
Intra-Procedural Dataflow Analysis
Forward Analyses

Markus Schordan

Institut für Computersprachen

Technische Universität Wien

Markus Schordan October 2, 2007 1

Formalising the Development

• the programming language of interest

– abstract syntax

– labelled program fragments

• abstract flow graphs

– control and data flow between labelled program fragments

• extract equations from the program

– specify the information to be compuated at entry and exit of

labeled fragments

• compute the solution to the equations

– work list algorithms

– compute entry and exit information at entry and exit of labeled

fragments

Markus Schordan October 2, 2007 2

WHILE Language

Syntactic categories

a ∈ AExp artithmetic expressions

b ∈ BExp boolean expressions

S ∈ Stmt statements

x, y ∈ Var variables

n ∈ Num numerals

ℓ ∈ Lab labels

opa ∈ Opa arithmetic operators

opb ∈ Opb boolean operators

opr ∈ Opr relational operators

Markus Schordan October 2, 2007

Abstract Syntax

a ::= x | n | a1 opa a2

b ::= true | false | not b | b1 opb b2 | a1 opr a2

S ::= [x:=a]ℓ | [skip]ℓ

| if [b]ℓ then S1 else S2

| while[b]ℓ do S od

| S1; S2

Assignments and tests are (uniquely) labelled to allow analyses to refer

to these program fragments – the labels correspond to pointers into

the syntax tree. We use abstract syntax and insert paranthesis to

disambiguate syntax.

We will often refer to labelled fragments as elementary blocks.

Markus Schordan October 2, 2007 4

Auxiliary Functions for Flow Graphs

labels(S) set of nodes of flow graphs of S

init(S) initial node of flow graph of S; the unique node where

execution of program starts

final(S) final nodes of flow graph for S; set of nodes where pro-

gram execution may terminate

flow(S) edges of flow graphs for S (used for forward analyses)

flowR(S) reverse edges of flow graphs for S (used for backward

analyses)

blocks(S) set of elementary blocks in a flow graph

Markus Schordan October 2, 2007 5

Computing the Information (1)

S labels(S) init(S) final(S)

[x := a]ℓ {ℓ} ℓ {ℓ}

[skip]ℓ {ℓ} ℓ {ℓ}

S1; S2 labels(S1) ∪

labels(S2)

init(S1) final(S2)

if [b]ℓ then (S1) else (S2) {ℓ} ∪

labels(S1) ∪

labels(S2)

ℓ final(S1)

final(S2)

while [b]ℓ do S od {ℓ} ∪ labels(S) ℓ {ℓ}

Markus Schordan October 2, 2007

Computing the Information (2)

S flow(S) blocks(S)

[x := a]ℓ ∅ {[x := a]ℓ}

[skip]ℓ ∅ {[skip]ℓ}

S1; S2 flow(S1) ∪ flow(S2) ∪

{(ℓ, init(S2)) | ℓ ∈ final(S1)}

blocks(S1) ∪

blocks(S2)

if [b]ℓ then (S1) else (S2) flow(S1) ∪ flow(S2) ∪

{(ℓ, init(S1)), (ℓ, init(S2))}

{[b]ℓ} ∪

blocks(S1) ∪

blocks(S2)

while [b]ℓ do S od {(ℓ, init(S))} ∪ flow(S) ∪

{(ℓ′, ℓ) | ℓ′ ∈ final(S)}

{[b]ℓ} ∪

blocks(S)

flow
R
(S) = {(ℓ, ℓ′) | (ℓ′, ℓ) ∈ flow(S)}

Markus Schordan October 2, 2007 7

Program of Interest

We shall use the notation

• S⋆ to represent the program being analyzed (the “top level”

statement)

• Lab⋆ to represent the labels (labels(S⋆)) appearing in S⋆

• Var⋆ to represent the variables (FV(S⋆)) appearing in S⋆

• Blocks⋆ to represent the elementary blocks (blocks(S⋆)) occuring in

S⋆

• AExp⋆ to represent the set of non-trivial arithmetic subexpressions in

S⋆; an expression is trivial if it is a single variable or constant

• AExp(a), AExp(b) to refer to the set of non-trivial arithmetic

subexpressions of a given arithmetic, respectively boolean,

expression

Markus Schordan October 2, 2007 8

Example Flow Graphs

Example:

[y := x]1; [z := 1]2;while [y > 1]3 do [z := z ∗ y]4; [y := y − 1]5 od; [y :=

[y := x]1

?
[z := 1]2

?
[y > 1]3

?
[z := z∗y]4

?
[y := y−1]5

[y := 0]6

�

?

flow(S⋆) = {(1, 2), (2, 3), (3, 4),

(4, 5), (5, 3), (3, 6)}

[y := x]1

6
[z := 1]2

6
[y > 1]3

6
[z := z∗y]4

6
[y := y−1]5

[y := 0]6

�

-

flowR(S⋆) = {(6, 3), (3, 5), (5, 4),

(4, 3), (3, 2), (2, 1)}

Markus Schordan October 2, 2007

Example

Example:

[y := x]1; [z := 1]2;while [y > 1]3 do [z := z ∗ y]4; [y := y − 1]5 od; [y := 0]6

labels(S⋆) = {1, 2, 3, 4, 5, 6}

init(S⋆) = 1

final(S⋆) = {6}

flow(S⋆) = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 3), (3, 6)}

flow
R
(S⋆) = {(6, 3), (3, 5), (5, 4), (4, 3), (3, 2), (2, 1)}

blocks(S⋆) = {[y := x]1, [z := 1]2, [y > 1]3,

[z := z ∗ y]4, [y := y − 1]5, [y := 0]6}

Markus Schordan October 2, 2007 10

Simplifying Assumptions

The program of interest S⋆ is often assumed to satisfy:

• S⋆ has isolated entries if there are no edges leading into init(S⋆):

∀ℓ : (ℓ, init(S⋆)) /∈ flow(S⋆)

• S⋆ has isolated exits if there are no edges leading out of labels in

final(S⋆):

∀ℓ ∈ final(S⋆), ∀ℓ′ : (ℓ, ℓ′) /∈ flow(S⋆)

• S⋆ is label consistent if

∀Bℓ1
1

, Bℓ2
2

∈ blocks(S⋆) : ℓ1 = ℓ2 → B1 = B2

This holds if S⋆ is uniquely labelled.

Markus Schordan October 2, 2007 11

Reaching Definitions Analysis

The aim of the Reaching Definitions Analysis is to determine

For each program point, which assignmentsmay have been m

and not overwritten, when program execution reaches this point

along some path.

Example:

[y := x]1; [z := 1]2;while [y > 1]3 do [z := z ∗ y]4; [y := y − 1]5 od; [y :=

• The assignments labelled 1,2,4,5 reach the entry at 4.

• Only the assignments labelled 1,4,5 reach the entry at 5.

Markus Schordan October 2, 2007

Basic Idea

RD◦(ℓ)

[x := a]ℓ

RD•(ℓ)

?

?

[...]ℓ1

RD•(ℓ1)

[...]ℓ2

RD•(ℓ2)

RD◦(ℓ)
[...]ℓ

J
J

JĴ

�

⋃

Analysis information: RD◦(ℓ),RD•(ℓ) : Lab⋆ → P(Var⋆ × Lab
?

⋆)

• RD◦(ℓ): the definitions that reach entry of block ℓ.

• RD•(ℓ): the definitions that reach exit of block ℓ.

Analysis properties:

• Direction: forward

• May analysis with combination operator
⋃

Markus Schordan October 2, 2007 13

Analysis of Elementary Blocks

killRD([x := a]ℓ) = {(x, ?)} ∪ {(x, ℓ′) | Bℓ′ is an assignment to x}

killRD([skip]ℓ) = ∅

killRD([b]ℓ) = ∅

genRD([x := a]ℓ) = {(x, ℓ)}

genRD([skip]ℓ) = ∅

genRD([b]ℓ) = ∅

Example:

[x := y]1; [x := x + 3]2;

• killRD([x := y]1) = {(x, ?)} ∪ {(x, 1), (x, 2)}

• genRD([x := y]1) = {(x, 1)}

Markus Schordan October 2, 2007 14

Analysis of the Program

RD◦(ℓ)

[x := a]ℓ

RD•(ℓ)

?

?

[...]ℓ1

RD•(ℓ1)

[...]ℓ2

RD•(

RD◦(ℓ)
[...]ℓ

J
J

JĴ

�

⋃

RD◦(ℓ) =







{(x, ?) | x ∈ FV (S⋆)} : if ℓ = init(S⋆)
⋃

{RD•(ℓ
′)|(ℓ′, ℓ) ∈ flow(S⋆)} : otherwise

RD•(ℓ) = (RD◦(ℓ)\killRD(Bℓ)) ∪ genRD(Bℓ) where Bℓ ∈ bloc

Markus Schordan October 2, 2007

Example

Example:

[y := x]1; [z := 1]2;while [y > 1]3 do [z := z ∗ y]4; [y := y − 1]5 od; [y := 0]6

Equations: Let S1 = {(y, ?), (y, 1), (y, 5), (y, 6)}, S2 = {(z, ?), (z, 2), (z, 4)}

RD◦(1) = {(x, ?), (y, ?), (z, ?)}

RD◦(2) = RD•(1)

RD◦(3) = RD•(2) ∪ RD•(5)

RD◦(4) = RD•(3)

RD◦(5) = RD•(4)

RD◦(6) = RD•(3)

RD•(1) = RD◦(1) \ S1 ∪ {(y, 1)}

RD•(2) = RD◦(2) \ S2 ∪ {(z, 2)}

RD•(3) = RD◦(3)

RD•(4) = RD◦(4) \ S2 ∪ {(z, 4)}

RD•(5) = RD◦(5) \ S1 ∪ {(y, 5)}

RD•(6) = RD◦(6) \ S1 ∪ {(y, 6)}

ℓ RD◦(ℓ) RD•(ℓ)

1 {(x,?),(y,?),(z,?)} {(x,?),(y,1),(z,?)}

2 {(x,?),(y,1),(z,?)} {(x,?),(z,2),(y,1)}

3 {(x,?),(z,4),(z,2),(y,5),(y,1)} {(x,?),(z,4),(z,2),(y,5),(y,1)}

4 {(x,?),(z,4),(z,2),(y,5),(y,1)} {(z,4),(x,?),(y,5),(y,1)}

5 {(z,4),(x,?),(y,5),(y,1)} {(z,4),(x,?),(y,5)}

6 {(x,?),(z,4),(z,2),(y,5),(y,1)} {(z,4),(x,?),(z,2),(y,6)}

Markus Schordan October 2, 2007 16

Solving RD Equations

Input

• a set of reaching definitions equations

Output

• the least solution to the equations: RD◦

Data structures

• The current analysis result for block entries: RD◦

• The worklist W: a list of pairs (ℓ, ℓ′) indicating that the current

analysis result has changed at the entry to the block ℓ and

hence the information must be recomputed for ℓ′.

Markus Schordan October 2, 2007 17

Solving RD Equations - Algorithm

W:=nil;

foreach (ℓ, ℓ′) ∈ flow(S⋆) do W := cons((ℓ, ℓ′),W); od;

foreach ℓ ∈ labels(S⋆) do

if ℓ ∈ init(S⋆) then

RD◦(ℓ) := {(x, ?) | x ∈ FV(S⋆)}

else

RD◦(ℓ) := ∅

fi

od

while W 6= nil do

(ℓ, ℓ′) := head(W);

W := tail(W);

if (RD◦(ℓ)\killRD(Bℓ)) ∪ genRD(Bℓ) 6⊆ RD◦(ℓ′) then

RD◦(ℓ′) := RD◦(ℓ′) ∪ (RD◦(ℓ)\killRD(Bℓ)) ∪ genRD(Bℓ);

foreach ℓ′′ with (ℓ′, ℓ′′) in flow(S⋆) do

W := cons((ℓ′, ℓ′′),W);

od

fi

od

Markus Schordan October 2, 2007

Use-Definition and Definition-Use Chains

• Use-Definition chains or ud chains

each use of a variable is linked to all assignments that reach it

[x := 0]1; [x := 5]2; [y := x]3; [z := x]4

6

• Definition-Use chains or du chains

each assignment of a variable is linked to all uses of it

[x := 0]1; [x := 5]2; [y := x]3; [z := x]4

6 6

Markus Schordan October 2, 2007 19

UD/DU Chains - Defined via RDs

UD,DU : Var⋆ × Lab⋆ → P(Lab⋆)

are defined by

UD(x, ℓ) =







{ℓ′ | (x, ℓ′) ∈ RD◦(ℓ)} : if x ∈ used(Bℓ)

∅ : otherwise

where used([x := a]ℓ) = FV(a), used([b]ℓ) = FV(b), used([skip]ℓ) = ∅

and

DU(x, ℓ) = {ℓ′ | ℓ ∈ UD(x, ℓ′)}

Markus Schordan October 2, 2007 20

Available Expressions Analysis

The aim of the Available Expressions Analysis is to determine

For each program point, which expressionsmust have already

computed, and not later modified, on all paths to the progr

point.

Example:

[x := a+b]1; [y := a∗x]2;while [y > a+b]3 do [a := a + 1]4; [x := a +

• No expression is available at the start of the program

• An expression is considered available if no path kills it

• The expression a+b is available every time execution reaches

test in the loop at 3.

Markus Schordan October 2, 2007

Basic Idea

AE◦(ℓ)

[x := a]ℓ

AE•(ℓ)

?

?

[...]ℓ1

AE•(ℓ1)

[...]ℓ2

AE•(ℓ2)

AE◦(ℓ)
[...]ℓ

J
J

JĴ

�

⋂

Analysis information: AE◦(ℓ),AE•(ℓ) : Lab⋆ → P(AExp⋆)

• AE◦(ℓ): the expressions that have been comp. at entry of block ℓ.

• AE•(ℓ): the expressions that have been comp. at exit of block ℓ.

Analysis properties:

• Direction: forward

• Must analysis with combination operator
⋂

Markus Schordan October 2, 2007 22

Analysis of Elementary Blocks

AE◦(ℓ)

[x := a]ℓ

AE•(ℓ)

?

?

AE◦(ℓ)

[b]ℓ

AE•(ℓ)

?

?

AE◦(ℓ)

[skip]ℓ

AE•(ℓ)

?

?

killAE([x := a]ℓ) = {a′ ∈ AExp⋆ | x ∈ FV (a′)}}

killAE([skip]ℓ) = ∅

killAE([b]
ℓ) = ∅

genAE([x := a]ℓ) = {a′ ∈ AExp(a) | x /∈ FV (a′)}

genAE([skip]ℓ) = ∅

genAE([b]
ℓ) = AExp(b)

AE•(ℓ) = (AE◦(ℓ)\killAE(B
ℓ)) ∪ genAE(B

ℓ) where Bℓ ∈ blocks(S⋆)

Markus Schordan October 2, 2007 23

Analysis of the Program

AE◦(ℓ)

[x := a]ℓ

AE•(ℓ)

?

?

[...]ℓ1

AE•(ℓ1)

[...]ℓ2

AE•(ℓ

AE◦(ℓ)
[...]ℓ

J
J

JĴ

�

⋂

AE◦(ℓ) =







∅ : if ℓ = init(S⋆)
⋂

{AE•(ℓ
′)|(ℓ′, ℓ) ∈ flow(S⋆)} : otherwise

AE•(ℓ) = (AE◦(ℓ)\killAE(B
ℓ)) ∪ genAE(B

ℓ) where Bℓ ∈ bloc

Markus Schordan October 2, 2007

Example

Example:

[x := a+b]1; [y := a∗x]2;while [y > a+b]3 do [a := a + 1]4; [x := a + b]5 od

Equations:

AE◦(1) = ∅

AE◦(2) = AE•(1)

AE◦(3) = AE•(2) ∩ AE•(5)

AE◦(4) = AE•(3)

AE◦(5) = AE•(4)

AE•(1) = AE◦(1) \ {a ∗ x} ∪ {a + b}

AE•(2) = AE◦(2) \ ∅ ∪ {a ∗ x}

AE•(3) = AE◦(3) \ ∅ ∪ {a + b}

AE•(4) = AE◦(4) \ {a + b, a ∗ x, a + 1} ∪ ∅

AE•(5) = AE◦(5) \ {a ∗ x} ∪ {a + b}

ℓ AE◦(ℓ) AE•(ℓ)

1 ∅ {a+b}

2 {a+b} {a+b,a*x}

3 {a+b} {a+b }

4 {a+b} ∅

5 ∅ {a+b}

Markus Schordan October 2, 2007 25

Solving AE Equations

Input

• a set of available expressions equations

Output

• the largest solution to the equations: AE◦

Data structures

• The current analysis result for block entries: AE◦

• The worklist W: a list of pairs (ℓ, ℓ′) indicating that the current

analysis result has changed at the entry to the block ℓ and

hence the information must be recomputed for ℓ′.

Markus Schordan October 2, 2007 26

Solving AE Equations - Algorithm

W:=nil;

foreach (ℓ, ℓ′) ∈ flow(S⋆) do W := cons((ℓ, ℓ′),W); od;

foreach ℓ ∈ labels(S⋆) do

if ℓ ∈ init(S⋆) then

AE◦(ℓ) := ∅

else

AE◦(ℓ) := AExp
⋆

fi

od

while W 6= nil do

(ℓ, ℓ′) := head(W);

W := tail(W);

if (AE◦(ℓ)\killAE(Bℓ)) ∪ genAE(Bℓ) 6⊇ AE◦(ℓ′) then

AE◦(ℓ′) := AE◦(ℓ′) ∩ (AE◦(ℓ)\killAE(Bℓ)) ∪ genAE(Bℓ);

foreach ℓ′′ with (ℓ′, ℓ′′) in flow(S⋆) do

W := cons((ℓ′, ℓ′′),W);

od

fi

od

Markus Schordan October 2, 2007

Common Subexpression Elimination (CSE)

The aim is to find computations that are always performed at least

twice on a given execution path and to eliminate the second and

later occurrences; it uses Available Expressions Analysis to determine

the redundant computations.

Example:

[x := a+b]1; [y := a∗x]2;while [y > a+b]3 do [a := a + 1]4; [x := a + b]5 od

• Expression a+b is computed at 1 and 5 and recomputation can be

eliminated at 3.

Markus Schordan October 2, 2007 28

The Optimization - CSE

Let SN
⋆ be the normalized form of S⋆ such that there is at most one

operator on the right hand side of an assignment.

For each [...a...]ℓ in SN
⋆ with a ∈ AE◦(ℓ) do

• determine the set {[y1 := a]ℓ1 , . . . , [yk := a]ℓk} of elementary blocks

in SN
⋆ “defining” a that reaches [...a...]ℓ

• create a fresh variable u and

– replace each occurrence of [yi := a]ℓi with [u := a]ℓi ;[yi := u]ℓ
′

i for

1 ≤ i ≤ k

– replace [...a...]ℓ with [...u...]ℓ

[x := a]ℓ
′

reaches [...a...]ℓ if there is a path in flow(SN
⋆) from ℓ′ to ℓ that

does not contain any assignments with expression a on the right hand

side and no variable of a is modified.

Markus Schordan October 2, 2007 29

Computing the “reaches” Information

[x := a]ℓ
′

reaches [...a...]ℓ if there is a path in flow(SN
⋆) from ℓ′ to ℓ

does not contain any assignments with expression a on the right

side and no variable of a is modified.

The set of elementary blocks that reaches [...a...]ℓ can be computed

as reaches◦(a, ℓ) where

reaches◦(a, ℓ) =

8

<

:

∅ : if ℓ = init(S⋆)
S

reaches•(a, ℓ′) : otherwise

reaches•(a, ℓ) =

8

>

>

<

>

>

:

{Bℓ} : if Bℓ has the form[x := a]ℓ and x /∈

∅ : if Bℓ has the form[x := ...]ℓ and x ∈

reaches◦(a, ℓ) : otherwise

Markus Schordan October 2, 2007

Example - CSE

Example:

[x := a+b]1; [y := a∗x]2;while [y > a+b]3 do [a := a + 1]4; [x := a + b]5 od

ℓ AE◦(ℓ)

1 ∅

2 {a+b}

3 {a+b}

4 {a+b}

5 ∅

reaches(a+b,3)={[x := a + b]1, [x := a + b]5}

Result of CSE optimization wrt. reaches(a+b,3)

[u := a+b]1
′

; [x := u]1; [y := a∗x]2;while [y > u]3 do [a := a + 1]4; [u := a + b]5
′

; [x := u]5 od

Markus Schordan October 2, 2007 31

Copy Analysis

The aim of Copy Analysis is to determine for each program point ℓ′,

which copy statements [x := y]ℓ that still are relevant (i.e. neither x nor

y have been redefined) when control reaches point ℓ′.

Example:

[a := b]1; if [x > b]2 then ([y := a]3) else ([b := b + 1]4; [y := a]5); [skip]6

ℓ C◦(ℓ) C•(ℓ)

1 ∅ {(a,b)}

2 {(a,b)} {(a,b)}

3 {(a,b)} {(y,a),(a,b)}

4 {(a,b)} ∅

5 ∅ {(y,a)}

6 {(y,a)} {(y,a)}

Markus Schordan October 2, 2007 32

Copy Propagation (CP)

The aim is to find copy statements [x := y]ℓj and eliminate them

possible

If x is used in Bℓ′ then x can be replaced by y in Bℓ′ provided that

• [x := y]ℓj is the only kind of definition of x that reaches Bℓ′ – this

information can be obtained from the def-use chain.

• on every path from ℓj to ℓ′ (including paths going through ℓ′

times but only once through ℓj) there are no redefinitions of

can be detected by Copy Analysis.

Example 1

[u := a+b]1
′

; [x := u]1; [y := a∗x]2;while [y > u]3 do [a := a + 1]4; [u := a + b]5
′

; [

becomes after CP

[u := a+b]1
′

; [y := a∗u]2;while [y > u]3 do [a := a + 1]4; [u := a + b]5
′

; [x := u]5

Markus Schordan October 2, 2007

The Optimization - CP

For each copy statement [x := y]ℓj in S⋆ do

• determine the set {[...x...]ℓ1 , ..., [...x...]ℓi},1 ≤ i ≤ k, of elementary

blocks in S⋆ that uses [x := y]ℓj – this can be computed from

DU(x,ℓj)

• for each [...x...]ℓi in this set determine whether

{(x′, y′) ∈ C◦(ℓi) | x′ = x} = {(x, y)}; if so then [x := y] is the only kind

of definition of x that reaches ℓi from all ℓj .

• if this holds for all i (1 ≤ i ≤ k) then

– remove [x := y]ℓj

– replace [...x...]ℓi with [...y...]ℓi for 1 ≤ i ≤ k.

Markus Schordan October 2, 2007 34

Examples - CP

Example 2

[a := 2]1; if [y > u]2 then ([a := a + 1]3; [x := a]4;) else ([a := a ∗ 2]5; [x := a]6;)[y := y∗x]7;

becomes after CP

[a := 2]1; if [y > u]2 then ([a := a + 1]3; ;) else ([a := a ∗ 2]5; ;)[y := y∗a]7;

Example 3

[a := 10]1; [b := a]2;while [a > 1]3 do [a := a − 1]4; [b := a]5; od [y := y∗b]6;

becomes after CP

[a := 10]1; ;while [a > 1]3 do [a := a − 1]4; ; od [y := y∗a]6;

Markus Schordan October 2, 2007 35

Summary: Forward Analyses

A◦(ℓ)

[x := a]ℓ

A•(ℓ)

?

?

[...]ℓ1

A•(ℓ1)

[...]ℓ2

A•(ℓ2

A◦(ℓ)
[...]ℓ

J
J

JĴ

�

⊔

A◦(ℓ) =







ιA : if ℓ = init(S⋆)
⊔

A{A•(ℓ
′)|(ℓ′, ℓ) ∈ flow(S⋆)} : otherwise

A•(ℓ) = (A◦(ℓ)\killA(Bℓ)) ∪ genA(Bℓ) where Bℓ ∈ blocks(

where

Analysis RD AE

ιA {(x, ?) | x ∈ FV (S⋆)} ∅
⊔

A ∪ ∩

Markus Schordan October 2, 2007

References

• Material for this 2nd lecture

www.complang.tuwien.ac.at/markus/optub.html

• Book

Flemming Nielson, Hanne Riis Nielson, Chris Hankin:

Principles of Program Analysis.

Springer, (2nd edition, 452 pages, ISBN 3-540-65410-0), 2005.

– Chapter 1 (Introduction)

– Chapter 2 (Data Flow Analysis)

Markus Schordan October 2, 2007 37

	Formalising the Development
	WHILE Language
	Abstract Syntax
	Auxiliary Functions for Flow Graphs
	Computing the Information (1)
	Computing the Information (2)
	Program of Interest
	Example Flow Graphs
	Example
	Simplifying Assumptions
	Reaching Definitions Analysis
	Basic Idea
	Analysis of Elementary Blocks
	Analysis of the Program
	Example
	Solving RD Equations
	Solving RD Equations - Algorithm
	Use-Definition and Definition-Use Chains
	UD/DU Chains - Defined via RDs
	Available Expressions Analysis
	Basic Idea
	Analysis of Elementary Blocks
	Analysis of the Program
	Example
	Solving AE Equations
	Solving AE Equations - Algorithm
	Common Subexpression Elimination (CSE)
	The Optimization - CSE
	Computing the ``reaches'' Information
	Example - CSE
	Copy Analysis
	Copy Propagation (CP)
	The Optimization - CP
	Examples - CP
	Summary: Forward Analyses
	References

