
1

10/14/2003 Arshad Jhumka 1

Arshad Jhumka
Martin Hiller, Neeraj Suri

TU – Darmstadt, Germany

10/14/2003 Arshad Jhumka 2

Context

• Safety-critical software
• Design of fault-tolerant software known to

be difficult, and very often ad-hoc.
• Validation is expensive – running of a lot

of experiments.
• May still end up with ``inefficient´´

software, e.g., false alarms, late error
detection.

10/14/2003 Arshad Jhumka 3

• Title: A Framework for the Design and
Validation of Efficient Fail-Safe Fault-
Tolerant Software

• Presentation outline:
– Background
– Problems and Objectives
– Design of efficient fail-safe fault-tolerant SW
– Test case generation for validation of efficient

fail-safe fault-tolerant SW
– Summary

10/14/2003 Arshad Jhumka 4

Background (1)

• Fault: An unexpected event, e.g., node crashes,
variable corruptions. Each one is a fault class.

• Fault-tolerant program: Satisfies some form of
correctness in presence of faults.

• Different levels of fault tolerance
– Masking fault tolerance (ideal)
– Fail-safe fault tolerance

10/14/2003 Arshad Jhumka 5

Background (2)

• Correctness: Specification
• Safety: ``always...´´

– mutual exclusion, always (output > 100)

• Liveness: ``eventually...´´ -- Termination
• A fail-safe fault-tolerant program always

satisfies its safety specification in
presence of faults. Ok to just stop.

10/14/2003 Arshad Jhumka 6

Fail-Safe Fault Tolerance
• Detection is important in fault tolerance

• Detector – A program component that checks the
validity of a predicate, e.g, assertion checks, comparator.

• Arora & Kulkarni, 1998 – detectors are
both necessary and sufficient to ensure
fail-safeness

2

10/14/2003 Arshad Jhumka 7

Assumptions
• Bounded programs – finite number of

states, e.g., embedded programs. Can be
achieved via proper subtyping.

• Logically (and physically) distributed
software.

• Source code available.

10/14/2003 Arshad Jhumka 8

General Problems
1. How do we systematically design

and locate detectors such that the
errors are detected as early as
possible?

3. How can we systematically
generate test cases to validate
our design?

2. When detectors are distributed, how
do we assess their consistency?

10/14/2003 Arshad Jhumka 9

Goals

• Fail-safe fault-tolerant program able to

v Detect all harmful errors
v No false alarms
v Detect errors early

• Test cases for validation of fail-safe fault-tolerant
program

10/14/2003 Arshad Jhumka 10

Transformational Approach

• Fault-intolerant program P (viewed as a
state machine)

• Safety specification SSPEC
• Fault class F

Ł Obtain fail-safe F-tolerant program P’
P’ always satisfy SSPEC in presence of F +

P’ has minimal detection latency for F

10/14/2003 Arshad Jhumka 11

Graphical Illustration

• Transform fault-intolerant program P into a fail-
safe fault-tolerant program P’, with minimal
detection latency.

P P’Ł

Detectors to detect
effects of fault F

Fault class F

Fault intolerant
program P

Fail-safe fault-tolerant
program P’

+ SSPEC

10/14/2003 Arshad Jhumka 12

Example

Var X: {10..100}

X := read()

Y := X + 1

output (Y)

P

SSPEC: Y: {11..101}

Ł
F: (X := 200)

Var X: {10..100}

X := read()
Assert(10 <= X <100)
Y := X + 1

output (Y)

P’

3

10/14/2003 Arshad Jhumka 13

Some Advantages

• Separation of concern between design for
functionality (P) and for fault tolerance (P’)

• Modular – different fault classes can be considered

10/14/2003 Arshad Jhumka 14

Detector Role

• Harmful event: e.g., output > 100.

• Safety specification: defines a set of
harmful events.

• Prevent the occurrence of harmful events.

10/14/2003 Arshad Jhumka 15

Safety Specification

P
output

SSPEC: 10 <= output <= 100

Example of a bad event: Any program transition that
allows output to violate SSPEC, (<output = 90>, <output = 110>)

10/14/2003 Arshad Jhumka 16

Formal Design Approach

• Given:
Program P, safety specification SSPEC, and fault class F.

• Goal: Compose P with a set of detectors D
such that P’ = P[]D (i) is fail-safe F-
tolerant, and (ii) has minimal detection
latency for F.

10/14/2003 Arshad Jhumka 17

Detector Design (1)

• A detector can be too strong – it filters out
harmless events.

Allowed range of
values Detector with smaller

value range.

• Leads to false alarms!

10/14/2003 Arshad Jhumka 18

Detector Design (2)

• A detector can be too weak – it does not
filter out all harmful events.

Detector with a
wider value range Allowed range of values

• Can have catastrophic consequences!

4

10/14/2003 Arshad Jhumka 19

Perfect Detectors
Allowed range of
values

Detector with smaller
value range.

Detector with a
wider value range

Allowed range of values

Allowed range of
values

Detector with given
value range.

Ł

10/14/2003 Arshad Jhumka 20

Detector Design (3)

• We want a detector to (i) detect all harmful
events, (ii) have no false positives.

• Such a detector is perfect.
• Thus, we need a set of perfect detectors D.

Ł We compose P with a set D of perfect
detectors, yielding P’.

10/14/2003 Arshad Jhumka 21

Detector Design (4)

• Given program P, its safety spec. (set of
harmful events) SSPEC, and fault class F.

• Perform a backward propagation operation
along information flow to yield potentially
harmful events, i.e., events that can lead
to occurrence of harmful events.

• A set of perfect detectors is obtained.

10/14/2003 Arshad Jhumka 22

Approach - Graphically

Safety specification
100 < out < 500

out

10/14/2003 Arshad Jhumka 23

Backward Propagation

Safety specification
(set of harmful events)

10/14/2003 Arshad Jhumka 24

Backward Propagation (1)

Fault

Consider the state transition view of a program

Harmful event

Potentially
harmful events

Initial state

5

10/14/2003 Arshad Jhumka 25

Backward Propagation (2)

Fault

We prevent this event
from occuring (to achieve
minimal latency)

Fail-safe fault tolerance + minimal latency achieved

Initial state

10/14/2003 Arshad Jhumka 26

Properties of P’

• Perfect coverage
Ł No false alarm, rejects all harmful events.

• Minimal detection latency.

10/14/2003 Arshad Jhumka 27

Where are we?

• Objective: Design of fail-safe fault-tolerant
program with minimal detection latency.

• Perfect detectors are important.

• Use of a backward propagation operation
to generate a set of perfect detectors.

10/14/2003 Arshad Jhumka 28

What next?

• Have to ascertain that what we have is right
(validation), i.e., check if program is indeed fail-
safe fault-tolerant, with minimal detection
latency.

• Different methods:
(i) Testing
(ii) Fault injection

• Need test cases for this.

10/14/2003 Arshad Jhumka 29

Test Case Generation

• Early: ad-hoc approach, random sampling.

• Our approach: We use detector design
decisions to generate test cases.

10/14/2003 Arshad Jhumka 30

Test Case Generation

Coarse detectors Perfect detectors

C1 C2 out

Output detectors

I1

Input detectors

Detector for I1: 0 <= I1 <= 50

Detector for I2: 10 <= I2 <= 75

0 50
OKBAD BAD

10 75
BAD BADOK

Detector for I1 & I2:
25 <= 2 *I1 + I2 <= 120

I1

I2

BAD

BAD

OK

I2

OK for I1

Assume that detectors are used to
monitor the input and output actions
of different modules, i.e, faults can
occur at either input or output.

6

10/14/2003 Arshad Jhumka 31

Summary

• Program-transformation based approach
to design fail-safe fault-tolerant program +
minimal latency.

• Addition of perfect detectors.

• Use of perfect detector design for test
case generation.

