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Abstract. The increasing complexity of today’s embedded systems
applications imposes the requirements and constraints of distributed,
heterogeneous subsystem interaction to software engineers. These re-
quirements are well met by the component based software engineering
paradigm: complex software is decomposed into coherent, interacting
units of execution, the so called components. Connectors are a com-
monly used abstraction to model the interaction between them. We con-
sequently contribute with the application of explicit connectors for dis-
tributed embedded systems software. Explicit connectors encapsulate the
logic of distributed interaction, hence they provide well defined contracts
regarding properties of inter-component communication. Our approach
allows model level validation of component composition and interaction
incorporating communication related constraints beyond simple inter-
face matching. In addition, by using explicit connectors, the complexity
of application components is reduced without the need for any heavy
weight middleware. In fact, the set of all deployed explicit connectors
forms the smallest possible, custom tailored middleware.

1 Introduction

Currently embedded applications are no longer simple programs executed on
single electronic control units (ECUs). In fact, nowadays embedded systems ap-
plications are heterogeneous software systems, deployed on a wide variety of
hardware platforms and communication subsystems. In addition embedded sys-
tems applications are often used in safety or mission critical environments.

This all lead to a dramatic increase of software complexity and consequently
to an increase of erroneously deployed software. To overcome that problem and
to reduce the overall costs for embedded systems applications, various paradigms
from the classical software engineering process have been adapted to the needs of
the embedded systems domain. Adoption becomes necessary due to the limited
resources in embedded systems, which would otherwise render many useful con-
cepts from the classic software engineering domain unusable. The
limitations range from that of processing power over available memory and
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network-bandwidth up to safety and real-time issues. In general, embedded ap-
plications have to be small, efficient and extremely reliable.

1.1 Background

A widely accepted and adopted software engineering paradigm within the embed-
ded systems domain is that of component based software engineering (CBSE).
The key concept behind CBSE is to construct an application by composing small,
simple units of execution - the components. Components are specified by their
interfaces, contracts [1], and their accordance to a specific component model. As
components provide means of exchangeability and reusability, implicit context
dependencies are strictly prohibited.

When building a system by composition, so by connecting components, the
point of connection, the connector, becomes a hot-spot of abstraction for any in-
teraction. In many component systems like Enterprise Java Beans [2], the Corba
Component Model [3], or COM+ [4], the rather complex process of distributed,
heterogeneous interaction is transferred from the individual components into the
component model’s heavy weight middleware implementation in order to make
it transparent for the components themselves. In these component models con-
nectors are abstract model level representations of component interaction and
are typically not associated with any contractual properties beyond function
signatures within interface specifications.

In embedded systems the application of a heavy-weight middleware is often
disadvantageous due to the systems’ limited resources. Nevertheless, it is a good
idea to keep the complex and error-prone interaction logic separated, if possi-
ble hidden, from the application components. In our approach this is achieved
by introducing coherent and explicit connectors and associated contracts in the
component model. In addition, by using explicit connectors, more precise re-
quirements and provisions regarding the components’ interaction become visi-
ble. These emerging contracts allow a detailed computation of requirements and
may be used for model level validation of component composition.

1.2 Contribution

We demonstrate how to use explicit connectors at model level when building
component based applications for distributed embedded systems. The advan-
tages gained by this approach are threefold: (i) By encapsulating the interac-
tion and communication logic within connectors, the complexity of application
components is reduced. Application components become smaller in size and com-
plexity but more reusable and reliable. (ii) Connectors can be provided off-the-
shelf (OTS) by communication subsystem suppliers. This will also reduce the
development costs of a distributed embedded systems application and increase
its reliability. (iii) Explicit connectors home all interaction and communication
logic. Hence they provide an additional set of contracts that emerge from the
component architecture and the deployment specification. We show how to use
these emerging contracts to improve the automated validation of component
based applications at model level.
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2 Components, Connectors and Contracts

In accordance to the work of [5,6,7,8] we define a component as a (i) trusted
architectural element, an element of execution, representing (ii) software or hard-
ware functionality, with a (iii) well defined usage description. It conforms
to a (iv) component model and can be independently deployed and composed
without modification according to a composition standard. Components may
be atomic or the result of a hierarchical composition, the latter are also called
assemblies.

An interface is a set of exposed services through which components inter-
act. A provided interface exposes a components functionality for usage by other
components while a required interface specifies the need of functionality of other
components. As interfaces are the only points of component interaction, a com-
ponent has to provide at least one interface, but may own multiple, distinct ones,
so called facets. Interfaces specify the dependencies between the services provided
by the component and the services required to fulfill the component’s task. Re-
lated interfaces of a component can be grouped coherently in so called ports.

Figure 1 shows the notation of a component and its interfaces complying with
the UML 2.0 Superstructure specification [9]. The UML 2.0 notation will be used
for most figures within this paper.

<<contract>>
* Requirements

* Provisions

<<component>>

Name
required services

provided services

Interfaces

<<contract>>
* Requirements

* Provisions

<<contract>>
* Requirements

* Provisions

1 2

2

Fig. 1. UML 2.0 notation of a component

To strengthen the reliability and predictability of component based appli-
cations, guarantees about the behavior of application elements are formalized
in contracts [1,10]. Contracts specify requirements and provisions of associated
elements. In general a contract consists of two obligations:

1. The client, requiring functionality from another element, has to satisfy the
preconditions of the provider.
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2. The provider, that is the supplier of the required functionality, has to fulfill
its postcondition, if the client’s precondition is met.

We distinguish five types of contracts:

1. Component-contracts are associated with components and their instances.
Typical component contracts deal with resource requirements or deployment
restrictions like required memory, or required ECU type.

2. Interface-contracts specify services and properties of the components’ inter-
faces like function signatures or temporal properties like worst-case execution
time (WCET) at function level.

3. Port-contracts are associated with ports and their interfaces and deal with
the relation between them. Behavior protocols, like described in [11], are
typically contained within port-contracts.

4. Connector-contracts are associated to connectors and deal with constraints
related to the used communication channels like worst-case propagation time,
but also with resource requirements of the connector fragments.

5. Platform-contracts specify properties of platform elements like ECUs or bus
systems e.g. ECU type, available memory or timing information.

In general, contracts associated with basic building blocks of a component ar-
chitecture like application components or connector fragment implementations
have to be provided by the building blocks’ manufacturers. Other interaction
related contracts will automatically be calculated from the specified ones when
transforming the component architecture into a refined platform specific archi-
tecture, as demonstrated later within this work.

In Figure 1 contracts for the component and each of its interfaces are specified.
The one labeled with 1, is a component-contract, specifying requirements and
provisions of the component itself. The others, labeled with 2, are interface-
contracts, specifying requirements and provisions for composition and interaction
on a specific interface.

To build a valid application in CBSE, components are assembled to form
a composed entity with a new behavior. To assemble means associating related
provided and required interfaces. It is obvious that related interfaces have to
be of the same type, so provide compatible interface-contracts. The connection
between two components is called connector.

An example composition is depicted in Figure 2: two components A and B are
connected to form a composed structure. A requires functionality provided by B.
Therefore B exports that functionality by a provided interface IF denoted by a
ball, A exports the requirement by a required interface IF denoted by a socket.
As the type of A’s required interface is the same as B ’s provided interface, the
composition is legal. In addition four very basic contracts are specified within this
figure: CA and CB are component-contracts specifying the components’ resource
requirements. CIFR and CIFP are interface-contracts for the required and pro-
vided interface of A and B. Figure 3 shows the interface contracts, that are very
simple ones but are sufficient for demonstration purpose: both contracts refer to
the same interface (id=0 ). Both interfaces are of the same type (type=”API”)
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<< component >>

A

<< component >>

B

<<contract>>

CB

<<contract>>

CA

<<contract>>

CIFR

<<contract>>

CIFP

IF

Fig. 2. Simple composition in UML 2.0

<contract type="RI" id="CIFR">
<interface type="API" id="0">
<service id="exampleService">

<param idx="0" type="void"/>
<result type="void"/>
<wcet t="0.05s"/>

</service>
</interface>

</contract>

(a) CIFR

<contract type="PI" id="CIFP">
<interface type="API" id="0">

<service id="exampleService">
<param idx="0" type="void"/>
<result type="void"/>
<wcet t="0.01s"/>

</service>
</interface>

</contract>

(b) CIFP

Fig. 3. Interface contracts

and contain the same service (id=”exampleService”) with an identical signature.
However, the contracts differ in the worst-case execution time (WCET) property
(wcet) of the service. As one can easily see, the provided WCET is less than the
required one, so the depicted composition seems to be valid.

Connectors as introduced in [12] represent first class architectural entities
embodying component interaction. With increasing application complexity and
distribution, connectors become a key factor in the whole development process.
They encapsulate and therefore abstract the transfer of control and data among
components.

In this paper connectors are considered to be explicit and thereby are granted
a component equivalent status. This is mandatory as resource limited embedded
systems typically lack complex component middleware or even real operating
systems. Although explicit connectors look very similar to components, there
exist two major differences:

1. As pointed out in [13], connectors are physically fragmented. When deploying
two connected components on two different ECUs, the connector between the
application components has to be split into two separate fragments, each
deployed, and therefore colocated, with the related application component.
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2. A connector’s life-cycle starts after the specification of the components’ de-
ployment. Before the specification of the application’s deployment schema,
connectors are abstract entities within architectural models. After specifying
the physical component location, the available communication channels be-
tween the components are defined. This information is required to transform
the abstract model entities into real, deployable connector fragments. The
fragments again are assemblies of components, representing the connector’s
functionality. The decomposability of connectors was first mentioned in [12]
and is reflected in our component model.

3 Using Explicit Connectors

In this section we demonstrate the usage of explicit connectors when building
a component based application. We do this with a very simple application con-
sisting of two connected components. This is of course no real-world application,
but it is sufficient to demonstrate our approach. A more realistic application -
an automotive, speed-aware lock control - has been implemented in the scope of
project COMPASS [14] to proof our concept.

3.1 Component Architecture

The first step in developing a component based application is to define the
application’s architecture. We do this by specifying an UML 2.0 component
diagram. Figure 2 depicts such a diagram. In addition to the composition of the
components’ interfaces, the connector’s base type can be specified.

The base type of a connector can be derived by the connector’s communication
style. We identified several typical communication styles like procedure call,
data broadcast, blackboard access or data stream and extended the UML 2.0
syntax for composition diagrams with symbols for explicit connectors. Example
connector symbols are shown in Figure 4. A detailed classification of connector
types is out of scope of this paper, but is subject to ongoing research.

It is obvious, that the connector type is predetermined by the type of the con-
nected component interfaces. This is why connectors of the same type, even for
different deployment scenarios, can easily be exchanged, whereas the exchange
with a connector of a different type is impossible. It is also obvious, that a gen-
eral purpose connector implementation is unable to provide component specific
required interfaces. To enable the usage of general purpose connector libraries,
this problem can be overcome by generating interface adaptors between the
components and the connector fragments. These adaptors are again simple com-
ponents and have to be deployed in conjunction with the associated connector
fragments.

For our example we use the application specified in the component diagram
given in Figure 2. The application consists of two components A and B, one syn-
chronous procedure call connector for interface IF and four associated contracts.
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Synchronous Procedure Call Asynchronous Procedure Call Data Broadcast

Data StreamBlackboard Access

Fig. 4. Connector type symbols

3.2 Deployment Specification

The next step in developing the application is to specify the deployment schema.
Figure 5 provides an UML 2.0 deployment diagram: The sample application is
distributed over two ECUs, ECU1 and ECU2, that are connected by a physical
bus BUS. The ECUs and the bus are associated with platform contracts con-
taining information about provided memory for each ECU or propagation delays
on the bus.

3.3 Transformation

By using the deployment specification, the component architecture can be trans-
formed into a new one, containing concrete explicit connectors, to be more pre-
cise: connector fragments. In addition an adapted deployment scheme and addi-
tional contracts are generated, too.

In our example the components A and B are located on different ECUs, that
are connected by the bus BUS. The communication style of the connector is
synchronous procedure call. Therefore the connector consists of two fragments,
which have to be selected from the connector library of the used bus system

<<component>>

:A
<<component>>

:B

ECU1 ECU2

<<contract>>

CECU1

<<contract>>

CECU2

BUS

<<contract>>

CBUS

Fig. 5. Deployment schema
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and ECU. The transformed composition diagram of the application is denoted
in Figure 6, the transformed deployment schema in Figure 7. Figure 6 shows
that four additional contracts become available within the application model:

– The contracts CCFA and CCFB are connector-contracts. These contracts
contain requirements of the connector fragments, similar to component-
contracts.

– CIF′
P and CIF′

R are interface-contracts associated with the fragments’ in-
terfaces. The connector’s interface-contract CIF′

P is calculated by extending
A’s interface-contract CIFP with information provided by the connector-
contracts CCFA, CCFB and the platform-contract of the bus CBUS.

These emerging contracts become extremely valuable when validating the
constructed application model.

As mentioned before additional interface adaptors are required between the
components and the general purpose connector fragments. These adaptors are
generated as part of the applied transformation process and are not denoted in
our example as they can be treated like an additional application component.

3.4 Validation

Finally the transformed model of the application can be validated. All avail-
able contracts have to be checked. To show the advantage of our approach, we
will choose platform- and connector-contracts that will lead to an invalid ap-
plication, although the constructed model seemed to be a valid composition as
demonstrated in Section 2.

First, all component- and connector-contracts have to be checked against the
platform-contracts as specified in the transformed deployment diagram. In our

<< component >>

A

<< component >>

B

<<contract>>

CB

<<contract>>

CA

<<contract>>

CIFR

<<contract>>

CIFP

IF
<< connector >>

Fragment CFA

<< connector >>

Fragment CFB

Physical Boundary

Explicit Connector

<<contract>>

CIFP’

<<contract>>

CIFR’<<contract>>

CCFA

<<contract>>

CCFB

IF

Fig. 6. Transformed composition diagram
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<<component>>

:A
<<component>>

:B

ECU1 ECU2

<<contract>>

CECU1

<<contract>>

CECU2

BUS

<<contract>>

CBUS

<< connector >>

:Fragment CFA

<< connector >>

:Fragment CFB

<<contract>>

CB

<<contract>>

CA

<<contract>>

CCFA

<<contract>>

CCFB

Fig. 7. Transformed deployment diagram

<contract type="P" id="CBUS">
<bus id="0">
<buscycle_length t="0.1s"/>
<slot_length t="0.05s"/>

</bus>
</contract>

(a) CBUS

<contract type="C" id="CCF?">
<connector type="RPC">

<response time="1.0 cycle"/>
<WCET t="0.01s"/>

</connector>
</contract>

(b)CCFB ,CCFA

Fig. 8. Platform- and connector-contracts

example we assume, that the total of used resources on each ECU is less then
the provided amount and that no hardware restrictions are violated by the com-
ponents and the connector fragments. So the first validation check is passed
successfully.

Next the interface-contracts have to be checked. We have to match the
interface-contract CIFR of component A with the emerging interface-contract
CIF′

P of the connector.
To do so, CIF′

P has to be calculated: We have to create a new contract based
on component B ’s interface-contract CIFP using information provided by the
connector-contracts and the platform-contracts of the communication subsys-
tem. In Figure 8 the platform-contract of the bus and the connector-contracts
for the fragments are specified. The connector-contracts are identical, so we just
show one to save space. The connector fragments add additional execution time
of 0.01 seconds each to the WCET in contract CIF′

P . As the connector type
is synchronous procedure call, invoking a remote procedure requires a confirma-
tion response containing the result. This implies that we again have to increase
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<contract type="PI" id="CIFP’">
<interface type="API" id="0">

<service id="exampleService">
<param idx="0" type="void"/>
<result type="void"/>
<wcet t="0.13s"/>

</service>
</interface>

</contract>

Fig. 9. Calculated interface contract CIF ′
P

WCET in contract CIF′
P by the systems response time. That is calculated by

multiplying the connectors response time with the buscycle length of the bus.
The so calculated emerging contract is given in Figure 9.

As one can see, the provided WCET of at least 0.13 seconds is higher than
the required WCET of 0.05 seconds. Our sample application turned out to be
invalid under the specified platform and deployment schema.

Similar calculations can be applied to different functional and non-functional
properties specified within the model’s contracts.

4 Conclusion and Future Work

In our paper we demonstrated how to use explicit connectors when building
component based applications. Explicit connectors help to reduce the complexity
of application components in absence of a component middleware. Moreover,
the set of all deployed connector fragments within one ECU can be seen as the
custom tailored middleware for that specific ECU.

When using explicit connectors, additional contracts emerge from model
transformation, using deployment information to specify the available communi-
cation channels. This leads to a more precise model level validation of component
interaction in composed software architectures.

Our ongoing research deals with the identification and classification of con-
nector types in automotive embedded systems applications and with the model
level validation of looped composed component architectures.

5 Related Work

To adapt the CORBA Component Model (CCM) [3] to embedded software de-
sign connectors are integrated into CCM in The CORBA Connector Model [15].
Here, connectors are used to mediate interaction between distributed CORBA
components and therefore are limited to CORBA specific interaction and com-
munication styles.

Connectors in general are extensively examined within work [13,16,17] re-
lated to the project SOFA - Software Appliances [18]. SOFA defines a compo-
nent model, providing hierarchically nested components and connectors as first
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class architectural entities. The internal structure of connectors is analyzed in
Communication Style Driven Connector Configurations [16] aiming at automatic
component composition. SOFA defines three types of basic connectors: (i) Pro-
cedure Call, (ii) Event Delivery and (iii) Data Stream. In addition user-defined
connectors can be specified. However, our research is focused on software connec-
tors for embedded systems and therefore deals with more hardware and system
related issues like e.g. resource usage of connectors.

Another project dealing with component based software engineering is FRAC-
TAL [19]. FRACTAL defines a component model, that also contains connectors.
A binding is defined to be a communication path between component interfaces.
Bindings are classified to be (i) primitive or (ii) composite. A primitive binding
binds one client interface and one server interface, in the same address space.
A composite binding is a communication path between an arbitrary number of
distributed component interfaces and is represented as a set of primitive bindings
and binding components. Binding components are called FRACTAL connectors
and are normal FRACTAL components, whose role is dedicated to communi-
cation [20]. As connectors are of no primary concern in FRACTAL, no further
specification on how to interact is provided. This is contrary to the work pro-
posed within this paper, where connectors play an important role in component
interaction.
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