
Configuration File Manipulation with Configuration
Management Tools

Student Paper for 185.307 Seminar aus Programmiersprachen, SS2016

Bernhard Denner, 0626746
Email: bernhard.denner@gmail.com

Abstract—Manipulating and defining content of configuration
files is one of the central tasks of configuration management
tools. This is important to ensure a desired and correct behavior
of computer systems. However, often considered very simple, this
task can turn out to be very challenging. Configuration manage-
ment tools provide different strategies for content manipulation
of files, hence an administrator should think twice to choose the
best strategy for a specific task. This paper will explore different
approaches of automatic configuration file manipulation with the
help of configuration management tools. We will take a close look
at the configuration management tool Puppet, as is offers various
different approaches to tackle content manipulation. We will also
explore similarities and differences of approaches by comparing
it with other configuration management tools. This should aid
system administrators who have to deal with configuration files
and will assist in choosing the "best" strategy for a specific
configuration task.

I. INTRODUCTION & OVERVIEW

In these days, system administration can be a complex task.
With the advent of cloud computing, the number of computer
systems an administrator has to handle increased dramatically.
As one can imagine, installing software and managing the
configuration of hundreds or even thousands of systems is a big
challenge [1]. Administrators have to react on changes to the
environment, fix security issues and keep software up-to-date.
Doing this manually, machine by machine is almost impossible
[2].

Therefore configuration management (CM) tools have been
developed to assist administrators in managing their systems.
The most popular tools today are CFEngine [3], Chef [4],
Ansible [5] and Puppet [6]. Despite their differences, they all
have one common approach. An administrator defines a desired
system state in form of text files. Such states can be seen
as software packages to be installed, configuration files with
defined content to exist or system services to be running. This
desired system state is applied on as many computer systems
as required, in a reproducible way.

One of the central tasks of configuration management is
the manipulation of configuration files. Because of different
requirements, many CM-Tools offer different methods for
doing this, often with different approaches such as partially
modifying configuration files or defining the complete content
at once. Each method has something to commend it, being
simplicity and ease of use or having complete control.

These different approaches of configuration file manipula-
tion by CM-Tools will be explored in this paper. Therefore,
we will put a focus on Puppet, which is one of the most

popular CM-Tool in these days and offers a huge variety of
configuration manipulation methods. But we will also take a
look at other CM-Tools to explore their view of configuration
file handling.

In Section II an introduction will be given about CM-
Tools, examining which ones are established in the community
and how they work. Before we dive into file manipulation
strategies, Section III will give some introduction in configu-
ration stores. Section IV will describe different configuration
manipulation strategies of Puppet, whereas Section V will
look at approaches of other CM-Tools. Section VI will show
some scientific papers about CM-Tools. Finally we will draw
a conclusion on the topic in Section VII.

II. CONFIGURATION MANAGEMENT TOOLS

Configuration management tools are being used by system
administrators for a long time now, however it is sometimes
stated to be one of the most controversial aspects of system
administration [7].

One of the first theoretical work on configuration manage-
ment tools was done by Burgess. In his work [8], he introduces
CFEngine [3]. The aim of this tool is to provide the user a
central management instrument for different types of computer
systems within a network. CFEngine enables its users to define
many aspects of UNIX based systems in one central file
in a high-level manner by a newly introduced configuration
language. This configuration language is used as a form
of abstraction mechanism, which hides variations between
different operating systems and allows the user to think in
a more abstract way. Desired properties of managed systems
are defined in a declarative manner, as well as relationships
and dependencies between these properties. CFEngine uses the
concept of bundles and classes to group system aspects and
provide a form of modularization. A CFEngine configuration
program is then used on the target systems to automatically
enforce the defined aspects and properties. In Burgess later
works [9] and [7], he further extended his theoretical concepts
for CFEngine, which later got integrated in newer versions.

Puppet [6], grew out of dissatisfaction with CFEngine [10],
therefore the primary concepts of these two tools are very
similar. Puppet also allows the user to define desired system
properties in a central repository. Therefore its own declarative
domain specific language (DSL) is used to model system
properties (called resources), order-relations and dependencies
between these resources. Similar to CFEngine promises, re-
sources are the main abstraction mechanism in Puppet, hiding

differences between operating systems. Multiple resource def-
initions can be grouped by classes and modules, which helps
organizing Puppet source code, written in Puppets own DSL.
An agent running on the target system ensures all defined
resources are in the desired state, otherwise certain actions
will be initiated to enforce this state, e.g. installing a package,
creating user accounts or updating the content of files [11],
[12].

Beside CFEngine and Puppet a bunch of other CM-tools
have emerged in the industry, such as Chef [4], Ansible [5] or
Salt [13], to name a few.

III. CONFIGURATION FILES

Software configuration values can be stored in different
forms. Plain text files are very common for UNIX based
applications, while on other platforms, such as Microsoft
Windows OS Family, often a central configuration database
is used. Both forms have their advantages and disadvantages.
Central configuration databases allow information querying
and manipulation through a standardized API, while plain text
files requires parsing its content based on a special syntax
of the configuration format. Over time, different formats for
such configuration files have evolved, and often it seems each
tool uses its own syntax for its files. However, there are
programming libraries available for a lot of the commonly used
file formats, such as INI. Very often, high level programming
languages ship such libraries already as part of their runtime
core.

When manipulating plain text configuration files, especially
with CM-tools in an automatic way, we have to consider
certain aspects. We have to respect and observe the format and
syntax rules of the configuration file, otherwise the configured
software might refuse reading the file. When syncing config-
uration files between different computer systems, we might
accidentally overwrite some system-individual settings like
hostnames or IP-addresses. Often configuration file formats
allow an administrator to add comments for documentation
purposes, which can help during problem analysis. Automati-
cally generated configuration files often miss such comments.

For the comparison of the individual configuration manip-
ulation methods, we will focus on the following aspects:

• syntax awareness: is the correct syntax of the con-
figuration file automatically ensured, or is it in the
responsibility of the user?

• defaults preservation: is the method able to change
only certain parts of the configuration file, in order to
keep default settings untouched?

• expressibility: is the method able to utilize all aspects
of the corresponding configuration file format, espe-
cially handling of comments?

IV. MANIPULATING CONFIGURATION FILES WITH
PUPPET

Before describing different methods for configuration file
manipulation with Puppet, we will give a short introduction of
the primary Puppet concepts and of the Puppet DSL to make
things easier to understand.

As already stated above, the central element in Puppet for
defining certain aspects of a system, is the resource. Each
individual characteristic of a computer system is treated as a
resource, e.g. each single file, each package, user, directory but
also parts of files or settings of configuration files. Resources
that are not subject of the configuration are usually ignored
by Puppet, those resources are called unmanaged resources.
In contrast, managed resources are all resources which are
defined in the underlying Puppet code. These resources are
managed by Puppet and the desired states (file permissions or
content, package state...) are enforced [11], [12].

Each resource is clearly defined by its resource type, such
as file, package, user, a type-unique resource identifier,
such as file or package name, and variable amount of proper-
ties, which define the desired resource state. An example can
be seen in Listing 1. Resource types are implemented in Ruby
and form the primary abstraction mechanism in Puppet, to
hide differences between different operating systems. Thus a
Puppet user will always install packages with the resource type
package, being on Ubuntu, Fedora, Solaris, MacOS or even
Windows. Puppet comes with many built-in resource types
to manage the most important aspects of computer systems.
However, each user can implement other, more specialized
resource types, as part of a new Puppet module. Many of
such specialized modules are publicly available on [14], a
collaboration and sharing platform for Puppet modules.

manage a single file
file { "/etc/resolv.conf":
ensure => "file",
owner => "root",
group => "root",
mode => "0644",
content => "nameserver 8.8.8.8"

}

install a package
package { "firefox":
ensure => "installed"

}

Listing 1: example of resource definitions

Another important language construct in Puppets DSL are
classes. Classes are used to group resource definitions and help
to modularize Puppet code. Classes can also have parameters,
which allow to separate code and data (the concrete configura-
tion values). Listing 2 shows the class dns with one parameter
nameserver with a default value.

class dns($nameserver = "8.8.8.8") {
file { "/etc/resolv.conf":
content => "nameserver ${nameserver}"

}
}

Listing 2: example class

The following sections will describe different methods for
manipulating and defining the content of configuration files.

A. Content Defined by Strings

The built-in resource type file offers the Puppet devel-
oper two parameters to define the content of a file: content

and source. The first one takes a String argument and, as the
name suggests, directly defines the content of file. An example
usage can be seen in Listings 1 and 2. Listing 1 defines the
file content by a hard-coded string, whereas Listing 2 uses
the more generic way, as the hard-coded string is expanded
through a class parameter or variable.

An alternative to the classic string definition are here
documents or Heredocs, as also known from the Bash or
Perl scripting languages. A Heredoc defines a string, which is
allowed to span over multiple lines without special treatment
of quoting character such as ’"’. Heredocs are enclosed
by a special Heredoc start tag ’@("CONTENT")’ and the
corresponding end tag ’| CONTENT’, whereas the keyword
(here CONTENT) is freely selectable. As for normal string
definitions, Heredocs also allow to use variables in its content.
This makes the definition of a complex string, such as multi-
line configuration files, directly in the Puppet source code
possible. However, it might not be a good programming
practice, as it mixes code and data in the same source file.

The advantage of this file-content approach is its simplicity.
However, extensive uses, especially Heredocs can rapidly grow
source files and a developer quickly looses the overview of
his/her Puppet source code. Syntax awareness, simply does
not exist. Its possible do define any content, therefore it has a
very high expressibility. However, managing only portions of
configuration files is not possible either, as this is simply an
all-or-nothing approach.

B. Pull from Other Sources

As described above, the resource type file offers a
second parameter for defining the content of files: source.
If this parameter is set to a suitable value, Puppet will pull
the content for this file from the defined location, either by
downloading from a Web server, Puppets own built-in file
transfer mechanism or from a locally available file. However,
this file-source method doesn’t allow any dynamic content
definition. The content is treated as-is. Therefore, it might be
not very suitable for configuration file manipulation.

C. Content Generated by Templates

Beside resource types and classes, Puppets DSL also
includes the concept of functions, as known from typical
procedural languages. Functions have a unique name, can take
an arbitrary number of arguments and one return value as
result. In Puppet they are often used for type checking, type
conversions and string manipulations.

Puppet has two built-in functions, which are quite
useful for defining content of files: template() and
inline_template(). Both functions allow rendering of
strings based on ERB templates. ERB (Embedded RuBy) is
a special feature of Ruby, which is the language Puppet is
implemented in, to embed Ruby code in normal text files.
This embedded code is evaluated during template parsing,
which defines the result in a dynamic way. The function
template() takes a file name as string argument, defining
the path to the used template file, whereas the function
inline_template() directly takes the template definition
itself as string argument. Both function return the rendered
template result, which can be directly used by the file

resource type for example. Listing 3 shows an example ERB
template to define the content of the UNIX resolver configu-
ration file.

<% if @dns_search != ’’ -%>
search <%= @dns_search %>
<% end -%>
<% @dns_servers.each do |server| %>
nameserver <%= server %>
<% end %>

Listing 3: example ERB template

The corresponding usage of such a template within a file
resource can be seen in Listing 4.

class dns($dns_search, $dns_servers) {
file { "/etc/resolv.conf":
ensure => "file",
content => template("path/2/template")

}
}

Listing 4: example ERB template usage

As one can see in Listing 3, Ruby code fragments are
enclosed by the special tags ’<%’ and ’%>’. Everything else is
treated as normal text. Similar concepts can be found for exam-
ple in PHP. Puppet allows to use its local class variables (here
$dns_search and $dns_servers) within the template as
Ruby instance variables. Listing 3 demonstrates simple uses of
conditions (’if ...’) and loops (’.each do ...’).

Beside the Ruby-ERB template engine, starting with ver-
sion 3.8, Puppet includes its own template engine, called
EPP. It brings a better integration with the Puppet DSL.
The corresponding function epp() and epp_inline()
are equivalent to its ERB counterparts, whereas the EPP
(embedded Puppet) template engine is used.

Defining content of configuration files by ERB/EPP tem-
plates is very powerful. It allows variable substitution, condi-
tions, loop and much more, as it allows Ruby code execution
for generating the resulting file content. Since it is possible to
define any form of text content, the resulting output is not tied
to any special format or syntax. Therefore the expressibility is
very high. However, syntax validation of special configuration
formats is not in the scope of this method. Therefore, its quite
easy for Puppet developers to generate configuration files with
an invalid syntax.

This form of content definition is primary driven by the
template functions, which have to be used together with a
Puppet resource type to ’transfer’ the result to the target
configuration file. As already said, the resource type file
is often used for this purpose. However, as we have seen in
section IV-A, the file resource type is not able to manage
portions of a file. Therefore its not possible to preserve default
values using this method.

D. Line based manipulation

Until now, only methods for defining the complete content
of files were discussed. When it comes to partial modifications

of configuration files, the resource type file_line from
the Puppet module puppetlabs-stdlib is very interesting. This
resource type allows line based modifications of files based on
regular expressions, similar to the UNIX tool sed.

file_line { "/etc/resolv.conf_searchlist":
ensure => ’present’,
path => "/etc/resolv.conf",
line => "search $dns_search",
match => "^search .*",

}

Listing 5: file_line example

Listing 5 shows an example resource definitions of the
file_line resource type. The desired value defined by
parameter line will replace the line matched by the regular
expression of parameter match. If a matching line is found,
this line will be replaced by the defined value, otherwise
a line with the desired value will be added. This makes
this resource type very suitable for modifying configuration
settings in configuration files, as it can be used to replace single
configuration values, while ensuring settings are not added
twice. Therefore this method allows partial modifications of
configuration files and enables its users to preserve default
settings supplied by the OS distributions.

In terms of expressibility, the file_line resource type
is very flexible, since it allows to define any content. However,
when it comes to modifying multiple lines at once, for example
to add comments to certain settings, this method is not suitable,
since the match property will only match a single line,
as the resource type name already suggests. Therefore we
will consider expressibility of this method to be limited. The
file_line resource type does not care about the managed
content itself. Therefore syntax validation of the given content
is not performed at all.

E. Format Specific Modules

A more advanced way for modifying configuration files
are methods, which respects the special format and syntax of
configuration files. A prominent example of such a resource
type is the ini_setting type, defined by the module
puppetlabs-inifile. This module allows to modify single set-
tings in configuration files respecting the INI-File format.

ini_setting { "puppet-server":
ensure => ’present’,
path => "/etc/puppet/puppet.conf",
section => "main",
setting => "server",
value => "example.com"

}

Listing 6: ini_setting example

Listing 6 shows an example application of the
ini_setting resource type. This example will modify the
value of the setting server within the section main. If this
configuration setting does not exist in the defined file, the
setting will be added. One important thing to mention here is,
that this resource type treats each setting within an INI-based
file as a single resource instance. Therefore it allows partial

modifications of configuration files in simple way, while
ensuring the correct syntax of the file.

Beside the more general ini_setting resource type,
Puppet has built-in support for modifying important config-
uration files of UNIX based systems. The resource types
host, user, group and mailalias are examples here.
host manages entries in /etc/hosts database, user will
ensure certain user accounts exists and therefore manages
/etc/passwd, group does the same for user groups and
mailalias manages mail alias files. Each of these resource
types, respects the format of its corresponding configuration
files and treats each setting as a single resource instance.
However, some resource types are able to manage more than
just the configuration. For example, the user type can be used
to manage the home directory of the desired user too.

Additionally, Puppet has built-in support for gen-
eration of configuration files for the monitoring tool
Nagios, which is a well established monitoring solu-
tion. The nagios_* (nagios_host, nagios_service,
nagios_command...) resources types can be used to manage
single entries for Nagios configuration files. Again, these re-
source types are treating each setting (Nagios object definition)
as single resource instance and therefore are able to manage
the corresponding configuration files partially.

Many application specific modules found in [14] allow
partial modifications of the corresponding application config-
uration files, however they are limited to a specific application
and will not be considered here.

As we have seen, each of the described methods here,
automatically ensures the compliance of the underlying syntax
of the configuration file. Additionally, each method manages
files partially, through modifying dedicated entries or regions.
Therefore its possible to preserve default values. In terms of
expressibility we will consider this method also as limited,
as none of these modules is able to add comments to the
corresponding settings. However, this is just limited by the
underlying resource type implementation. It would be possi-
ble to add special treatment of comments to each resource
type, for example implementing a comment parameter to the
ini_setting resource type.

F. Frontends to Central Configuration Backends

The configuration definition strategies defined here are
not modifying the underlying configuration files directly,
instead they use tools to manage a central configuration
database. One prominent resource type for doing this, are
the registry_key and registry_value resource types
found in the module puppetlabs-registry. These two resource
types, allow manipulations of the Microsoft Windows registry
configuration database.

Another example for such a strategy is the gconf resource
type, defined by the rohlfs-gconf module, which will manage
configuration settings for the Gconf configuration database,
used by the GNOME platform.

Both methods allow partial modifications of configuration
settings, which leaves other values untouched. Syntax valida-
tion is automatically ensured by the underlying configuration

frontend tools used by these resource types. However, express-
ibility is again limited as none of the two tools allows to add
comments to configuration settings, although this is mainly
a limitation of the underlying configuration database and the
used frontend tooling.

G. AUGEAS

The fact that many configuration file formats have emerged,
which makes automatic modification of configuration files
difficult, was the main motivation for the development of
AUGEAS [15]. AUGEAS is a library allowing retrieval and
modification of configuration values of different configuration
files, which adhere to supported formats, by a standardized
API.

Puppet has a built-in support of the AUGEAS API, and can
be used with the augeas resource type. Listing 7 shows an
example application of this resource type, modifying the file
/etc/puppet/puppet.conf. This example will set the
configuration option server of section main to the value of
the variable ${server} and adds a comment line one line
before the server configuration option.

augeas{ "puppet-server" :
context => "/files/etc/puppet/puppet.conf/main",
changes => [

"set server ${server}",
"set #comment[following-sibling::server]\

[last()] ’central puppet server’"
]

}

Listing 7: AUGEAS example

This method is one of the most advanced strategies for
automatic modification of configuration files. AUGEAS auto-
matically ensures the correct syntax of configuration formats.
Additionally, modifications are done on a per-configuration
setting basis. Therefore, it allows the user to leave default
values untouched. And further, through the XQuery like syntax
for referencing sections around a specific configuration setting,
it also allows modifications of surrounding regions, especially
comment lines within a configuration file.

V. MANIPULATING CONFIGURATION FILES WITH OTHER
CM-TOOLS

Other CM-Tools have quite similar approaches compared to
Puppet. CFEngine also allows defining content of (configura-
tion) files with the following three major approaches: copying
from source, template-based and line-based editing. These
different methods are all integrated in the CFEngine construct
files Promise. The line based editing approach works like
search and replace and is based on regular expressions, similar
to the file_line resource type of Puppet. CFEngine has
no AUGEAS integration. However, CFEngine provides format
specific configuration file editing operations for common file
formats, such as XML- or INI-formats [16].

Chef, another popular CM-Tool implemented in Ruby,
allows defining file content by its resources file,
remote_file and cookbook_file, whereas the latter
two copy content from remote locations. Chef also supports the
ERB template engine and is implemented by the template

resource. Line based editing is only possible through executing
specific scripts, for example using the methods provided by
the Ruby class Chef::Util::FileEdit. Format specific
configuration file manipulations are not possible with standard
Chef concepts. However, AUGEAS integration can be added
with a community provided extension [17].

Salt enables file management through its file.managed
state. The main use case is to pull the desired content from
a Salt master node, either as-is, without modifications or by
applying one of the supported template engines. Line based
editing is possible with the file.replace state, which also
supports regular expressions. JSON and YAML files can be
defined by the file.serialize state, which could be quite
useful for simple configuration files, whereas this is a "all-or-
nothing" approach. Additionally, format specific manipulations
can be done through the AUGEAS integration of Salt [13].

Ansible supports similar file operations, such as content
pulling from remote sources, rendering file templates or line
based editing. Relevant Ansible modules are copy, fetch,
template, lineinfile and replace. However, Ansible
has a unique feature especially for configuration file edit-
ing, provided by the blockinfile module. This allows
managing a complete block of text at once. Ansible adds
special marker tags before and after the inserted text block,
which enables Ansible to identify the concrete region within
a file. These marker are added as comment lines, in order
not to break format requirements of the configuration file.
Additionally, Ansible has built-in support for manipulation of
INI-format based files. AUGEAS support can be added through
a community provided module [5].

VI. RELATED WORK

In scientific areas, there is a lot of research going on in the
field of configuration management. Spinellis, for example, in
[2] gives a good introduction to the use of CM-Tools and why
it is worth the effort.

One of the pioneers on the theoretical work on CM-
Tools was Burgess with his works [7]–[9], which formed
the basis for CFEngine. [1] presents Meta-Config, a CM-
Tool chain specially designed for provisioning private cloud
setups. It comes with its own configuration management en-
gine, however the authors stated to replace it in flavor of
Puppet, which did not happen until now. Vanbrabant introduces
in [18] a configuration management framework designed for
distributed systems. This framework also comes with its own
configuration management engine.

Since there are many different CM-Tools, all with individ-
ual features, usage scenarios and different pros and cons, it
is not an easy task for system administrators to decide which
tool fits best to their own needs. A lot of CM-Tool comparisons
can be found on the Internet ([10], [19], [20]) and in scientific
literature [21]–[23]. Delaet, Joosen, and Van Brabant present in
[21] a comparison framework for CM-Tools, which should help
to make decisions on a solid basis. For illustration purposes,
this framework is used for evaluating 11 different CM-Tools.
[22] extends this framework by a community parameter, which
should quantify the public community behind each CM-Tool.
[23] describes a automatic quality assurance system for open-
source CM-Tools. It will automatically measure certain quality

attributes on community provided configuration scripts and
inform developers of the corresponding scripts, once problems
with their extensions arise. This should help to increase the
quality of community provided tool extensions.

VII. CONCLUSION

This paper summarizes different strategies for automatic
manipulations of configuration files with the help of configu-
ration management tools, especially possibilities proposed by
Puppet. We can see that there are three major approaches for
file manipulations:

• the "all-or-nothing" strategies, either with direct con-
tent definition, utilizing template engines or pulling
from other sources

• line-based manipulations, a search and replace ap-
proach, mainly based on regular expressions

• format specific manipulations

However, there is no single "best" strategy. It always
depends on the context and which method fits best to the
system administrators needs. The predefined-content method
is simple to use and deterministic, however very inflexible.
The template methods are more flexible and also deterministic,
whereas it is still an "all-or-nothing" approach. Methods which
modify only parts of a configuration file are very flexible and
allow an administrator to keep the focus on desired parts of the
configuration, although these methods are not deterministic.
Wrong settings that are not touched by the CM-Tool will stay
wrong. Therefore it is in the responsibility of the administrator
to choose the "best" method for the concrete problem.

REFERENCES

[1] T. D. Nielsen, C. Iversen, and P. Bonnet, “Private cloud
configuration with metaconfig,” in Cloud Computing
(CLOUD), 2011 IEEE International Conference on, Jul.
2011, pp. 508–515. DOI: 10.1109/CLOUD.2011.63.

[2] D. Spinellis, “Don’t install software by hand,” Software,
IEEE, vol. 29, no. 4, pp. 86–87, Jul. 2012, ISSN: 0740-
7459. DOI: 10.1109/MS.2012.85.

[3] CFEngine - Configuration management tool. [Online].
Available: https://cfengine.com/ (visited on 03/06/2016).

[4] Chef - Configuration management tool. [Online]. Avail-
able: https://www.chef.io/chef/ (visited on 03/06/2016).

[5] Ansible is Simple IT Automation. [Online]. Available:
https://www.ansible.com/ (visited on 03/06/2016).

[6] Puppet Labs: IT Automation Software for System Ad-
ministrators. [Online]. Available: https : / / puppetlabs .
com/ (visited on 03/06/2016).

[7] M. Burgess and A. Couch, “Modeling next generation
configuration management tools,” Proceedings of LISA
’06: 20th Large Installation System Administration Con-
ference, pp. 131–147, Dec. 2006. [Online]. Available:
http://usenix.org/event/lisa06/tech/full_papers/burgess/
burgess.pdf.

[8] M. Burgess, “CFEngine: a site configuration engine,”
vol. 8, 1995.

[9] ——, “On the theory of system administration,” Science
of Computer Programming, vol. 49, no. 1–3, pp. 1 –46,
2003, ISSN: 0167-6423. DOI: http://dx.doi.org/10.1016/
j.scico.2003.08.001.

[10] A. Tsalolikhin, State of the Art of Automating System
Administration with Open Source Configuration Man-
agement Tools, Jul. 9, 2010. [Online]. Available: http:
/ / www. verticalsysadmin . com / config2010/ (visited on
04/12/2016).

[11] S. Krum, W. Van Hevelingen, B. Kero, J. Turnbull, and
J. McCune, Pro Puppet, Second Edition. Apress, Dec.
2013, ISBN: 978-1-4302-6040-0.

[12] J. Turnbull, Pulling Strings with Puppet, Configuration
Management Made Easy. Apress, 2007, ISBN: 978-1-
59059-978-5. DOI: 10.1007/978-1-4302-0622-4.

[13] SaltStack automation for CloudOps, ITOps and DevOps
at scale. [Online]. Available: http : / / saltstack . com /
community/ (visited on 03/06/2016).

[14] Puppet Forge. [Online]. Available: https://forge.puppet.
com/ (visited on 03/06/2016).

[15] D. Lutterkort, “Augeas - a configuration api,” in Pro-
ceedings of the Linux Symposium, vol. 2, Jul. 2008,
pp. 47–56. [Online]. Available: http : / / www. landley.
net/kdocs/ols/2008/ols2008v2-pages-47-56.pdf (visited
on 03/04/2016).

[16] CFEngine Reference - Standard Library - Files Bundles
and Bodies. [Online]. Available: {https://docs.cfengine.
com/docs/master/reference-standard-library-files.html}
(visited on 05/05/2016).

[17] Augeas cookbook. [Online]. Available: https : / /github.
com/nhuff/chef-augeas (visited on 05/05/2016).

[18] B. Vanbrabant, “A Framework for Integrated Configu-
ration Management of Distributed Systems,” Faculty of
Engineering Science, KU Leuven, Jun. 2014. [Online].
Available: https://lirias.kuleuven.be/handle/123456789/
453199 (visited on 03/08/2016).

[19] E Dunham, Configuration Management Comparison,
Jun. 5, 2015. [Online]. Available: http://edunham.net/
2015 / 06 / 05 / configuration _ management _ comparison .
html (visited on 03/08/2016).

[20] P. Venezia, Review: Puppet vs. Chef vs. Ansible vs.
Salt, Nov. 21, 2013. [Online]. Available: http://www.
infoworld.com/article/2609482/data-center/data-center-
review-puppet-vs-chef-vs-ansible-vs-salt.html (visited
on 03/08/2016).

[21] T. Delaet, W. Joosen, and B. Van Brabant, “A survey of
system configuration tools.,” in Proceedings of the Large
Installations Systems Administration (LISA) conference,
2010. [Online]. Available: https://www.usenix.org/event/
lisa10/tech/full_papers/Delaet.pdf.

[22] S. Pandey, “Investigating community, reliability and us-
ability of cfengine, chef and puppet,” Network, System
Administration Oslo, and Akershus University College,
2012. [Online]. Available: http://urn.nb.no/URN:NBN:
no-31901 (visited on 12/18/2015).

[23] S. Meyer, P. Healy, T. Lynn, and J. Morrison, “Quality
assurance for open source software configuration man-
agement,” in Symbolic and Numeric Algorithms for Sci-
entific Computing (SYNASC), 2013 15th International
Symposium on, Sep. 2013, pp. 454–461. DOI: 10.1109/
SYNASC.2013.66.

http://dx.doi.org/10.1109/CLOUD.2011.63
http://dx.doi.org/10.1109/MS.2012.85
https://cfengine.com/
https://www.chef.io/chef/
https://www.ansible.com/
https://puppetlabs.com/
https://puppetlabs.com/
http://usenix.org/event/lisa06/tech/full_papers/burgess/burgess.pdf
http://usenix.org/event/lisa06/tech/full_papers/burgess/burgess.pdf
http://dx.doi.org/http://dx.doi.org/10.1016/j.scico.2003.08.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.scico.2003.08.001
http://www.verticalsysadmin.com/config2010/
http://www.verticalsysadmin.com/config2010/
http://dx.doi.org/10.1007/978-1-4302-0622-4
http://saltstack.com/community/
http://saltstack.com/community/
https://forge.puppet.com/
https://forge.puppet.com/
http://www.landley.net/kdocs/ols/2008/ols2008v2-pages-47-56.pdf
http://www.landley.net/kdocs/ols/2008/ols2008v2-pages-47-56.pdf
{https://docs.cfengine.com/docs/master/reference-standard-library-files.html}
{https://docs.cfengine.com/docs/master/reference-standard-library-files.html}
https://github.com/nhuff/chef-augeas
https://github.com/nhuff/chef-augeas
https://lirias.kuleuven.be/handle/123456789/453199
https://lirias.kuleuven.be/handle/123456789/453199
http://edunham.net/2015/06/05/configuration_management_comparison.html
http://edunham.net/2015/06/05/configuration_management_comparison.html
http://edunham.net/2015/06/05/configuration_management_comparison.html
http://www.infoworld.com/article/2609482/data-center/data-center-review-puppet-vs-chef-vs-ansible-vs-salt.html
http://www.infoworld.com/article/2609482/data-center/data-center-review-puppet-vs-chef-vs-ansible-vs-salt.html
http://www.infoworld.com/article/2609482/data-center/data-center-review-puppet-vs-chef-vs-ansible-vs-salt.html
https://www.usenix.org/event/lisa10/tech/full_papers/Delaet.pdf
https://www.usenix.org/event/lisa10/tech/full_papers/Delaet.pdf
http://urn.nb.no/URN:NBN:no-31901
http://urn.nb.no/URN:NBN:no-31901
http://dx.doi.org/10.1109/SYNASC.2013.66
http://dx.doi.org/10.1109/SYNASC.2013.66

	Introduction & Overview
	Configuration Management Tools
	Configuration Files
	Manipulating Configuration Files with Puppet
	Content Defined by Strings
	Pull from Other Sources
	Content Generated by Templates
	Line based manipulation
	Format Specific Modules
	Frontends to Central Configuration Backends
	AUGEAS

	Manipulating Configuration Files with other CM-Tools
	related work
	Conclusion

