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Transmeta Technology

+
Code Morphing Software

? Provides Compatibility

? Translates binary x86 
instructions to equivalent 
operations for a simple VLIW 
processor

? Learns and improves with time

CMS

Microprocessor is the sum of

Good
Performance

x86 PC  
Compatibility

Low
Power

VLIW Hardware

? Very Long Instruction 
Word processor

? Simple and fast

? Fewer transistors

=
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Advantages of CMS Approach

Simple hardware allows
– Smaller, less expensive implementation
– Lower power consumption

Hidden VLIW architecture allows
– Transparent changes in architecture
– CMS can compensate for hardware bugs
– Performance improvement does not require 

hardware changes
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Crusoe / efficeon VLIW Engines

VLIW:  2 or 4 operations per instruction in Crusoe
Up to 8 operations and modifiers in efficeon

Functional units:  ALUs, memory, FP/media, branch

Registers:  64 GPRs, 64 FPRs, 4 predicates
dedicated x86 subset

Few hardware interlocks (CMS avoids hazards)

Semantic match:  addressing modes, data types, 
partial-word operations, condition codes
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CMS Objectives

Code Morphing Software layer provides a completely 
compatible implementation of the x86 architecture on the 
embedded VLIW processor:

- All target instructions (including memory-mapped I/O)

- All architectural registers

- Compatible exception behavior

Constraints:

- No OS assumptions or assistance

- Only see executed code –
instructions and pages

Robust performance required

AppsOS

BIOS

CMS

CMS
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CMS Control Structure

Interpreter

Start

Interpret
x86

Instruction



10/1/2003 8SCOPES, Vienna, 25 September 2003

CMS Control Structure
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CMS Control Structure
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CMS Control Structure
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Hardware Support for Recovery

Shadow registers:  Working and shadow copies of x86 registers

– Code uses working registers
– Consistent x86 state preserved in shadow registers

Memory is analogous

– Speculative writes to working buffer
– Memory contains consistent x86 state

Commit operation:  Copies working registers to shadow 
registers, releases speculative memory writes -- fast

Rollback operation:  Copies shadow registers to working 
registers, discards speculative memory writes
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CMS Is A Dynamic System

Start with interpretation

– low overhead but slow execution

Translate when repetition suggests benefit

– higher overhead but much faster execution

Re-translate if the situation changes

– more or less optimization as appropriate
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CMS Is A Dynamic System

Dynamic context gives CMS significant advantages

Before translating, interpreter can collect useful data:

– Branch frequencies

– Abnormal memory accesses (memory-mapped I/O)

Translated segments can also collect data:

– Prologues can count entries, e.g. for tcache management

Translator can perform optimizations not available to 
compilers or hardware implementations:

– Runtime information

– Ability to rollback to consistent x86 state
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The CMS Paradigm

To produce high performance while remaining perfectly faithful to 
the x86 architecture, the translator must optimize aggressively:

– Speculation:  Translator makes aggressive assumptions 
about code to achieve higher performance

– Example assumptions:
• operations won’t raise exceptions
• memory operations unaliased, normal (not to I/O space)
• no self-modifying code
• … and many more …
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The CMS Paradigm

To produce high performance while remaining perfectly faithful to 
the x86 architecture, the translator must optimize aggressively:

– Speculation:  Translator makes aggressive assumptions about 
code to achieve higher performance

– Recovery:
• Commit x86 state at convenient points
• Check assumptions and rollback if false
• Interpret sequentially for precise conformance
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The CMS Paradigm

To produce high performance while remaining perfectly faithful to 
the x86 architecture, the translator must optimize aggressively:

– Speculation:  Translator makes aggressive assumptions about 
code to achieve higher performance

– Recovery:
• Commit x86 state at convenient points
• Check assumptions and rollback if false
• Interpret sequentially for precise conformance

– Adaptive retranslation:  If recovery is required too often:
• Retranslate with less aggressive assumptions
• Retranslate smaller regions to minimize impact
• Keep both translations if more aggressive usually works
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Example:  Aggressive Scheduling

CMS performance depends on aggressive reordering and 
scheduling of code

efficeon code (with liberties):
E:{calculate rt1=%ecx, rt2=%eax; flda ft1 = [0x6959c8]}

{fld   ft2 = [%esi+rt2*8];     flda ft3 = [%esi+rt1*8]}
L:{fadd  f7  = ft2+ft3;     %ecx = rt1;   rt1 += 2}

{fmul  f7  = f7*ft3; %eax = rt2;   %edi += 1}
{sub.c r63 = %edi-%eax;   flda ft3 = [%esi+%ecx*8]}
{fst   f7, [0x40+%ebp]; test p3 = leu; brc p3, L}

x86 code:
L: lea   %ecx = (%edi,%edi,1)

lea   %eax = 0x1(%ebx) # %eax is invariant
fldl  (%esi,%eax,8) # address is invariant
faddl (%esi,%ecx,8)
fmull 0x6959c8 # address is invariant
fstpl 0x40(%ebp,1)
inc   %edi
cmp   %eax,%edi
jbe   L
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Aggressive Scheduling – Exceptions

Problem 1:  x86 has precise exception semantics

x86 code:
L: lea   %ecx = (%edi,%edi,1)

lea   %eax = 0x1(%ebx)
fldl (%esi,%eax,8)
faddl (%esi,%ecx,8)
fmull 0x6959c8
fstpl 0x40(%ebp,1)
inc   %edi
cmp   %eax,%edi
jbe   L

efficeon code:
E:{calculate rt1=%ecx, rt2=%eax; flda ft1 = [0x6959c8]}

{fld   ft2 = [%esi+rt2*8];     flda ft3 = [%esi+rt1*8]}
L:{fadd  f7 = ft2+ft3;     %ecx = rt1;   rt1+=2}

{fmul  f7 = f7*ft3; %eax = rt2;   %edi +=1}
{sub.c r63 = %edi-%eax;   flda ft3 = [%esi+%ecx*8]}
{fst   f7, [0x40+%ebp]; test  p3 = leu; brc p3, L}

x86 order:
ecx, eax, f7a, f7b, f7c, edi

efficeon order:
f7b, ecx;  f7c, eax, edi
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Problem 1:  x86 has precise exception semantics

Speculation:  CMS translations scheduled assuming no 
exceptions will occur

Recovery:  Exception causes rollback to preceding commit 
point, sequential interpretation

Adaptive retranslation:  An instruction causing exceptions 
too often is isolated, and the rest of the original translated 
code is retranslated so it won’t need rollback

Aggressive Scheduling – Exceptions
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Aggressive Scheduling – Aliases

Problem 2:  data speculation -- memory ops may be aliased

x86 code:
L: lea   %ecx = (%edi,%edi,1)

lea   %eax = 0x1(%ebx)
fldl  (%esi,%eax,8) # invariant?
faddl (%esi,%ecx,8)
fmull 0x6959c8 # invariant?
fstpl 0x40(%ebp,1)
inc   %edi
cmp   %eax,%edi
jbe   L

efficeon code:
E:{calculate rt1=%ecx, rt2=%eax;   flda ft1 = [0x6959c8]}

{fld   ft2 = [%esi+rt2*8]; flda ft3 = [%esi+rt1*8]}
L:{fadd  f7  = ft2+ft3;     %ecx = rt1;   rt1+=2}

{fmul  f7  = f7*ft3; %eax = rt2;   %edi +=1}
{sub.c r63 = %edi-%eax;   flda ft3 = [%esi+%ecx*8]}
{fst   f7, [0x40+%ebp]; test  p3 = leu; brc p3, L}
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Problem 2:  data speculation -- memory ops may be aliased

Speculation:  CMS assumes memory operations don’t alias 
unless it can determine otherwise.  Loads or stores are moved 
past a store that might alias.

Recovery:  Speculated operations set an alias register unless 
proven not to alias.  Potentially aliasing store checks alias regs.

Aggressive Scheduling – Aliases

efficeon code:
E:{calculate rt1=%ecx, rt2=%eax;   flda ft1 = [0x6959c8] [a1]}

{fld   ft2 = [%esi+rt2*8] [a2]; flda ft3 = [%esi+rt1*8]}
L:{fadd  f7  = ft2+ft3;     %ecx = rt1;   rt1+=2}

{fmul  f7  = f7*ft3; %eax = rt2;   %edi +=1}
{sub.c r63 = %edi-%eax;   flda ft3 = [%esi+%ecx*8] [a3]}
{fst   f7, [0x40+%ebp] [check a1,a2,a3];

test  p3 = leu; brc p3, L}
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Aggressive Scheduling – Aliases

Alias hardware speedup
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Problem 2:  data speculation -- memory ops may be aliased

Speculation:  CMS assumes memory operations don’t alias 
unless it can determine otherwise.  Loads or stores are moved 
past a store that might alias.

Recovery:  Speculated operations set an alias register unless 
proven not to alias.  Potentially aliasing store checks alias regs.

Adaptive retranslation:  Translation that takes alias faults too 
often is translated with conservative reordering
– Enabling adaptive retranslation improves 3D vector 

component of PCmark2002 by a factor of 47.5 on HW

Aggressive Scheduling – Aliases
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Self-Modifying Code (SMC)

Original problem:  If the x86 code is modified, the CMS 
translations must be invalidated or otherwise adapt.

Speculation:  Normal translations assume no SMC

Simple recovery:  Write-protect x86 code pages, find and 
invalidate corresponding translations if a fault occurs

Secondary problems:
– Inefficient for self-modifying code:  granularity too large
– Can’t distinguish data in same page as code
– DMA looks like SMC

Costs incurred by CMS:
– Handling fault, invalidating translations, special processing
– Generating new translations for modified code
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SMC:  Fine-Grain Protection

First refinement:  Hardware support for sub-page protection granularity

Only needed for a few pages at a time, allowing tiny hardware cache

Greatest speedups with fine-grain protection:

1.02x87.0%Quake Demo2

2.1x98.2%WinStone Corel

1.6x97.9%MultimediaMark

3.8x98.3%Win98 Boot

2.2x98.1%Win95 Boot

SpeedupFaults

Recovery based on detection by fine-grain protection.
But how do we adapt translations?
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SMC:  Self-Revalidating Translations

Subproblem: Data stores into same region as code

Adaptive retranslation:
– Install prologue to check code before executing translation
– Must retranslate to capture x86 code
– Fine-grain fault enables prologue and disables faults
– Prologue performs check and re-enables faults

Tradeoff: Checking code is expensive since it runs in 
sequence with the translation, but efficient if translations are
executed many times between (clusters of) writes

Example: Quake Demo2 frame rate improves 28%
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SMC:  Self-Checking Translations

Subproblem: Frequent data stores in same region as code, so 
self-revalidation prologue overhead is significant

Adaptive retranslation:
– Integrate checking code with translation
– May be scheduled for maximum overlap with translation
– Must always check after any stores that might modify code
– Minimize expense by making smaller translation first
– Disable fine-grain protection for self-checking translation

Tradeoff: Much better than faults, but still expensive:
– Code-size mean increase 83% (58-100%)
– Path-length mean increase 51% (11-124%)
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Stylized SMC

Subproblem: True self-modifying code often just replaces 
immediate fields in instructions, for instance to adjust the part of 
an array referenced:

label: lea %eax = 16(%esi)

Adaptive retranslation:
– Translated code gets value from x86 code space:

ld  %temp = [label+2]
add %eax = %esi + %temp

– Use self-checking or self-revalidation for bytes not used 
directly
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SMC:  Translation Groups

Subproblem: True self-modifying code that cycles among a 
small number of distinct versions (Windows/9X device-
independent BLT driver)

Adaptive retranslation:
– Keep multiple translations for a single x86 address range
– If current translation fails self-revalidation, try to match others
– If another matches, make it the current one
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CMS Paradigm Summary

Robust performance requires dealing with a wide 
variety of relatively unusual cases that are expensive 
when they occur

All three paradigm components are important:
– Speculation
– Recovery
– Adaptive retranslation

Several hardware mechanisms are vital:
– Commit / rollback
– Alias registers
– Fine-grain protection
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Testing with Cosimulation

Crusoe / efficeon have usual processor testing issues.

The software layer adds complexity:
– Translation vs. interpretation
– Changing translations
– Rollback and re-execution

Established methodology: use simulation during early 
development and compare against expected results

Tremendous benefit from extended simulation testing 
methodology: cosimulation
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Cosimulation Overview

Find bugs by comparing test and reference models

test
system

test program

reference
system

device
models

cosimulation controluser
interface
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Cosimulation Control

forever { 
advance test system to time (now + N)
advance reference system to same time
if (state matches)

checkpoint
last = now

else
isolate_fault(last, now) & stop

} test program

reference
system

test
system

cosimulation control
device
models

user
interface
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Basic Cosimulation

x86 test program

reference
system

test
system

cosimulation control
device
models

user
interface

CMS on 
simulated 
efficeon

x86 
simulator

gdb
debugger
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Basic Cosimulation

Control how often simulators are compared

Investigate state of system on mismatch

– Automated test scripts dump information on 
translation, x86 state, etc., at point of failure

Use checkpoints to automatically narrow point of failure

System can collect statistics, traces, etc.

Key debugging tool for early-stage CMS
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Emulator Cosimulation

Can we apply cosimulation paradigm to hardware debug?

efficeon test program efficeon
architectural 
simulator

Mentor VStation 15M

Compiled RTL,
Transactors

Host Software

Sun host
reference
system

test
system

cosimulation control
device
models

user
interface

gdb
debugger
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Emulator Cosimulation

Transactors added to HW model

– Verilog compiled with processor RTL

– Interface to host software

– Access to internal test system signals

– Control of system clock

Successful:

– Booted many operating systems, ran applications

– Found many bugs, holes in test suite

– Found bugs that would have produced dead silicon

– Helped isolate post-silicon bugs much faster
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Self-Cosimulation

Simulator- or emulator-based cosimulation is 
valuable but slow – simulates everything twice

CMS has two mostly independent execution engines

Compare them against one another!
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Self-Cosimulation

CMS runtime

x86 test program

reference
system

cosimulation control

Translations Interpretation

test
sytem

cosimulation control
user

interface

gdb
debugger
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Self-Cosimulation

Interpreter

not
found

Start

Find
Next

Instruction
In

Tcache?

Exceed
Translation
Threshold?

Interpret
x86

Instruction

no

Translate Region
Store in Tcache

Execute
Translation

from
Tcache chain

Rollback fault

found

yes

no
chain

Translator
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Self-Cosimulation

Instruments newly created or modified translations, s.t.:

Entry is redirected to prologue for setup and removal of 
instrumentation after some number of cosimulations

A commit or exit stops translation execution:

– Capture x86 state

– Rollback to previously committed state

– Interpret to point where translation stopped

– Compare to saved x86 state
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Self-Cosimulation Details

Cosimulating forever would take a long time

– Counter in prologue – remove after n executions

Internal commits – only cosimulate between commits

– Replace internal commits by traps

– Continuing in translation after cosimulating segment 
terminated by commit requires saving all state

Can’t cosimulate locked segments

Some instructions can’t be repeated (e.g., RDTSC)
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Self-Cosimulation

Self-cosimulation behaves like normal CMS…

– … so it can be cosimulated for debugging purposes

Self-cosimulation on hardware:

– Is not significantly slower than normal CMS …

– … so it can be applied to the full test suite.

Another highly valuable tool:

– Found numerous hardware and CMS bugs

– Usually easy to isolate: pinpoints a translation
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Summary

Commit / rollback is fundamental to architecture

– Allows simple translations that pass off unusual 
cases to interpreter

– Allows translations to make aggressive 
assumptions and recover if wrong

– Central to self-cosimulation facility
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Summary

Key paradigm for resolving compatibility/performance 
tension is speculation, recovery, and adaptive retranslation

The devil is in the details:  a successful solution must deal 
with unpleasant architectural details
– Precise exceptions
– Interrupts and DMA
– Memory-mapped I/O
– Self-modifying code
All techniques developed for real performance problems
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Summary

Valuable test paradigm: cosimulation

– Basic cosimulation for CMS development under 
simulation

– Emulator cosimulation for pre-silicon hardware

– Self-cosimulation for CMS+HW test on silicon

– All have been invaluable for detecting and 
isolating bugs
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Summary

CMS is unique:

– Commercially available, fully compatible x86 
implementation

– VLIW architecture is simple and unconstrained

– CMS software layer provides flexibility

– Performance comparable to a pure hardware 
implementation
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Questions?

For more information
[Klaiber00]  Alexander Klaiber, “The Technology Behind the Crusoe Processors,” 

White paper, January 2000, 
http://www.transmeta.com/pdf/white_papers/paper_aklaiber_19jan00.pdf .

[DGBJ+03]  James C. Dehnert et al., “The Transmeta Code Morphing Software: 
Using Speculation, Recovery, and Adaptive Retranslation To Address Real-Life 
Challenges,” Proc. of the 2003 Int’l Symp. on Code Generation and Optimization, 
23-25 March 2003.

[KlCh03]  Alexander Klaiber and Sinclair Chau, “Automatic Detection of Logic Bugs
in Hardware Designs,” Proc. of the 4th Int’l Workshop on Microprocessor Test and 
Verification, 29-30 May 2003.

US Patent Office
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Related Work I

Software emulation system classifications (Altman):
– Interpreters
– Static (offline) translators
– Dynamic (online) translators and optimizers

CMS contains an interpreter and a dynamic translator
Self-hosted vs. cross-hosted
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Related Work II

Self-hosted systems:  usually optimization or instrumentation
– HP Labs’ Dynamo and DELI
– Can fall back on native execution:

• No need to deal with problematic or optimal code

Virtual target emulators:
– IBM migration of AS/400 to PowerPC
– Java virtual machines:  Sun HotSpot, IBM Jalapeño, LaTTe
– Similar tradeoffs between translation cost and code quality, 

but much more tightly controlled “machine” semantics
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Related Work III

Cross-hosted emulators for system migration
– DEC tools:  static translators

• VEST: VAX/VMS to Alpha/OpenVMS
• mx: MIPS/Ultrix to Alpha/OSF1

– New host usually much faster than target
– Escape valve:  port to native host code

– DEC FX!32:  x86/WinNT to Alpha/WinNT
– Interpreter with offline static translator and database
– Imperfect emulation: 64-bit FP, no WindowsNT debug API

– HP Aries:  HP-PA to IA-64
– Interpreter with dynamic translator
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Related Work IV

Migration tools to capture another vendor’s applications
– Hunter System’s XDOS:  x86 DOS on RISC
– Modest performance requirements
– Special-case and manual intervention

Closest match to CMS:  IBM Research DAISY
– PowerPC or System/390 to tree VLIW
– Interpreter and dynamic translator
– Different region selection (tree regions)
– State repair for precise exceptions
– Only fine-grain protection for SMC


