It will be discussed in Sections 5 and 6.

Example 6:
program NODE

parameter (ICYCL=1, IBLCYC=2,
IBLOCK=3, IOWNER=4, TADRES=5)

parameter (K1=2, K0=0, ISDCL=1,
NODCL=0)

real a(25*K14+K0), b(329*K1+K0),
c(25*K14K2), z

integer a_left(150), b_right(300), c_right(150),
sb(2,8), ob(2,6)
integer map(100), index(100)

o]

integer execp(150), eact, tratab(2),
iters(400), maxdc, block

integer a_left_count, b_right_count,
c_right_count

integer a_left_sched, b_right_sched,
c_right_sched

common /runt/ iters, itnumb, execp, eact,
tratab, maxdc
common /syst/ sb, ob

data a_left_count, b_right_count,
c_right_count/0,0,0/
data maxdc, tratab/2,ISDCL,ISDCL/

a, b and c are only distributed

Inspector - generation of translation tables
call tabgen
.. initialization of map and index

Inspector - work distribution
(initialization of execp and eact)

itnumb = iexp2 - iexpl + 1
ihelp = iexpl - 1
doi = 1, itnumb

iters(i) = index(ihelp + i)
enddo
call local iters(TOWNER, iexpl)

Inspector - precomputing globally indexed
references for all distributed arrays
occurring in the loop

do j = 1, eact
i = execp(j)
a_left_count = a_left_count 4 1
a_left(a_left_count) = index(i)
b_right_count = b_right_count + 1
b_right(b_right_count) =i
b_right_count = b_right_count + 1
b_right(b_right_count) = index(i) + 1
c_right_count = c_right_count + 1
c_right(c_right_count) = i + 2
enddo

Inspector - generation of schedules for c, b, and a

Generation of a schedule for the array c
call flocalize (tratab(1), c_right_sched, c_right,
c_right_loc, c_right_count, n_off_proc,
sb(1,2)-sb(1,1)+1)
call checkbuff(n_off_proc, 1, ’small buffer for ¢’)

Generation of a schedule for the array b

call flocalize (tratab(2), b_right_sched, b_right,
b_right_loc, b_right_count, n_off_proc,
sb(2,2)-sb(2,1)+1)

call checkbuff(n_off_proc, 2, ’small buffer for b’)

c Generation of a schedule for the array a
call flocalize (tratab(1), a_left_sched, a_left,
a_left_loc, a_left_count, n_off_proc,
sb(1,2)-sb(1,1)+1)
call checkbuff(n_off_proc, 1, ’small buffer for a’)

¢ end of inspector
¢ Executor

call ffgather (c_right_sched, c¢(sb(1,2)-ob(1,1)+2),
c(sb(1,1)-0b(1,1)+1))

call ffgather (b_right_sched, b(sb(2,2)-0b(2,1)+2),
b(sb(2,1)-0b(2,1)+1))

a_left_count = 1
b_right_count = 1
cright_count = 1

do j = 1, eact
7 = c(c_right_loc(c_right_count)) *
b(b_right_loc(b_right_count))

‘a(a‘u_left_loc(a_left_count)) =

b(b_right_loc(b_right_count+1)) + z

a_left_count = a_left_count + 1

b_right_count = b_right_count + 2

c_right_count = c_right_count + 1
enddo

call ffscatter (a_left_sched, a(sb(1,2)-ob(1,1)+2),
a(sb(1,1)-ob(1,1)+1))

¢ end of executor
end

4 SUPERB Forall Loops

To be able to handle runtime dependent access pat-
terns efficiently in SUPERB, we included forall loops
in the source code which is subject to the distributed
memory compilation techniques. The forall loops have
been designed such that they resemble closely sequen-
tial loops but provide the user with a wide spectrum
of possibilities for specification of work distribution.

The semantics of the forall loops is the standard
semantics of parallel loops. The iterations of the loop
have to be independent and thus can be executed in
an arbitrary order.

Forall loops have the following structure:

forall i=lb,ub [<work distribution>]
<declaration of local variables>

endall

318

Work distribution annotations determine the sche-
duling strategy of the loop. If no annotation is spe-
cified, SUPERB is free to select any pre-scheduling
strategy. Self-scheduling is not supported. The work
distribution annotation may be one of the following:

1. Cyclic work distribution
forall i = low, high dist by cyclic

The iteration set is distributed in a round robin
fashion across the processors.

. Block-Cyclic work distribution
forall i = low, high dist by cyclic (iexp)

The set of blocks of iterations is distributed in a
round robin fashion across the processors. The
block length is determined by the value of the
integer expression iezxp.

. Block work distribution
forall i = low, high dist by block

A contiguous block of iterations is assigned to
each processor.

Work distribution according to the owner of an
array element

forall i = low, high dist on owner (A(f(i)))

Iteration i of the loop will be executed on the
processor which ownes the array element denoted
by A(f(i)), where f(i) is a function of the loop
variable 1 and must not depend on the value of any
variable changed in the loop body. Furthermore,
array A has to be distributed.

. Addressed work distribution

forall i = low, high dist
on processor $PROCS (P(i))

The iteration i of the loop will be executed on the
processor whose number is stored in the integer
array element P(i). Elements of P are initialized
by a user defined algorithm. It is supposed that
in the environment of this loop a processor array
declaration of the form
processors $PROCS(0:(n$proc-1))

exists, where n$proc indicates the number of pro-
cessors available.

The first three iteration distribution mechanisms
are refered to as uniform ([10]) because they spread
the iterations uniformly across the avaiable processors
without regard to data locality. However, it is a low
overhead form of work distribution.

Inside a forall loop private scalar variables can be
declared. Each iteration has an own copy of a private
variable.

Forall loops do have the following restrictions:

1. No host/node communication is allowed in forall
loops.

These communication statements result from I/0
statements in the original program. Execution

of such communication statements is mapped to
the node processes according to the ownership of
communicated variables. This scheduling may be
very different from the scheduling given by the
work distribution annotation.

2. Procedure calls are excluded from forall loops.

Work distribution is determined for forall loops
on the level of individual iterations whereas work
distribution inside of subroutines may result from
the owner computes rule. Furthermore, all com-
munication in the subroutine would have to be
executed before the forall loop.

In the current approach forall loops are generated
from sequential loops by SUPERB. The user marks a
loop to be transformed to a parallel loop and SUPERB
tests whether this transformation is valid.

SUPERB determines private scalar variables of the
loop iterations. Variables are declared as private va-
riables if the following conditions are satisfied:

e The variable is defined in each iteration prior to
any read access.

e No value computed inside the loop is used outside.

In general, sequential loops can be transformed to
parallel loops iff they do not carry any dependence
resulting from accesses to non-private data. In SU-
PERB we allow additionally carried anti dependences
since our implementation ensures that these are satis-
fied in the parallelized code.

If SUPERB determines parallelization inhibiting
dependences these may result from inaccurate infor-
mation, e.g. this is a typical situation for runtime
dependent accesses. Therefore, SUPERB does not in
general prohibit the transformation in such cases, but
prompts the user to make a decision whether the as-
sumed dependences really exist at runtime.

Work distribution for forall loop is derived auto-
matically by SUPERB in the initial adaptation step.
SUPERRB tries to determine a work distribution which
is dependent on the distributions of arrays in the loop
body, i.e. an "on owner” work distribution. It looks
for the first occurrence of a distributed array on the
left hand side of an assignment statement in the forall
which fulfills the following restrictions:

1. The assignment is not guarded by a logical if.

Otherwise, the array reference may not be a va-
lid reference in all iterations and thus cannot be
used in the on clause for the specification of the
mapping of all iterations.

2. The array subscript expressions do not contain
any variable defined in the forall.

This restricition simplifies our implementation
since work distribution can be evaluated at runti-
me without having to execute loop iterations be-
fore.

If such an array reference is found, it is used in
the dist clause, otherwise, cyclic work distribution is
applied. The user can change the work distribution
provided by the system to any type mentioned above.

319

5 Inspector Generation

5.1 Construction of Translation Tables

In SUPERB, each distributed array is a member
of a corresponding distribution class. Two distributed
arrays are members of the same class if they have iden-
tical declarations and distributions.

Each element of a distributed array is assigned to
a particular processor. In order for a processor to ac-
cess a given non-local element of the array, it must
know the processor in which it is stored, and its local
logical address in this processor’s memory. Therefo-
re, a translation table is constructed for each distri-
bution class whose members appear in a forall loop.
The information about distribution classes of arrays
occurring in the forall loops is collected in the initial
adaptation phase.

The Parti procedure ifbuild_translation_table allows
to construct a translation table for each distribution
class. This translation table is distributed in a ve-
ry regular manner. In our implementation, we use
BLOCK type distribution. Each processor passes if-
build_translation_table a list of the global indices which
are assigned to it according to the given distribution
class. At runtime this information is available on each
processor in a special data structure. In Example 6,
this data structure is denoted by the identifier sb, and
is allocated in the common area syst. The extent of its
first dimension equals two because there are used two
distribution classes in our program; the distribution
class number 1 for arrays a and ¢, and the distribution
class number 2 for the array b. A given processor can
obtain information about a specific distributed array
or communicate elements of this array using other Par-
t1 primitives that consult the translation table of the
corresponding distribution class. Pointers to trans-
lation tables returned by ifbuild_translation_table are
stored in a one-dimensional integer array tratab (allo-
cated in the common area runt) whose extent, denoted
by mazde, is determined by the maximum distribution
class number that is used in the forall loops.

Currently, all translation tables required are gene-
rated in the subroutine tabgen by a sequence of if-
build_translation_table calls at the start of the main
program unit. This could cause storage problems in
some situations. Therefore, the future optimization of
our implementation will focus on the translation ta-
ble generation and deletion at the forall loop level.
Then, only translation tables that correspond to live
forall distribution classes which may be calculated in
a manner similar to live variables will exist.

SUPERB only supports regular static distributions.
Therefore, construction and consulting the translation
table might be more efficient by providing special Parti
procedures for this kind of data distribution.

5.2 Construction of Local Iteration Sets
In this step each processor p computes a set

exec(p) = {i €<low, high>| i is executed by p}*
of its own iterations. Computation of this iteration set
is determined by the work distribution specification in

How and high denote the bounds of the forall

the dist clause of the forall loop that is being proces-
sed (see Section 4). The uniform and addressed work
distribution specification enable to conctruct ezec(p)
very efficiently, without communication. For this con-
struction, we have implemented functions defined in
[18] for the construction of sets of distributed array
elements stored on a given processor.

”On owner” work distribution type can often pro-
vide a higher degree of locality (references in the ite-
rations are close together) than the uniform type, and
is on a higher abstraction level than the addressed
type, however, its most general forms (e.g., when in-
dices of the array introduced in the "on owner’ clause
are functions of distributed arrays) may cause a high
overhead due to extensive communications required
to construct local iteration sets. For ”on owner” type
work distribution, our implementation is partly based
on techniques proposed in [4].

In our example, the subroutine local_itersis used for
the computation of the local iteration set which is im-
plemented by the array execp and variable eact. The
value of eact denotes the extent of this set. The first
parameter of local_iters determines the work distribu-
tion type used. If the "on owner” work distribution
is used, as it is in our case, values of the subscript
function of the array in the ”on owner” clause, are
precomputed and stored in the array iters before the
call of local_iters. These values are precomputed for
the whole set of forall loop iterations. One clear re-
search goal is the parallelization of this preprocessing
itself. The subroutine local_iters is also generated by

the back-end.

5.3 Generation of Schedules for Offpro-
cessor Accesses

Parti subroutines that are called in the executor
phase move data between processors. The work of
each subroutine is controlled by a data structure cal-
led schedule whose contents specifies the locations in
distributed memory from which data is to be acqui-
red. On each processor, schedules are generated by
the Parti procedure flocalize. In our example, to ge-
nerate a schedule for a distributed array a, flocalize is
passed:

1. tratab(1) - a pointer to the translation table that
has been constructed for the distribution class of
a.

2. a_left - a set of globally indexed references to a.
All globally indexed references to a, which might
be made by local iterations stored in the array
execp are precomputed and resulting values are
stored in the temporary array a_left.

3. a_left_count - number of global references.

4. sb(1,2)-sb(1,1)+1) - the size of the local data seg-
ment of a according to the distribution of a. Com-
putation of this parameter value is determined by
the distribution class of a and partitioning infor-
mation stored in the array sb.

To build the globally indexed reference sets, the forall
body is partially interpreted. Results of the dataflow

320

analysis are used to reduce the overhead needed for
this interpretation. If the same distributed array ap-
pears on the left and right hand sides of assignment
statements and the reference patterns used are diffe-
rent, two reference sets are constructed for this ar-
ray. The set that corresponds to the left hand side
references will be used for the preparation of commu-
nication for Parti primitives of an fscatter type, and
the other for Parti primitives of an fgather type (see
below).

Besides a pointer to the schedule (a_left_schedule
for the array a), the subroutine flocalize also returns
the number of off processor data elements denoted
by the variable n_off_processor, and a list of integers,
a_left_loc, which stores the local reference string corre-
sponding to the set of global references, a_left, passed
to this subroutine. The list a_left_loc is used in the
executor code.

The number of off processor elements returned by
flocalize is used by the subroutine checkbuff to check
whether a buffer allocated for these elements is large
enough. When not, the message passed as the parame-
ter to checkbuffis printed and an error state is indica-
ted. The second parameter represents the distribution
class of the array whose off processor elements will be
stored in the buffer.

6 Executor Generation

The purpose of the executor is to perform the com-
munications specified by schedules generated by floca-
lize and perform the actual computation prescribed by
the forall body, however, for only the local iteration
set. The semantics of the forall guarantees that the
communication may be required only before the loop
to acquire non-local array elements (this is supported
by the Parti exchangers of a gather type), and after
the loop to update or combine non-local data elements
(this is supported by the Parti exchangers of a scatter
type).

O)n each processor, array segments are declared as
described by the following structure
(left overlap area; local data; right overlap area)

At runtime parameters of the segment structure can
be obtained from data structures sb and ob on each
processor.

This SUPERB conception has to be preserved, be-
cause a distributed array can appear in loops paralle-
lized at compile time and runtime as well. However,
the right ovelap areas of segments of all distributed
arrays that appear in the foralls are extended, to al-
locate the necessary space for off processor data ele-
ments. These areas are used by Parti exchangers as
buffers for off processor data elements. Therefore the
segment size, denoted by segmentsize, whose value has
been derived by the SUPERB compile time strategy,
is extended to the size K1 * segmentsize + K0 for
the needs of the executor. K1 and K0 are parameter
constants that can be modified by the user, however,
their initial values are chosen by the system. Before a
call of an exchanger, the subroutine checkbuff is called
to check whether the buffer size is large enough.

Each processor passes to an exchanger the starting
address of the local data subsegment (the third pa-

rameter), the buffer address which is the starting ad-
dress of the extended right overlap area subsegment
(the second parameter), and the pointer to the sche-
duler (the first parameter). Gather type subroutines
place copies of data value obtained from local data
subsegments of other processors in the buffer. Befo-
re a call of a scatter exchanger, copies of data values
to be scattered to other processors are placed in the
buffer. Local and buffer data are referenced using the
local reference strings produced by flocalize.

7 Conclusions

The implementation of the SUPERB extension de-
scribed above has been completed. In this implemen-
tation we use the Parti version described in [15].

SUPERB performs an extensive interprocedural
distribution analysis to determine which formal arrays
are distributed and which distributions may occur at
runtime. Due to this analysis, distributed formal ar-
rays can be accessed in the forall loops.

After the first performance measurements of the
runtime processing implemented had been done, we
replaced some Parti procedure calls with calls to other
specialized routines, because the SUPERB regular da-
ta decomposition strategy creates special conditions
for the treatment of irregular computations by the
compiler.

There is still much work to be done. Our future
research focuses on the optimization of the transla-
tion table generation (time versus space), reduction
of the number of schedule generations, optimization
of precomputation of globally indexed references, and
inclusion of parallel input/output statements into the
forall loops.

Acknowledgement

The authors would like to thank Joel Saltz for his
helpful discussions about the Parti procedures and for
providing their research group with the Parti library.

References
[1] B.Chapman, P.Mehrotra, H.P.Zima. Vienna
FORTRAN - A Fortran Language Extension for
Distributed Memory Multiprocessors. Technical
Report, ICASE, NASA Langley Research Center,
1991.

[2] G.Fox, S.Hiranadani, K.Kennedy, C.Koelbel,
U.Kremer, C.Tseng, M.Wu. Fortran D Language
Specification. Rice University, Technical Report
COMP TR90-141, December 1990.

H.M. Gerndt. Automatic Parallelization for
Distributed-Memory Multiprocessing Systems.
Ph.D. Dissertation, University of Bonn, 1989.

C. Koelbel. Compiling Programs for Nonshared
Memory Machines. Ph.D. Dissertation, Purdue
University, West Lafayette, IN, November 1990.

C. Koelbel. Compile time Generation of Regular
communications Patterns. Proceedings Supercom-
puting 91, Albuquerque, 101-110.

321

[6] C. Koelbel and P. Mehrotra. Compiling global
name-space parallel loops for distributed execu-
tion. IEEFE Transactions on Parallel and Distri-
buted Sytems, October 1991.

C. Koelbel, P. Mehrotra, and J. Van Rosen-
dale. Supporting shared data structures on distri-
buted memory architectures. In 2nd ACM SIG-
PLAN Symposium on Principles Practice of Par-
allel Programming, pages 177-186, March 1990.

P. Mehrotra, J. Van Rosendale. The BLAZE lan-
guage: A parallel language for scientific program-

ming. Parallel Computing, Vol. 5, 339-361, 1987.

P. Mehrotra, J. Van Rosendale. Programming
Distributed Memory Architectures Using Kali.
ICASE, Nasa Langley Reserach Center 1990.

D.M. Pase. MPP Fortran Programming Model,
Draft 1.0. Technical Report, Cray Research, Oc-
tober 1991.

R. Ruehl, M. Annaratone. Parallelization of
Fortran Code on Distributed-Memory Parallel
Processors. Proceedings of the 4th Internatio-
nal Conference on Supercomputing 1990, Amster-

dam, 342-353.

J. Saltz, H. Berryman, and J. Wu. Runtime com-
pilation for multiprocessors. Report 90-59, ICA-
SE, 1990.

J. Saltz, K. Crowley, R. Mirchandaney, and
H. Berryman. Run-time scheduling and executi-
on of loops on message passing machines. Journal
of Parallel and Distributed Computing, 8(2):303-
312, 1990.

J. Saltz, R. Das, R. Ponnusamy, D. Mavriplis, H.
Berryman and J. Wu. Parti Procedures for Reali-
stic Loops. Proceedings of DMCC6, Portland OR,
1991.

R. Das, J. Saltz, H. Berryman. A manual for Parti
runtime primitives - revision 1. Interim Report

91-17, ICASE, 1991.

J. Wu, Joel Saltz, Harry Berryman, Seema Hira-
nandani. Distributed Memory Compiler Design
For Sparse Problems. ICASE Report No. 91-13,
January 1991.

H. Zima, H.-J. Bast, and H.M. Gerndt. SUPERB
- a tool for semi-automatic MIMD/SIMD paral-
lelization. Parallel Computing, 6, 1-18, 1988.

H. Zima, P. Brezany, B. Chapman, P. Mehrotra,
and A. Schwald. Vienna Fortran — a language
specification. In preparation, Austrian Center

for Parallel Computation, University of Vienna,
Vienna, Austria, 1992.

