Fine-Grain Register Allocation Based on a
Global Spill Costs Analysis

2003. 9. 25 (Thr.)
Seoul National University

Dae-Hwan Kim dhkim@capp.snu.ac.kr
Hyuk-Jae Lee hjlee@ee.snu.ac.kr

| It

Outli ne

q Graph coloring register alocation

q Motivation example
q Proposed register alocation agorithm
q Allocation benefit model

q Experimenta results
q Conclusions

Overview of Register Allocation

q Determines whether alive range (variable/temporary) isto be
stored in aregister or in memory

q God:
Storeliveranges as many as possiblein registers
Minimize the number of memory accesses (load/store instructions)

q Animportant compiler technique

Thereduction of load/store instructions leads to the decrease of execution

time, code size and power consumption.

q Dominant alocation paradigm (Chaitin, Brigss, ...)
q Modelsregister alocation problem as a graph coloring problem
of an interference graph
q Interference graph: an undirected graph, where
A node: aliverange
there is an edge between two nodes if corresponding live ranges interfere.
Interfering live ranges can not share the same register

q The contribution of graph coloring approach: the simplicity by
abstracting each live range as asingle node of an interference

graph

Graph-Coloring Limitations

q What is not represented in the conventional graph coloring
approach ?
does not specify where and how much liverangesinterfere

A =fool(); A 5

foo5(C + 2);

foo6(B + 3);

foo7(A + 4); 1 D
D=A-B;

Motivation Example

—_—

q Suppose the number of registersis two.

q Graph coloring spills‘C’ with 3 memory accesses

q Different spill cost at each referencein the flow analysis
q Spill A after (3) and before (8): 2 memory accesses

A =fool(); (1)
B=A+1; 2
foo2(A # B): (3) store A
C =fo03(); (4)
f004(C + 1); 5)

(
f005(C + 2); (

foo6(B + 3); 27) load A
(

foo7(A +4);
D=A-B;

Overview of Proposed Algorithm

q Decides whether to allocate a register or not for every reference
of avariable

q When thereis no free register, it determines allocation based on
the allocation benefit in the reference flow

q Two stages
Variable alocation: variables are allocated with the number of machine
registers
Scratch all ocation: temporaries and unallocated variables are allocated

| Variable Reference Flow Graph

q The proposed agpproach constructs a varef-graph (variable
reference flow graph)

q Node avariable reference
q Edge: control flow of the program (i.e, execution order of the
variable references of the program)

q The varef-graph models the execution order of the references in
the program.

Varef-Gaph Example

@ A=1L °
@ it éz

3) B=1;
else A3/ 4
@ B=2 (&)
~. /

(5) returnA+B;

code example Variable reference flow graph

IA_Hocial_lon Algorithm

q The proposed algorithm visits each node of a varef-graph in the
breadth-first order.

o When no register isfree for anode, the allocator estimates the
benefit and loss of register preemption for each register, and
selects the register with the maximum benefit.

q If al registers have larger loss than benefit, no register is
assigned to the node.

q For those nodes that are not assigned to aregister, the second
stage register alocation, called scratch allocation, is performed.

Variable Allocation Algorithm

Visit each nodein the graph

Any register

Previously ned
available ? sly assign

register available?

Assign the register with the
maximum non-negative benefit

Assign the previously Assign any register
assigned register

Continue u
nodes vi

L

Register Allocation Benefit

q BenefitRegAlloc(n,r) = PenaltySpill(n,r) — PenaltyPreempt(n,r)
n: node number, r: register number

q PenaltySpill(n,r): the total number of load/store instructions that
arerequired if node ‘n’ is spilled.

q PenaltyPreempt(n,r): the total number of load/store instructions
that are required when node ‘n’ preempts register ‘r’.

Impact Range

N q The decision for one node affects the

register allocation for another node
If node ‘1’ is spilled, node ‘6’ is also spilled

q Impact Range: the set of the nodes that are
affected by the register alocation for a
given node.

Theimpact range of node‘n’ for register ‘r’
is defined as the path from node ‘n’ to the
L next references of a variable that currently
holds register ‘r’.

O\

|_Impact Range Example (1)
q Suppose register allocation visits node ‘5’
R1 °‘1/°2 Rl ¢ Supposethe number of registersis 2
R2 és 64 Rz a VarHold(nr): the variable that holds register ‘r’ when
the register allocation is performed for node ‘n’.

q NodeHold(n,r): the nodes for VarHold(n,r)
q VarHold(5,r1)="A’, NodeHold(5, r1) ={1,2}.

o NextRef(n) = {p| pisanext reference of n} .

q NextRef(1) = {11} , NextRef(2) ={8,9,11},

q NextRef({1,2}) ={8, 9,11}

q ImpactRange(5,r1) = path (5, 8) O path (5, 9) O path (5,11
={} O0{} O path(5,11)
= {5,7,10,11}

Impact Range Example (2)

subpath(n,p,s) is the path(p,s) O path(n,s).
subpath(d, 5, 11) = path(5, 11) = {5, 7, 10, 11}
SubPathRange (n,p) = I subpath (n, p, 5)
for all s ONextRef(n)

SubPathRange (S,p) = 0, SubPathRange (n, p) forall n 0'S
ImpactRange(n,r) = SubPathRange (NodeHold(n,r),n)
ImpactRange(5, ‘r1’)

= SubPathRange(NodeHold(5,r1), 5)

= SubPathRange({ 1,2}, 5)

=subpath(1, 5, 11) O subpath(2, 5, 8)

0 subpath(2, 5,9) O subpath(2, 5, 11)
={57,1011} O{} O{} 0{5,7,10.11}
={5,7,10,11}

Definition of Impact Set

q Only two types of nodes in the impact range contribute to
BenefitRegAlloc(n,r)

1) The node that references the same variable as node ‘n’

2) The node that references the variable that holds register ‘r' when node
‘n’ isvisited for register allocation.

q var(n): the variable that is referenced by node ‘n’.
q VarHold(n,r): the variable that holds register ‘r' when the register
alocation is performed for node ‘n’

q ImpactSet(n,r) ={ m| m O ImpactRange(n,r), and
(var(m) = var(n) or var(m) = VarHold(n,r)}

Impact Set Example

o« ImpactRange(5,r1) = path (5, 8) U path (5, 9) O
n @ 2RL path (5,11)

/o ={}0{} O path(511)
R2 é3 é" R2 = {5,7,10, 11}
o var(s)='N’
o VarHold(5, ‘r’) = ‘A’
o ImpactSet(5, ‘r1’) = { 5,7, 11}

|_Benefit Mode

a PenaltySpill(n,r) = Zmo impactset(n) and var(my=var(r) COSt(mM)

q PenaltyPreempt(n,r) = Xm0 impactset(n) and var(m)=varHold(n) COSt(M)
n: node number, r: register number
var(n): the variable that is referenced by node ‘n'.
VarHold(n,r): the variable that holds register ‘r' when the register
allocation is performed for node ‘n’.

q BenefitRegAlloc(n,r) = PenaltySpill(n,r) — PenaltyPreempt(n,r)

n: node number, r: register number

—

Cost of aNode

o Let NodeCost(n) be the cost of the execution of ‘n’
o NodeCost(n) = 10¢ whered is aloop depth of anoden’.

o Consider the cost of ‘2’ for ‘r1’
q ImpactSet(2,‘r1’) ={ 2,5}

o Node ‘6" is not in the impact set, however, it is affected
by the allocation of node ‘2

q cost(2) = NodeCost(2) + NodeCost(6)

q CoSt(M) pmdetiniion = NodeCost(m)

+ 2 K 0 NextRef(m), kuuse, k 0 impact st NodeCost(k)
q Cost(M) muse= NodeCost(m) +
Z k0 PrevRef(m), k 0 impact set NodeCost(k)

Benefit Estimation Example

@

B=

.
g
pet]

BenefitRegAlloc(2, R1)
= PenaltySpill(2, R1) - PenaltyPreempt(2,R1)

3 ImpactSet(2, R1) = {2, 3,4, 5, 6}

PenaltySpill(2, R1) = cost(2) + cost(3) + cost(5)
= NodeCost(2) + NodeCost(3) +
NodeCost(5) + NodeCost(7)
=4
PenaltyPreempt(2, R1) = cost(4) + cost(6)
= NodeCost(1) + NodeCost(4) +NodeCost(6)
=3

BenefitRegAlloc(2, R1) =4-3=1

—

Scratch Allocation

q Unallocated variables and temporaries are allocated.
o Nodes corresponding to temporaries are added to the varef-graph.

q PenaltyPreempt(s,r) = Zm0 impactRange(sr) and var(m)=VarHold(ns) COSt(M)
q PenaltySpill(s,r) = Zmo impactRange(s), mi cLASS() COSE(M)

q Ifascratich ‘s preemptsaregister ‘r’, then this register can be used for
the scratch ‘s aswell as other scratches that are in the impact range.

q However, not all the scratches in the impact range can be allocated to
the same register, due to the overlapping of their live ranges.

q CLASS(9): the class that the scratch ‘s’ belongs to so that all scratches
in the class can be allocated to the same register.

DerivaI_ion of Class

q All the scratches are colored with infinite colors.
q Scratches are partitioned into classes according to the assigned
color.

q Example
two classes: {t1, t3, t5} and {t2, t4, t6}

a=tl+t2 a=Cl+C2
t5=13-t4 ||- Cl=Cil-C2
b =t5-t6 b=C1-C2

Allocation Example (1)

|
- @ 1 Assume two registers. At node ‘t1’, runs out of registers
R2 2)
Rle 3 ImpactRange(tl, R1) = {t1, t2, t3,t4, 15, 3}
- c1

PenaltyPreempt(t1, R1) = cost(3)
c2 = NodeCost(1) + NodeCost(3) = 2

C2 PenaltySpill(t1, R1) = cost(t1) + cost(t3) + cost(t5) = 3

@4 | BenefitRegAlloc(tl, R1) =3-2=1

Allocation Example (2)

BenefitRegAlloc(tl, R1) =3-2=1
ImpactRange(tl, R2) ={t1, t2, t3, t4, 15, 3, 6, t7,4}

PenaltyPreempt(t1, R2) = cost(4)
= NodeCost(2) + NodeCost(4) = 11

PenaltySpill(t1, R2) = NodeCost(t1) + NodeCost(t3) +
NodeCost(t5) + NodeCost(t6) = 4

BenefitRegAlloc(tl, R2) = 4-11=-7

‘t1' preemptsregister ‘R1’, and ‘t1’, ‘t3', and ‘t5’ are

assigned to ‘R1’.

Experimental Results

o Implemented in LCC targeting ARM7TDMI
q With the eight benchmarks, an average of 34.3% improvement

Compilation Time Measurements

On average, 1.85 timeslarger than that for Briggs' alocator.

Number of registers

is achieved over the graph coloring approach benchmark 4 s -
5 g721 164 186 197
S 8
ko yacc 173 213 201
x 70
_5 60 mpegy 328 277 279
8 5 adpem 129 149 162
-l?é 40 rep 221 2.00 217
30 pop 142 175 1.67
20 gsm 1.49 124 110
10 runlength 134 141 1.93
g721 yacc npeg adpem cpp pop gsm runlength average
Complexity Analysis |_Conclusions

q Thedominant complexity: the derivation of theimpact range

q N: the number of nodesin the varef-graph

q Thederivation of the impact range of anode for aregister: O(N)
q Iterated N timesfor each node ;

¢ Total Complexity: O(N?)

q In practice, the next reference of a variable is generally located
close to the node, thus search spaces are localized.

q Improvesthe Briggs allocator by an average of 34.3%

q The compilation time increase by the amount of 85%

q Timeoverhead is not serious considering that graph-coloring
alocatorsrun fast in practice.

q The proposed varef-graph can be used for further optimizations
such asinstruction scheduling

