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Motivation

Code size is often a critical constraint in 
cost-sensitive embedded systems.
• Due to a limited amount of available memory

Dual instruction set processors provide an 
effective mechanism to trade performance 
off for a small code size.
• Ex. Thumb programs are typically 30% smaller 

and run 25% slower than their ARM 
counterparts.
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Dual Instruction Set Processors

Full instruction set
• Normal instructions, all operations available
• Relatively rich addressing modes
• Full set of general purpose registers available

Reduced instruction set
• Typically a subset of the full instruction set
• Shorter instructions (usually half – 16 bits)
• Limited operations and addressing modes
• Only a subset of GP registers made visible

Examples
• ARM/Thumb, MIPS 32/16-TinyRISC, ARC Tangent, …
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Comparison of the two ISA

Full instruction set
• Larger code size, faster execution
• Used for time-critical functions

Real-time data processing
Interrupt/exception handlers

Reduced instruction set
• Smaller code size, slower execution
• Used for non-time-critical functions

User interface functions
Bookkeeping code
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Coarse-Grained Approach

Current tool support from ADS (ARM 
Developer Suite)
• Instruction set mode specified at the module 

(file) level
Provided as a command-line switch to the compiler

• Linker support to handle the dynamic mode 
transitions

• Called ARM/Thumb interworking
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Fine-Grained Approach

Observation
• Function-level or module-

level approaches are too 
coarse-grained for enabling a 
flexible tradeoff between 
code size and execution time.

More fine-grained approach 
is required.
• Mode switches must be 

explicitly handled by code 
generation.
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Our Objective

Given a program, generate code that
• maximizes performance

in terms of execution time
• while satisfying code size requirement

given as an upper bound on the instruction space
• by selectively using the two different instruction 

sets for different program parts in a single 
program (even inside a single function)

taking the mode switching overhead into account
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Intuitive Solution

Which instruction set should be used for 
which part of a given program?
• Use the full instruction set for

time-critical portion of the code (frequently 
executed)
thereby maximizing the performance

• Use the reduced instruction set for
all the other parts (infrequently executed)
thereby minimizing the code size
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Selective Code Transformation
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Program Notations

A program is given by P = <V, E>, where
• V = {vi | i = 1, 2, …, n}
• E = {eij = <vi, vj> | there exists a control flow vi → vj}

Code size and execution time variables for each 
basic block v

tF(v)tR(v)Execution time

sF(v)sR(v)Code size

FullReducedInstruction set
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Formal Problem Description
Find an assignment of instruction set for each 
basic block that maximizes performance while 
satisfying code size constraint.

Such an assignment partitions the set of blocks 
into two disjoint subsets.
• F = {v | f(v) = α }
• R = {v | f(v) = β }
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Code Size and Execution Time
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Mode Switching Overhead
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Optimization Problem

Given a program P = <V, E>, find an assignment
f : V → {α, β} such that it maximizes
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Approximation Method

Path-based approach to selective code 
transformation
• Based on intraprocedural acyclic subpaths

Acyclic subpaths capture the set of basic blocks that are 
executed together.

• Enumerate the acyclic subpaths and associate with 
each of them

Cost (increase of code size)
Benefit (reduction in execution time)

• A greedy heuristic incrementally selects one path at a 
time, whose blocks are to be transformed.
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Path-Based Cost-Benefit Model
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Selection Algorithm:
Greedy Heuristic

B ← Us – SR
R ← V
F ←∅
P ← {intraprocedural acyclic subpaths}

do {
for each p ∈ P calculate r (p) = b (p) / c (p)
select p ∈ P with maximum r (p) with c (p) ≤ B
B ← B – c (p)
F ← F ∪ V (p)
R ← R – V (p)
P ← P – { p | V (p) ∩ R = ∅ }

} while (B ≥ minp∈P{ c (p) } ∧ minp∈P{ c (p) } ≥ 0 ∧ R ≠ ∅)
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Implementation

Based on vpo (very portable optimizer), 
targeted for ARM/Thumb architecture
• RTL representation of programs
• Instruction selection mechanism based on 

peephole optimization
One or more Thumb RTL statement can be 
combined to form a single ARM RTL statement.

• Automatic insertion of mode switching 
instructions

Based on control-flow analysis
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Experiments

Test programs are taken from
• MiBench
• MediaBench

Six different versions of code are generated for 
each of the test programs.
• With different code size limits

Each test program is run on an evaluation board 
for execution time measurement.
• XScale core-based PXA250 processor
• Execution times are measured by using the 
gettimeofday () system call.
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Results
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Conclusions

Code generation framework that can exploit 
dual instruction sets
• Path-based cost-benefit model
• Heuristic selection of instruction set mode for 

each basic block
• Automatic handling of dynamic mode switches
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Future Work

Efficient post-pass register allocation 
algorithm
• Exploit all the available registers in the 

transformed code sections
• Need to precisely analyze the impact of 

allocating each program variable to a register
• Further enhance the performance of the 

resulting mixed instruction set mode program


