
Code Generation for a
Dual Instruction Set Processor Based on

Selective Code Transformation

Sheayun Lee, Jaejin Lee, Sang Lyul Min,
Jason Hiser, and Jack W. Davidson
Seoul National University & University of Virginia

Sep. 24, 2003
SCOPES 2003, Wien, Austria

Sheayun Lee - SCOPES 2003 1

Motivation

Code size is often a critical constraint in
cost-sensitive embedded systems.
• Due to a limited amount of available memory

Dual instruction set processors provide an
effective mechanism to trade performance
off for a small code size.
• Ex. Thumb programs are typically 30% smaller

and run 25% slower than their ARM
counterparts.

Sheayun Lee - SCOPES 2003 2

Dual Instruction Set Processors

Full instruction set
• Normal instructions, all operations available
• Relatively rich addressing modes
• Full set of general purpose registers available

Reduced instruction set
• Typically a subset of the full instruction set
• Shorter instructions (usually half – 16 bits)
• Limited operations and addressing modes
• Only a subset of GP registers made visible

Examples
• ARM/Thumb, MIPS 32/16-TinyRISC, ARC Tangent, …

Sheayun Lee - SCOPES 2003 3

Comparison of the two ISA

Full instruction set
• Larger code size, faster execution
• Used for time-critical functions

Real-time data processing
Interrupt/exception handlers

Reduced instruction set
• Smaller code size, slower execution
• Used for non-time-critical functions

User interface functions
Bookkeeping code

Sheayun Lee - SCOPES 2003 4

Coarse-Grained Approach

Current tool support from ADS (ARM
Developer Suite)
• Instruction set mode specified at the module

(file) level
Provided as a command-line switch to the compiler

• Linker support to handle the dynamic mode
transitions

• Called ARM/Thumb interworking

Sheayun Lee - SCOPES 2003 5

Fine-Grained Approach

Observation
• Function-level or module-

level approaches are too
coarse-grained for enabling a
flexible tradeoff between
code size and execution time.

More fine-grained approach
is required.
• Mode switches must be

explicitly handled by code
generation.

A

B

C D

E

F

B

D

E

Sheayun Lee - SCOPES 2003 6

Our Objective

Given a program, generate code that
• maximizes performance

in terms of execution time
• while satisfying code size requirement

given as an upper bound on the instruction space
• by selectively using the two different instruction

sets for different program parts in a single
program (even inside a single function)

taking the mode switching overhead into account

Sheayun Lee - SCOPES 2003 7

Intuitive Solution

Which instruction set should be used for
which part of a given program?
• Use the full instruction set for

time-critical portion of the code (frequently
executed)
thereby maximizing the performance

• Use the reduced instruction set for
all the other parts (infrequently executed)
thereby minimizing the code size

Sheayun Lee - SCOPES 2003 8

Selective Code Transformation

Source
program
Source

program
Reduced ISA

program
Reduced ISA

program
Frequency
information

Decision on
which blocks
to translate

into ARM mode

Code size diff
Exec time diff

Full ISA
program
Full ISA
program

Transformer:
selective

transformation

Mixed
mode

program

Mixed
mode

program

Constraint on
total code size

Compile
in reduced ISA

Profile

Try translating
every block
into full ISA

Heuristic
selection of

blocks to
translate

Sheayun Lee - SCOPES 2003 9

Program Notations

A program is given by P = <V, E>, where
• V = {vi | i = 1, 2, …, n}
• E = {eij = <vi, vj> | there exists a control flow vi → vj}

Code size and execution time variables for each
basic block v

tF(v)tR(v)Execution time

sF(v)sR(v)Code size

FullReducedInstruction set

Sheayun Lee - SCOPES 2003 10

Formal Problem Description
Find an assignment of instruction set for each
basic block that maximizes performance while
satisfying code size constraint.

Such an assignment partitions the set of blocks
into two disjoint subsets.
• F = {v | f(v) = α }
• R = {v | f(v) = β }

{ }

=

→

nsinstructio reduced into compiled be tois if
nsinstructio full into compiled be tois if

)(

,:

i

i
i v

v
vf

Vf

β
α
βα

Sheayun Lee - SCOPES 2003 11

Code Size and Execution Time

*

*

))()(()(

)()(

tvtvtvc

svsvsS

Fv
FRVt

Rv
R

Fv
F

−−×=∆

++=

∑

∑∑

∈

∈∈

Total code size

Execution time savings

Code size overhead
due to mode switches

Execution time overhead
due to mode switchesExecution frequency

of block v

Sheayun Lee - SCOPES 2003 12

Mode Switching Overhead

{ })()(|* FvRvRvFvEeE jijiij ∈∧∈∨∈∧∈∈=

Set of edges along which
mode switches should occur

∑
∈

×=

×=

*

)(*

**

Ee
Et

s

ecot

EosTotal code size overhead

Total execution time overhead

Execution frequency
of edge e

Sheayun Lee - SCOPES 2003 13

Optimization Problem

Given a program P = <V, E>, find an assignment
f : V → {α, β} such that it maximizes

∑∑
∈∈

×−−×=∆
*

)())()(()(
Ee

Et
Fv

FRVt ecovtvtvc

while satisfying

ss
Rv

R
Fv

F UEovsvsS ≤×++= ∑∑
∈∈

*)()(

Upper bound on the
maximum code size

for the whole program

Sheayun Lee - SCOPES 2003 14

Approximation Method

Path-based approach to selective code
transformation
• Based on intraprocedural acyclic subpaths

Acyclic subpaths capture the set of basic blocks that are
executed together.

• Enumerate the acyclic subpaths and associate with
each of them

Cost (increase of code size)
Benefit (reduction in execution time)

• A greedy heuristic incrementally selects one path at a
time, whose blocks are to be transformed.

Sheayun Lee - SCOPES 2003 15

Path-Based Cost-Benefit Model

−×−−×= ∑∑∑

∈∈∩∈)()()(
)()()))()(()(()(

pEe
E

pEe
Et

RpVv
FRV

mM

ececovtvtvcpb

Benefit from transforming
blocks on path p

Set of blocks on path p
that are currently in the

reduced instruction set mode

())()())()(()(
)(

pEpEovsvspc mM
s

RpVv
RF −×+−= ∑

∩∈

Cost of transforming
blocks on path p

Set of edges where
mode switch instructions

are newly introduced

Set of edges where
previously existing

mode switch instructions
are removed

Sheayun Lee - SCOPES 2003 16

Selection Algorithm:
Greedy Heuristic

B ← Us – SR
R ← V
F ←∅
P ← {intraprocedural acyclic subpaths}

do {
for each p ∈ P calculate r (p) = b (p) / c (p)
select p ∈ P with maximum r (p) with c (p) ≤ B
B ← B – c (p)
F ← F ∪ V (p)
R ← R – V (p)
P ← P – { p | V (p) ∩ R = ∅ }

} while (B ≥ minp∈P{ c (p) } ∧ minp∈P{ c (p) } ≥ 0 ∧ R ≠ ∅)

Sheayun Lee - SCOPES 2003 17

Implementation

Based on vpo (very portable optimizer),
targeted for ARM/Thumb architecture
• RTL representation of programs
• Instruction selection mechanism based on

peephole optimization
One or more Thumb RTL statement can be
combined to form a single ARM RTL statement.

• Automatic insertion of mode switching
instructions

Based on control-flow analysis

Sheayun Lee - SCOPES 2003 18

Experiments

Test programs are taken from
• MiBench
• MediaBench

Six different versions of code are generated for
each of the test programs.
• With different code size limits

Each test program is run on an evaluation board
for execution time measurement.
• XScale core-based PXA250 processor
• Execution times are measured by using the
gettimeofday () system call.

Sheayun Lee - SCOPES 2003 19

Results

G.721.encode

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

code size execution time

T

20%

40%

60%

80%

A'

A

sha

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

code size execution time

T

20%

40%

60%

80%

A'

A

Sheayun Lee - SCOPES 2003 20

Conclusions

Code generation framework that can exploit
dual instruction sets
• Path-based cost-benefit model
• Heuristic selection of instruction set mode for

each basic block
• Automatic handling of dynamic mode switches

Sheayun Lee - SCOPES 2003 21

Future Work

Efficient post-pass register allocation
algorithm
• Exploit all the available registers in the

transformed code sections
• Need to precisely analyze the impact of

allocating each program variable to a register
• Further enhance the performance of the

resulting mixed instruction set mode program

