
Code Generation from Configuration
Specification Languages

For Program Execution Environment Configuration

Seminar aus Programmiersprachen

Martin Kaufleitner

Matr. Nr.: 1027229

MartinKaufleitner@gmx.at

May 6, 2016

1

mailto:MartinKaufleitner@gmx.at

1 Abstract

A big problem in software development is run-
ning the applications with the correct configuration.
Many application errors arise, because the program
is not executed in the developers intended way. The
two main causes for this error are a different run-
ning environment or different program configura-
tions. Specification languages can be used to cre-
ate a formal, well-defined description of the applica-
tions expected or needed configuration, in order to
specify the exact Program Execution Environment
(PEE). PEE can be defined as ”those components
that are used together with the application’s code to
make the complete system”, this includes proces-
sors, networks, operating systems, call parameters,
configuration files and so on. Additionally to the big
advantage of making the application a lot less error
prone to misconfiguration, a formal and complete
description of an application is the ideal starting
point for automatic code generation. In this paper
we will have a look at common specification lan-
guages and how they can be used to automatically
generate source code.

2 Introduction

When it comes to errors in computer programs, not
always software bugs are responsible for not work-
ing applications. In many cases, the application
runs perfectly in the developers intended environ-
ment, but fails when executed in a different one.
This might also be the case, when a program is exe-
cuted with unexpected parameters or invalid config-
uration. (Tianyin Xu, 2013) In general the setting,
in which a program is executed is the so-called Pro-
gram Execution Environment (PEE). In Alan Burns
(2001) the PEE is defined as ”those components that
are used together with the applications code to make
the complete system”, this includes processors, net-
works, operating systems, call parameters, config-
uration files and so on. This variety of different
components, which have to fit together in order be
able to run the program properly can make the ex-
ecution of software very error prone. A solution,
which targets the problem of misconfiguration is the
specification of the configuration of the program.
In order to be able to create such a specification,
specific Configuration Specification Languages are
used. Such description languages allow to formu-
late the configuration, behavior and structure of the
system. Using an exhausting formal description of
the system which is planned to be developed comes
with two major advantages. First the configuration
is well defined, making the execution of the appli-
cation less error prone, even on different target sys-
tems. In Barroso and Hlzle (2009) it is stated, that

every second major service-level failure of Google’s
main services is caused by misconfiguration. Fur-
thermore a recent study shows, that about 27% of
customer support cases are caused by misconfigu-
ration. Preventing this kind of errors using a com-
plete configuration specification might help to save
a lot of money and unpredictable problems already
in advance.
Furthermore after having this complete and sound
formal description, automatically generating the
software for the final system is the obvious next
step. This paper focuses on how code generation
techniques can be used to generate program code
from formal system configuration specifications.
Basically the paper is separated in four main
parts: After the introduction, specification lan-
guages which are used to specify the systems con-
figuration are explained, this will be done using two
famous examples (SDL and XVCL). In the next sec-
tion, two code generation techniques, which use ex-
actly the previously mentioned specifications will
be explained. Afterwards an example of the two
approaches and evaluation on the usability for PEE
will be given. In the last section, a conclusion of
the paper and a short evaluation will be given.

3 Specification Languages

In this section we will have a look at specification
languages and how they work. Two formal lan-
guages which are suited for code generation will be
stated and explained in further detail. A compar-
ison of more different architecture description lan-
guages can be found e.g. in Medvidovic and Taylor
(2000).

3.1 Specification and Description
Language (SDL)

A well known example of this specific type of formal
languages is the Specification and Description lan-
guage (SDL). The language is specified in UNION
(1999) and is a formal language, which was origi-
nally invented to address the design and implemen-
tation of real-time, distributed and event driven sys-
tems in telecommunication. These are mainly ap-
plications, which consist of connections, adapter,
signals and so on. The provided structures in SDL
are focused on these kind of applications parts. De-
scribing the system is separated in three main parts:
behavior, data and structure. The behavior of
a system can be described by extended finite state
machines. The data description relies on data types
and the structure can be formulated by a hierarchi-
cal decomposition UNION (1999). The main ele-
ment in SDL is the finite state machine, which con-
sist of the following tuple: < S, I, U, d, t, s0 >. S is

Figure 1: Structure of SDL Description (Blocks and
Processes) Becucci et al. (2005)

a finite and non-empty set of states; I is the set of
inputs and U the set of outputs; d defines a tran-
sition function d : S × I → S; t defines the output
function S×I → U and s0 is the initial state. Basi-
cally the behavior description of a generic system is
a composition of several finite state machines. The
SDL description of the system is then a model of
blocks and processes (Figure 1). A more detailed
description about how modeling with SDL works
can be found in the specification UNION (1999).

3.2 XML-based Variant Configura-
tion Language (XVCL)

This meta-programming technique is available as
open source software which was developed at the
National University of Singapore. The goal of
XVCL is not only to provide concepts of describ-
ing a system but already for the automatic gener-
ation of the according source code. The basic con-
cept is the use of ”composition with adaption” rules
to compose program code from reusable, generic
meta-components. The mentioned adaption of the
components can be performed at specified variation
points, defined by XVCL commands. One compo-
nent is an XML file, which contains program code
and different XVCL commands, provided as XML
tags. The components are then composed in a hi-
erarchical structure called x-framework. Basically
higher level meta-components are build from lower
level ones after possible adaptions. Jarzabek et al.
(2003).

4 Code Generation

Now that we have seen a couple of specification lan-
guages, which can be used to describe the behavior
and functionality as well as the specifications of a
software system, we want to have a look at code
generation. Nowadays when it comes to software
development, the goal is often to provide a single
code base, that can be used in different application
scenarios by just adapting it. In this context Soft-
ware Product Lines (SPLs) have to be mentioned.

SPLs are used to ”create talor-made software prod-
ucts by managing and composing reusable assets”
Rosenmüller et al. (2008). This can be done ei-
ther statically before runtime or dynamically dur-
ing program loading or execution. Although many
SPL frameworks force the developer to decide in ad-
vance between static or dynamic composition, there
are approaches to support both e.g. (Rosenmüller
et al., 2008). Well known implementation technique
concepts are preprocessor definitions, components,
collaboration-based designs, aspect-oriented pro-
gramming (AOP), feature-oriented programming
(FOP) and aspectual modules. Also frames, de-
fined in the already mentioned XVCL (Section 3.2)
can be used.

4.1 Code Generation Using Dynamic
Frames

SPL helps to increase the software-making-
productivity by developing in a manner like indus-
trial production. Simpler parts are build together
piece by piece. For this purpose smaller artifacts to
compose the software are needed. In Radošević and
Magdalenić (2011) code templates and application
parameters are used to automatically generate code
according to the source code generator’s configura-
tion. This approach is very close to XVCL and de-
scribes how code can be automatically generated for
XVCL defined systems. Furthermore Specification-
Configuration-Template (SCT) models are used to
describe the code generator. This opens a number
of opportunities regarding code generation:

• it is aspect based,

• uses code templates,

• enables graphical and textual representation
and

• is independent from the program language.

Using SCT, the source code generator is basically
described as a multi-level tree structure which can
be composed bottom up. This means, that more
complex generators are build by composing more
basic generators from the sub-tree. Actually the
SCT generator model was developed for the de-
velopment of web applications, but generally there
are no restrictions for the use of this approach. A
very common application are for code generation
are web applications. The inherit structure of web
applications makes them primary candidates for
code generation by composing the applications of
smaller units since these applications usually al-
ready naturally consist of a number of small scripts.
Another reason is, that for code generation, a well
defined model (using an appropriate description

2

Figure 2: SCT frame Radošević and Magdalenić
(2011)

Figure 3: SCT tree Radošević and Magdalenić
(2011)

language) is needed. This is mostly the case in web
applications. Configurations share this property
of comprehensive formal models and therefore the
same concepts for code generation can also be used
in this area. Therefore such dynamic frames code
generation can be applied for generating code from
configuration specification files.

The SCT generator model consists of three parts
(Figure 2):

• Specification (S) specifies the features of the
application and is basically a list of attribute-
value pairs.

• Configuration (C) defines rules for connect-
ing specifications with templates.

• Template (T) is a small piece of source code
in the target programming language.

The templates also contain connections from the
configuration which are some kind of placeholders,
which can be replaced by other variable code parts
(templates). In this way a tree of SCT frames can
be generated and also graphically represented (Fig-
ure 3).

This can also be represented in a textual XML
format. Figure 4 shows how the textual represen-
tation looks like. The specification part is a list of
attribute-value pairs and the configuration defines,
which templates are connected as shown in figure 5.
In the template section connections to other frames
can be formulated. The frames can be separated in
different levels, where higher level, more complex

Figure 4: SCT frame in XML Radošević and Mag-
dalenić (2011)

Figure 5: SCT frame connections using XML
Radošević and Magdalenić (2011)

frames are composed from lower ones. A more de-
tailed description of the approach can be found in
Radošević and Magdalenić (2011).

4.2 Code Generation Using Declara-
tive Mappings

Declarative Mappings can be used, to automati-
cally generate code from specifications made with
the already mentioned description language SDL.
The idea of the approach proposed in Mansurov and
Ragozin (1999) is, that automatic code generation
is a mapping from a formal specification language,
called the source language (like SDL) onto an im-
perative target language (like C++). The mapping
than basically has to define, how a construct from
the source language can be represented in the tar-
get language. The traditional way of doing this are
direct mappings, following this scheme:

• Executable constructs of the source language,
which have equivalents in the target language
like loops or conditional operators are repre-
sented directly by those equivalents.

• If there is no direct executable equivalent, the

3

construct is modeled by a group of target struc-
tural and executable constructs.

• Structural constructs of the source language,
which have equivalents in the target language
like objects, procedures or packages are repre-
sented directly by those equivalents.

• If there is no direct structural equivalent, the
construct is either transformed during transla-
tion or again modeled by a combination of exe-
cutable and structural constructs of the target
language.

The key idea of declarative or indirect mappings
is to use so-called executable statements as a uni-
form representation for semantically distant con-
structs. This executables are used to build the in-
ternal run-time structures for the specified system.
It is assumed, that the execution of the generated
program can be separated in a start-up and a run-
time part. During start-up the generated executa-
bles are performed to build the internal represen-
tation of the system. During run-time this repre-
sentation can be used by the support system for
executing the program. Therefore generated code
from declarative mappings consists of parts which
are only performed once at start-up and code for
executable statements of the source language. In
Mansurov and Ragozin (1999) it is stated, that
generated code from declarative mappings needs
less so-called glue code. Glue code is needed, to
”stick” the separately generated code parts together
to make them run. This is achieved by using so-
called executable constructs instead of simply trans-
lating one part of the origin language to one of the
source language. Those executable constructs sat-
isfy syntactic and semantic constraints of the target
language and therefore don’t need additional code
to make it run.

5 Evaluation

We have seen two different kinds of automatically
creating source code from description languages, as
well as two different description languages. In this
section we want to evaluate the explained concept in
the sense of usability for PEE configuration specifi-
cation. Until now, the approaches and technologies
were explained rather general. We want to have a
look, how they can be specifically adapted to the
context of Program Execution Environment. For
this purpose, XVCL will be explained in combina-
tion with dynamic frames and the SDL description
language together with dynamic mappings. The
detailed description of the code generation is very
complex and would exceed this paper’s specace, it
can be found in the according papers Radošević

and Magdalenić (2011) for dynamic frames and
Mansurov and Ragozin (1999) for declarative map-
pings. Nevertheless we want to have a look at a
possible implementations to get an idea how the
technologies could be used for PEE.

5.1 XVCL and Dynamic Frames

The approach of using XVCL frames clearly has
its advantages when it comes to web applications.
Since a lot of code snippets are already available,
the implementation of the code generator should
be quite straight forward. As already mentioned,
the availability of good models of this kind of ap-
plications comes very handy additionally. We want
to see now how this can be used for PEE configu-
ration.
Imagine a webapplication which consists of different
parts of the website. We use the SCT model to spec-
ify the websites structure and content, this is the
typical content of a PEE specification configuration.
Using this SCT model, the proposed code genera-
tor from Radošević and Magdalenić (2011) is able to
produce the applications code. We will not explain
all part, for a whole description and the complete
SCT model, please have a look at (Radošević and
Magdalenić, 2011).

5.1.1 Specification

First we want to describe the outputs of the webap-
plications:

<s a t t r i b u t e=”OUTPUT”
value=”index”/>

<s a t t r i b u t e=”OUTPUT”
value=”output cg i ”/>
<s a t t r i b u t e=”OUTPUT”
value=”output html”/>

<s a t t r i b u t e=”OUTPUT”
value=”q u e s t i o n n a i r e ”/>

The index page is then defined as

<s a t t r i b u t e=”index ”
value=”output / index . html”/>

<s a t t r i b u t e=”a p p l i c a t i o n s ”
value=”Database Content Management/>

Later as specifiedin the Configuration ”index”
will replace the according parts in the Template sec-
tion. The same is done with ”application”.

5.1.2 Configuration

Next we have to define the connections between the
specification of the application and the actual code
templates. This is done in the Configuration part
of the SCT model.

4

Figure 6: Example code template Radošević and
Magdalenić (2011)

<c connect ion=”#1”
template=”index . template”/>

<c connect ion=”#2”
template=”s c r i p t . template”/>

<c connect ion=”#3”
template=”form . template”/>

<c connect ion=”#4”
template=”q u e s t i o n n a i r e . template”/>

Now we see, that for each specification entry a
new connection is created and the according tem-
plate is linked.

5.1.3 Template

The actual code templates are not part of the later
PEE configuration specification. They are just
common re-occurring code fragments of webappli-
cations which have to be put together. In the es-
sential parts where applications specific things are
defined, we find references to the Specification using
Configuration. The template is shown in Figure 6.

5.2 SDL and Dynamic Mappings

As already mentioned, SDL comes from the
telecommunication industry and provides therefore
according structures, which can be used for other
types of applications as well. Imagine, the applica-
tion has some kind of connections between different
endpoints and also the signal route and the pro-
cesses output is defined. Again, these definitions are
typical things that should be stated in the config-
uration specification, since they describe the envi-
ronment including the datatypes. An example SDL
specification could look like the following Mansurov
and Ragozin (1999)

SYSTEM TYPE S :
/∗ BLOCK B1 : B1TYPE ∗/
CHANNEL C1 from B2 to B1 v ia G1

with S1 , S2 ;

BLOCK B2 :

SIGNALROUTE R from P to env
with S1 , S2 ;

BLOCK B2 :
CONNECT C1 and R;

PROCESS P:
OUTPUT S1 v ia C1 ;

Now lets have a look at the according C++ code
parts, which were produced using declarative map-
ping:

sytS : : sytS :
chnCl = new SDLChannel (” Chl ” ,

iblkB2 , ((bltB2TYPE∗) iblkB2)
−> gatNoGate ,

iblkB1 , ((bltBITYPE∗) iblkB1)
−> gatG1 ,

newSDLSignal l i s t (s i g S l : : ld ,
s i g S i g 2 : : ld , 0)) ;

BltB2 : : bltB2 :
SgrR=new SDLSignalroute (”R” ,

iprcP , ((prcP ∗) iprcP)
−> gatNoGate ,

iprcENV , ((prcENV∗) iprcENV)
−> gatNoGate ,

newSDLSignal l i s t (s i g S l : : ld ,
s i g S i g 2 : : ld , 0)) ;

BitB2 : : bltB2 :
SgrR −> Connect (&(((sytS ∗) SystemAddr)
−>chnC1)) ;

CurrentGraph−>Output (new s i g S l (S e l f ()) ,
((sytS ∗) SystemAddr)−>chnC1) ;

One can see, that after connections and datatypes
are defined, the basic structure of this kind of ap-
plications is basically fixed and therefore, a map-
ping from specifications structures to target source
code can be done quite straight forward. As already
mentioned, this kind of PEE specification and code
generation should be used, if the applications con-
sists of parts, which can be represented with SDL
structures, otherwise it doesn’t make any sense.

5.2.1 Comparison

The two described approaches are quite different.
Among being the most popular ones, this was one
of the reasons for choosing them as an example in
this paper.
If an application can be more or less easily sepa-
rated in smaller code parts, which maybe even al-
ready exist, the SCT model provides a powerful tool
to specify the applications configuration and auto-
matic code generation support.

5

If the applications is not that easily separable, but
contains a lot of structures which can be found in
the very comprehensive SDL specifications, than
the declarative mapping approach might be the bet-
ter choice.

6 Conclusion

We have seen two main approaches to use a pro-
grams configuration specification for automatic ap-
plication code generation. The first one uses a SCT
model for defining the applications structure, pro-
viding already existing code templates. The second
one maps small parts of the specification to accord-
ing source code parts.
One problem using this techniques might be, that
thinking about the whole applications structure in
advance might be not so easy, since details can eas-
ily be forgotten. In my opinion here comes the big
advantage of this type of code generation, since it is
very flexible. Adding, changing or removing some
of the code snippets is an easy way to change the
applications behavior. This is way harder in SDL,
where the behavior is modeled with complex struc-
tures. On the other hand, there might be applica-
tions which are very process oriented, where using
XVCL would end up in the need of writing a lot
of so-called glue code to make the application run.
In this case, the SDL specification language, which
provides structures for modeling processes and com-
munication and using a declarative mapping after-
wards might suit better. Therefore one can not just
decide on one specification language and code gen-
eration approach. It is very important to have a
close look at the individual application in order to
be able to decide on the best fitting approach.
There are additional problems one might have to
deal with in order to be able to implement this ap-
proaches. A lot of effort has to be put in the proper
creation of the configuration specification files. For
example in XVCL, the code generator needs all code
snippets before it is able to generate parts of an ap-
plication or even the whole program. Depending
on the application, many of them might be re-used
from other applications or are very generic, but oth-
ers might be more complex. Another problem might
also be to convince developer in spending most of
their time in formulating the system with an rel-
atively abstract formal modeling language rather
than programming it right away.
More work has to be done in the flexibility of the ap-
plications description using specification languages
and still providing the automatic code generation.
This is always some kind of trade-off, since a weaker
model makes the code generation harder.

References

Alan Burns, A. W. (2001). Real-Time Systems
and Programming Languages. Pearson Education
Limited, England.

Barroso, L. A. and Hlzle, U. (2009). The Datacenter
as a Computer: An Introduction to the Design of
Warehouse-Scale Machines.

Becucci, M., Fantechi, A., Giromini, M., and
Spinicci, E. (2005). A comparison between
handwritten and automatic generation of c code
and sdl using static analysis; softw.-pract. exp.
Software-Practice & Experience, 2005 Nov 25,
Vol.35(14), pp.1317-1347.

Hervieu, A., Baudry, B., and Gotlieb, A. (2012).
Testing Software and Systems: 24th IFIP WG
6.1 International Conference, ICTSS 2012, Aal-
borg, Denmark, November 19-21, 2012. Proceed-
ings, chapter Managing Execution Environment
Variability during Software Testing: An Indus-
trial Experience, pages 24–38. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Jarzabek, S., Bassett, P., Hongyu Zhang, P., and
Weishan Zhang, P. (2003). Xvcl: Xml-based vari-
ant configuration language.

Mansurov, N. and Ragozin, A. (1999). Using declar-
ative mappings for automatic code generation
from {SDL} and asn.1. In Lahav, R. D. v. B.,
editor, {SDL} ’99, pages 275 – 290. Elsevier Sci-
ence B.V., Amsterdam.

Medvidovic, N. and Taylor, R. (2000). A classi-
fication and comparison framework for software
architecture description languages. IEEE Trans-
actions on Software Engineering, Jan. 2000,
Vol.26(1), pp.70-93.

Radošević, D. and Magdalenić, I. (2011). Source
code generator based on dynamic frames. Jour-
nal of Information and Organizational Sciences,
2011.

Rosenmüller, M., Siegmund, N., Saake, G., and
Apel, S. (2008). Code generation to support
static and dynamic composition of software prod-
uct lines. In Proceedings of the 7th Interna-
tional Conference on Generative Programming
and Component Engineering, GPCE ’08, pages
3–12, New York, NY, USA. ACM.

Tianyin Xu, Jiaqi Zhang, P. H. J. Z. T. S. D. Y. Y.
Z. S. P. (2013). Do not blame users for miscongu-
rations. University of California, San Diego.

UNION, I. T. (1999). Specification and description
language (sdl).

6

	Abstract
	Introduction
	Specification Languages
	Specification and Description Language (SDL)
	XML-based Variant Configuration Language (XVCL)

	Code Generation
	Code Generation Using Dynamic Frames
	Code Generation Using Declarative Mappings

	Evaluation
	XVCL and Dynamic Frames
	Specification
	Configuration
	Template

	SDL and Dynamic Mappings
	Comparison

	Conclusion
	Literature

