# Intra-Procedural Dataflow Analysis 

## Forward Analyses

Markus Schordan

Institut für Computersprachen<br>Technische Universität Wien

## Formalising the Development

- the programming language of interest
- abstract syntax
- labelled program fragments
- abstract flow graphs
- control and data flow between labelled program fragments
- extract equations from the program
- specify the information to be compuated at entry and exit of labeled fragments
- compute the solution to the equations
- work list algorithms
- compute entry and exit information at entry and exit of labeled fragments


## WHILE Language

Syntactic categories
$a \in$ AExp artithmetic expressions
$b \in$ BExp boolean expressions
$S \in$ Stmt statements
$x, y \in$ Var variables
$n \in$ Num numerals
$\ell \quad \in$ Lab labels
$o p_{a} \in \mathrm{Op}_{a} \quad$ arithmetic operators
$o p_{b} \in \mathrm{Op}_{b} \quad$ boolean operators
$o p_{r} \in \mathrm{Op}_{r} \quad$ relational operators

## Abstract Syntax

$$
\begin{array}{rl}
a & ::= \\
b & x|n| a_{1} o p_{a} a_{2} \\
b & ::= \\
\text { true } \mid \text { false } \mid \text { not } b \mid b_{1} \text { op } b_{2} \mid a_{1} o p_{r} a_{2} \\
S & {[\mathrm{x}:=\mathrm{a}]^{\ell} \mid[\text { skip }]^{\ell}} \\
& \mid \text { if }[b]^{\ell} \text { then } S_{1} \text { else } S_{2} \\
& \mid \text { while }[b]^{\ell} \text { do } S \text { od } \\
& \mid S_{1} ; S_{2}
\end{array}
$$

Assignments and tests are (uniquely) labelled to allow analyses to refer to these program fragments - the labels correspond to pointers into the syntax tree. We use abstract syntax and insert paranthesis to disambiguate syntax.

We will often refer to labelled fragments as elementary blocks.

## Auxiliary Functions for Flow Graphs

labels(S) set of nodes of flow graphs of $S$
init(S) initial node of flow graph of $S$; the unique node where execution of program starts
final(S) final nodes of flow graph for $S$; set of nodes where program execution may terminate
flow(S) edges of flow graphs for $S$ (used for forward analyses)
flow ${ }^{R}(\mathrm{~S}) \quad$ reverse edges of flow graphs for $S$ (used for backward analyses)
blocks(S) set of elementary blocks in a flow graph

## Computing the Information (1)

| $S$ | $\operatorname{labels}(S)$ |  | $\operatorname{init}(S)$ | final $(S)$ |
| :--- | :--- | :--- | :--- | :--- |
| $[x:=a]^{\ell}$ | $\{\ell\}$ | $\ell$ | $\{\ell\}$ |  |
| $[\text { skip }]^{\ell}$ | $\{\ell\}$ |  | $\ell$ | $\{\ell\}$ |
| $S_{1} ; S_{2}$ | $\operatorname{labels}\left(S_{1}\right)$ | $\cup$ | $\operatorname{init}\left(S_{1}\right)$ | final $\left(S_{2}\right)$ |
|  | $\operatorname{labels}\left(S_{2}\right)$ |  |  |  |
| if $[b]^{\ell}$ then $\left(S_{1}\right)$ else $\left(S_{2}\right)$ | $\{\ell\}$ | $\cup$ | $\ell$ | final $\left(S_{1}\right)$ |
|  | $\operatorname{labels}\left(S_{1}\right)$ | $\cup$ |  | final $\left(S_{2}\right)$ |
|  | $\operatorname{labels}\left(S_{2}\right)$ |  |  |  |
| while $[b]^{\ell}$ do $S$ od | $\{\ell\} \cup \operatorname{labels}(S)$ | $\ell$ | $\{\ell\}$ |  |

## Computing the Information (2)

| $S$ | flow( $S$ ) | blocks( $S$ ) |
| :---: | :---: | :---: |
| [ $x:=a]^{e}$ | $\emptyset$ | $\left\{[x:=a]^{\ell}\right\}$ |
| $\left[\right.$ skip] ${ }^{\text {e }}$ | $\emptyset$ | \{[skip] ${ }^{\text {e }}$ \} |
| $S_{1} ; S_{2}$ | flow $\left(S_{1}\right) \quad \cup$ flow $\left(S_{2}\right) \quad \cup$ $\left\{\left(\ell, \operatorname{init}\left(S_{2}\right)\right) \mid \ell \in \operatorname{final}\left(S_{1}\right)\right\}$ | $\operatorname{blocks}\left(S_{1}\right)$ blocks $\left(S_{2}\right)$ |
| if $[b]^{\ell}$ then $\left(S_{1}\right)$ else ( $S_{2}$ ) | flow $\left(S_{1}\right) \cup$ flow $\left(S_{2}\right) \cup$ $\left\{\left(\ell, \operatorname{init}\left(S_{1}\right)\right),\left(\ell, \operatorname{init}\left(S_{2}\right)\right)\right\}$ | $\left\{[b]^{\ell}\right\}$ blocks $\left(S_{1}\right)$ blocks $\left(S_{2}\right)$ |
| while $[b]{ }^{\text {d }}$ do $S$ od | $\{(\ell, \operatorname{init}(S))\} \cup \operatorname{flow}(S) \cup$ $\left\{\left(\ell^{\prime}, \ell\right) \mid \ell^{\prime} \in \operatorname{final}(S)\right\}$ | $\left\{[b]^{\ell}\right\}$ blocks( $S$ ) |

## Program of Interest

We shall use the notation

- $S_{\star}$ to represent the program being analyzed (the "top level" statement)
- Lab ${ }_{\star}$ to represent the labels (labels $\left(S_{\star}\right)$ ) appearing in $S_{\star}$
- Var ${ }_{\star}$ to represent the variables $\left(\mathrm{FV}\left(S_{\star}\right)\right)$ appearing in $S_{\star}$
- Blocks ${ }_{\star}$ to represent the elementary blocks (blocks $\left(S_{\star}\right)$ ) occuring in $S_{\star}$
- AExp $_{\star}$ to represent the set of non-trivial arithmetic subexpressions in $S_{\star}$; an expression is trivial if it is a single variable or constant
- $\operatorname{AExp}(a), \operatorname{AExp}(b)$ to refer to the set of non-trivial arithmetic subexpressions of a given arithmetic, respectively boolean, expression


## Example Flow Graphs

## Example:

$[y:=x]^{1} ;[z:=1]^{2} ;$ while $[y>1]^{3}$ do $[z:=z * y]^{4} ;[y:=y-1]^{5}$ od; $[y:=0]^{6}$

flow $\left(S_{\star}\right)=\{(1,2),(2,3),(3,4)$,
$(4,5),(5,3),(3,6)\}$


$$
\begin{aligned}
& \text { flow }^{R}\left(S_{\star}\right)=\{(6,3),(3,5),(5,4), \\
&(4,3),(3,2),(2,1)\}
\end{aligned}
$$

## Example

## Example:

$[y:=x]^{1} ;[z:=1]^{2} ;$ while $[y>1]^{3}$ do $[z:=z * y]^{4} ;[y:=y-1]^{5}$ od; $[y:=0]^{6}$

$$
\begin{aligned}
& \operatorname{labels}\left(S_{\star}\right)=\{1,2,3,4,5,6\} \\
& \operatorname{init}\left(S_{\star}\right)= 1 \\
& \operatorname{final}\left(S_{\star}\right)=\{6\} \\
& \operatorname{flow}\left(S_{\star}\right)=\{(1,2),(2,3),(3,4),(4,5),(5,3),(3,6)\} \\
& \operatorname{flow}^{R}\left(S_{\star}\right)=\{(6,3),(3,5),(5,4),(4,3),(3,2),(2,1)\} \\
&{\operatorname{blocks}\left(S_{\star}\right)}=\left\{[\mathrm{y}:=\mathrm{x}]^{1},[\mathrm{z}:=1]^{2},[\mathrm{y}>1]^{3},\right. \\
& {\left.[\mathrm{z}:=\mathrm{z} * \mathrm{y}]^{4},[\mathrm{y}:=\mathrm{y}-1]^{5},[\mathrm{y}:=0]^{6}\right\} }
\end{aligned}
$$

## Simplifying Assumptions

The program of interest $S_{\star}$ is often assumed to satisfy:

- $S_{\star}$ has isolated entries if there are no edges leading into init $\left(S_{\star}\right)$ :

$$
\forall \ell:\left(\ell, \operatorname{init}\left(S_{\star}\right)\right) \notin \operatorname{flow}\left(S_{\star}\right)
$$

- $S_{\star}$ has isolated exits if there are no edges leading out of labels in final $\left(S_{\star}\right)$ :

$$
\forall \ell \in \operatorname{final}\left(S_{\star}\right), \forall \ell^{\prime}:\left(\ell, \ell^{\prime}\right) \notin \operatorname{flow}\left(S_{\star}\right)
$$

- $S_{\star}$ is label consistent if

$$
\forall B_{1}^{\ell_{1}}, B_{2}^{\ell_{2}} \in \operatorname{blocks}\left(S_{\star}\right): \ell_{1}=\ell_{2} \rightarrow B_{1}=B_{2}
$$

This holds if $S_{\star}$ is uniquely labelled.

## Reaching Definitions Analysis

The aim of the Reaching Definitions Analysis is to determine
For each program point, which assignments may have been made and not overwritten, when program execution reaches this point along some path.

Example:
$[y:=x]^{1} ;[z:=1]^{2} ;$ while $[y>1]^{3}$ do $[z:=z * y]^{4} ;[y:=y-1]^{5}$ od; $[y:=0]^{6}$

- The assignments labelled $1,2,4,5$ reach the entry at 4.
- Only the assignments labelled 1,4,5 reach the entry at 5.


## Basic Idea



Analysis information: $\mathrm{RD}_{\circ}(\ell), \mathrm{RD}_{\bullet}(\ell): \mathrm{Lab}_{\star} \rightarrow \mathcal{P}\left(\mathrm{Var}_{\star} \times \mathrm{Lab}_{\star}^{?}\right)$

- $R D_{\circ}(\ell)$ : the definitions that reach entry of block $\ell$.
- RD. $(\ell)$ : the definitions that reach exit of block $\ell$.

Analysis properties:

- Direction: forward
- May analysis with combination operator $\cup$


## Analysis of Elementary Blocks

$$
\begin{aligned}
\text { kill }_{\mathrm{RD}}\left([x:=a]^{\ell}\right) & =\{(x, ?)\} \cup\left\{\left(x, \ell^{\prime}\right) \mid B^{\ell^{\prime}} \text { is an assignment to } x\right\} \\
\operatorname{kill}_{\mathrm{RD}}\left([\mathrm{skip}]^{\ell}\right) & =\emptyset \\
\operatorname{kill}_{\mathrm{RD}}\left([b]^{\ell}\right) & =\emptyset \\
\operatorname{gen}_{\mathrm{RD}}\left([x:=a]^{\ell}\right) & =\{(x, \ell)\} \\
\operatorname{gen}_{\mathrm{RD}}\left([\operatorname{skip}]^{\ell}\right) & =\emptyset \\
\operatorname{gen}_{\mathrm{RD}}\left([b]^{\ell}\right) & =\emptyset
\end{aligned}
$$

Example:
$[\mathrm{x}:=\mathrm{y}]^{1} ;[\mathrm{x}:=\mathrm{x}+3]^{2}$;

- kill $_{\mathrm{RD}}\left([\mathrm{x}:=\mathrm{y}]^{1}\right)=\{(x, ?)\} \cup\{(x, 1),(x, 2)\}$
- $\operatorname{gen}_{\mathrm{RD}}\left([\mathrm{x}:=\mathrm{y}]^{1}\right)=\{(x, 1)\}$


## Analysis of the Program



$$
\begin{aligned}
& \operatorname{RD}_{\circ}(\ell)= \begin{cases}\left\{(x, ?) \mid x \in F V\left(S_{\star}\right)\right\} & : \text { if } \ell=\operatorname{init}\left(S_{\star}\right) \\
\bigcup\left\{\operatorname{RD}_{\bullet}\left(\ell^{\prime}\right) \mid\left(\ell^{\prime}, \ell\right) \in \text { flow }\left(S_{\star}\right)\right\} & : \text { otherwise }\end{cases} \\
& \operatorname{RD}_{\bullet}(\ell)=\left(\operatorname{RD}_{\circ}(\ell) \backslash \operatorname{kill}_{\left.\mathrm{RD}\left(B^{\ell}\right)\right) \cup \operatorname{gen}_{\mathrm{RD}}\left(B^{\ell}\right)} \quad \text { where } B^{\ell} \in \operatorname{blocks}\left(S_{\star}\right)\right.
\end{aligned}
$$

## Example

## Example:

$[y:=x]^{1} ;[z:=1]^{2} ;$ while $[y>1]^{3}$ do $[z:=z * y]^{4} ;[y:=y-1]^{5}$ od; $[y:=0]^{6}$
Equations: Let $S_{1}=\{(y, ?),(y, 1),(y, 5),(y, 6)\}, S_{2}=\{(z, ?),(z, 2),(z, 4)\}$

$$
\begin{array}{ll}
\operatorname{RD}_{\circ}(1)=\{(x, ?),(y, ?),(z, ?)\} & \mathrm{RD}_{\bullet}(1)=\mathrm{RD}_{\circ}(1) \backslash S_{1} \cup\{(y, 1)\} \\
\mathrm{RD}_{\circ}(2)=\mathrm{RD}_{\bullet}(1) & \mathrm{RD}_{\bullet}(2)=\mathrm{RD}_{\circ}(2) \backslash S_{2} \cup\{(z, 2)\} \\
\mathrm{RD}_{\circ}(3)=\mathrm{RD}_{\bullet}(2) \cup \mathrm{RD}_{\bullet}(5) & \mathrm{RD}_{\bullet}(3)=\mathrm{RD}_{\circ}(3) \\
\operatorname{RD}_{\circ}(4)=\mathrm{RD}_{\bullet}(3) & \mathrm{RD}_{\bullet}(4)=\mathrm{RD}_{\circ}(4) \backslash S_{2} \cup\{(z, 4)\} \\
\operatorname{RD}_{\circ}(5)=\operatorname{RD}_{\bullet}(4) & \mathrm{RD}_{\bullet}(5)=\mathrm{RD}_{\circ}(5) \backslash S_{1} \cup\{(y, 5)\} \\
\operatorname{RD}_{\circ}(6)=\operatorname{RD}_{\bullet}(3) & \mathrm{RD}_{\bullet}(6)=\mathrm{RD}_{\circ}(6) \backslash S_{1} \cup\{(y, 6)\}
\end{array}
$$

| $\ell$ | $R D_{\circ}(\ell)$ | RD $(\ell)$ |
| :--- | :--- | :--- |
| 1 | $\{(x, ?),(y, ?),(z, ?)\}$ | $\{(x, ?),(y, 1),(z, ?)\}$ |
| 2 | $\{(x, ?),(y, 1),(z, ?)\}$ | $\{(x, ?),(z, 2),(y, 1)\}$ |
| 3 | $\{(x, ?),(z, 4),(z, 2),(y, 5),(y, 1)\}$ | $\{(x, ?),(z, 4),(z, 2),(y, 5),(y, 1)\}$ |
| 4 | $\{(x, ?),(z, 4),(z, 2),(y, 5),(y, 1)\}$ | $\{(z, 4),(x, ?),(y, 5),(y, 1)\}$ |
| 5 | $\{(z, 4),(x, ?),(y, 5),(y, 1)\}$ | $\{(z, 4),(x, ?),(y, 5)\}$ |
| 6 | $\{(x, ?),(z, 4),(z, 2),(y, 5),(y, 1)\}$ | $\{(z, 4),(x, ?),(z, 2),(y, 6)\}$ |

## Solving RD Equations

Input

- a set of reaching definitions equations

Output

- the least solution to the equations: RD。

Data structures

- The current analysis result for block entries: RD。
- The worklist W : a list of pairs ( $\ell, \ell^{\prime}$ ) indicating that the current analysis result has changed at the entry to the block $\ell$ and hence the information must be recomputed for $\ell^{\prime}$.


## Solving RD Equations - Algorithm

```
W:=nil;
foreach ( }\ell,\mp@subsup{\ell}{}{\prime})\in\operatorname{flow}(\mp@subsup{S}{\star}{})\mathrm{ do W := cons(( }\ell,\mp@subsup{\ell}{}{\prime}),\textrm{W}); od
foreach \ell labels( }\mp@subsup{S}{\star}{})\mathrm{ do
    if \ell\in\operatorname{init}(\mp@subsup{S}{\star}{})\mathrm{ then}
        RD
    else
        RD
    fi
od
while W\not= nil do
    (\ell,\ell') := head(W);
    W := tail(W);
    if (RD
        RD
        foreach }\mp@subsup{\ell}{}{\prime\prime}\mathrm{ with ( ( ', , 少) in flow( }\mp@subsup{S}{\star}{})\mathrm{ do
            W := cons(( (\ell', \ell') ,W);
        od
    fi
od
```


## Use-Definition and Definition-Use Chains

- Use-Definition chains or ud chains
each use of a variable is linked to all assignments that reach it
$[\mathrm{x}:=0]^{1} ;[\mathrm{x}:=5]^{2} ;[\mathrm{y}:=\mathrm{x}]^{3} ;[\mathrm{z}:=\mathrm{x}]^{4}$

- Definition-Use chains or du chains
each assignment of a variable is linked to all uses of it

$$
[x:=0]^{1} ;[x:=5]^{2} ;[y:=x]^{3} ;[z:=x]^{4}
$$



## UD/DU Chains - Defined via RDs

$$
\text { UD,DU : } \text { Var }_{\star} \times \mathrm{Lab}_{\star} \rightarrow \mathcal{P}\left(\mathrm{Lab}_{\star}\right)
$$

are defined by

$$
\mathrm{UD}(x, \ell)= \begin{cases}\left\{\ell^{\prime} \mid\left(x, \ell^{\prime}\right) \in \mathrm{RD}_{0}(\ell)\right\} & : \\ \emptyset & : \text { if } x \in \operatorname{used}\left(B^{\ell}\right) \\ \emptyset & \text { otherwise }\end{cases}
$$

where used $\left([x:=a]^{\ell}\right)=\operatorname{FV}(a)$, used $\left([b]^{\ell}\right)=\mathrm{FV}(b)$, used $\left([\text { skip }]^{\ell}\right)=\emptyset$
and

$$
\mathrm{DU}(x, \ell)=\left\{\ell^{\prime} \mid \ell \in \mathrm{UD}\left(x, \ell^{\prime}\right)\right\}
$$

## Available Expressions Analysis

The aim of the Available Expressions Analysis is to determine
For each program point, which expressions must have already been computed, and not later modified, on all paths to the program point.

Example:
$[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{1} ;[\mathrm{y}:=\mathrm{a} * \mathrm{x}]^{2} ;$ while $[\mathrm{y}>\mathrm{a}+\mathrm{b}]^{3}$ do $[\mathrm{a}:=\mathrm{a}+1]^{4} ;[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{5}$ od

- No expression is available at the start of the program
- An expression is considered available if no path kills it
- The expression $a+b$ is available every time execution reaches the test in the loop at 3.


## Basic Idea



Analysis information: $\mathrm{AE}_{\circ}(\ell), \mathrm{AE}_{\bullet}(\ell): \mathrm{Lab}_{\star} \rightarrow \mathcal{P}\left(\mathrm{AExp}_{\star}\right)$

- $A E_{0}(\ell)$ : the expressions that have been comp. at entry of block $\ell$.
- AE. ( $\ell$ : the expressions that have been comp. at exit of block $\ell$.

Analysis properties:

- Direction: forward
- Must analysis with combination operator $\bigcap$


## Analysis of Elementary Blocks

$$
\begin{aligned}
& \text { kill } \left._{\mathrm{AE}}\left([x:=a]^{\ell}\right)=\left\{a^{\prime} \in \operatorname{AExp}_{\star} \mid x \in F V\left(a^{\prime}\right)\right\}\right\} \\
& \text { kill }_{\mathrm{AE}}\left([\text { skip }]^{\ell}\right)=\emptyset \\
& \text { kill }_{\mathrm{AE}}\left([b]^{\ell}\right)=\emptyset \\
& \operatorname{gen}_{\mathrm{AE}}\left([x:=a]^{\ell}\right)=\left\{a^{\prime} \in \operatorname{AExp}(a) \mid x \notin F V\left(a^{\prime}\right)\right\} \\
& \operatorname{gen}_{\mathrm{AE}}\left([\text { skip }]^{\ell}\right)=\emptyset \\
& \operatorname{gen}_{\mathrm{AE}}\left([b]^{\ell}\right)=\operatorname{AExp}(b) \\
& \mathrm{AE}_{\mathbf{0}}(\ell)=\left(\mathrm{AE}_{0}(\ell) \backslash \operatorname{kill}_{\mathrm{AE}}\left(B^{\ell}\right)\right) \cup \operatorname{gen}_{\mathrm{AE}}\left(B^{\ell}\right) \quad \text { where } B^{\ell} \in \operatorname{blocks}\left(S_{\star}\right)
\end{aligned}
$$

## Analysis of the Program



$$
\begin{aligned}
& \mathrm{AE}_{\circ}(\ell)= \begin{cases}\emptyset & : \text { if } \ell=\operatorname{init}\left(S_{\star}\right) \\
\bigcap\left\{\mathrm{AE}_{\bullet}\left(\ell^{\prime}\right) \mid\left(\ell^{\prime}, \ell\right) \in \text { flow }\left(S_{\star}\right)\right\} & : \text { otherwise }\end{cases} \\
& \mathrm{AE}_{\bullet}(\ell)=\left(\mathrm{AE}_{\circ}(\ell) \backslash \operatorname{kill}_{\mathrm{AE}}\left(B^{\ell}\right)\right) \cup \operatorname{gen}_{\mathrm{AE}}\left(B^{\ell}\right) \\
& \text { where } B^{\ell} \in \operatorname{blocks}\left(S_{\star}\right)
\end{aligned}
$$

## Example

## Example:

$[x:=a+b]^{1} ;[y:=a * x]^{2} ;$ while $[y>a+b]^{3}$ do $[a:=a+1]^{4} ;[x:=a+b]^{5}$ od
Equations:

$$
\begin{aligned}
\mathrm{AE}_{\circ}(1) & =\emptyset \\
\mathrm{AE}_{\circ}(2) & =\mathrm{A} \mathrm{E}_{\bullet}(1) \\
\mathrm{AE}_{\circ}(3) & =\mathrm{A} \mathrm{E}_{\bullet}(2) \cap \mathrm{A} \mathrm{E}_{\bullet}(5) \\
\mathrm{AE}_{\circ}(4) & =\mathrm{A} \mathrm{E}_{\bullet}(3) \\
\mathrm{AE}_{\circ}(5) & =\mathrm{A} \mathrm{E}_{\bullet}(4)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{AE}_{\bullet}(1)=\mathrm{AE}_{\circ}(1) \backslash\{a * x\} \cup\{a+b\} \\
& \mathrm{AE}_{\bullet}(2)=\mathrm{AE}_{\circ}(2) \backslash \emptyset \cup\{a * x\} \\
& \mathrm{AE}_{\bullet}(3)=\mathrm{AE}_{\circ}(3) \backslash \emptyset \cup\{a+b\} \\
& \mathrm{AE}_{\bullet}(4)=\mathrm{AE}_{\circ}(4) \backslash\{a+b, a * x, a+1\} \cup \emptyset \\
& \mathrm{AE}_{\bullet}(5)=\mathrm{AE}_{\circ}(5) \backslash\{a * x\} \cup\{a+b\}
\end{aligned}
$$

| $\ell$ | $A_{o}(\ell)$ | $A E_{\bullet}(\ell)$ |
| :--- | :--- | :--- |
| 1 | $\emptyset$ | $\{a+b\}$ |
| 2 | $\{a+b\}$ | $\left\{a+b, a^{*} x\right\}$ |
| 3 | $\{a+b\}$ | $\{a+b\}$ |
| 4 | $\{a+b\}$ | $\emptyset$ |
| 5 | $\emptyset$ | $\{a+b\}$ |

## Solving AE Equations

Input

- a set of available expressions equations

Output

- the largest solution to the equations: $\mathrm{AE}_{\text {。 }}$

Data structures

- The current analysis result for block entries: $A E_{\text {。 }}$
- The worklist W : a list of pairs ( $\ell, \ell^{\prime}$ ) indicating that the current analysis result has changed at the entry to the block $\ell$ and hence the information must be recomputed for $\ell^{\prime}$.


## Solving AE Equations - Algorithm

```
W:=nil;
foreach ( }\ell,\mp@subsup{\ell}{}{\prime})\in\operatorname{flow}(\mp@subsup{S}{\star}{})\mathrm{ do W := cons(( }\ell,\mp@subsup{\ell}{}{\prime}),\textrm{W}); od
foreach \ell labels( }\mp@subsup{S}{\star}{})\mathrm{ do
    if \ell}\in\operatorname{init}(\mp@subsup{S}{\star}{})\mathrm{ then
        AE
    else
        AE
    fi
od
while W\not= nil do
    (\ell,\mp@subsup{\ell}{}{\prime}) := head(W);
    W := tail(W);
```




```
        foreach }\mp@subsup{\ell}{}{\prime\prime}\mathrm{ with ( ( '', 生') in flow( }\mp@subsup{S}{\star}{})\mathrm{ do
            W := cons((\ell', \ell')
        od
    fi
od
```


## Common Subexpression Elimination (CSE)

The aim is to find computations that are always performed at least twice on a given execution path and to eliminate the second and later occurrences; it uses Available Expressions Analysis to determine the redundant computations.

Example:
$[x:=a+b]^{1} ;[y:=a * x]^{2} ;$ while $[y>a+b]^{3}$ do $[a:=a+1]^{4} ;[x:=a+b]^{5}$ od

- Expression a+b is computed at 1 and 5 and recomputation can be eliminated at 3.


## The Optimization - CSE

Let $S_{\star}^{N}$ be the normalized form of $S_{\star}$ such that there is at most one operator on the right hand side of an assignment.

For each $[\ldots a \ldots . .]^{\ell}$ in $S_{\star}^{N}$ with $a \in \mathrm{AE}_{\circ}(\ell)$ do

- determine the set $\left\{\left[y_{1}:=a\right]^{\ell_{1}}, \ldots,\left[y_{k}:=a\right]^{\ell_{k}}\right\}$ of elementary blocks in $S_{\star}^{N}$ "defining" $a$ that reaches $[\ldots a \ldots]^{\ell}$
- create a fresh variable $u$ and
- replace each occurrence of $\left[y_{i}:=a\right]^{\ell_{i}}$ with $[u:=a]^{\ell_{i}} ;\left[y_{i}:=u\right]^{\ell_{i}^{\prime}}$ for $1 \leq i \leq k$
- replace $[. . . a . . .]^{\ell}$ with $[. . . u . . .]^{\ell}$
$[x:=a]^{\ell^{\prime}}$ reaches $[\ldots a \ldots]^{\ell}$ if there is a path in flow $\left(S_{\star}^{N}\right)$ from $\ell^{\prime}$ to $\ell$ that does not contain any assignments with expression $a$ on the right hand side and no variable of $a$ is modified.


## Computing the "reaches" Information

$[x:=a]^{\ell^{\prime}}$ reaches $[\ldots a \ldots]^{\ell}$ if there is a path in flow $\left(S_{\star}^{N}\right)$ from $\ell^{\prime}$ to $\ell$ that does not contain any assignments with expression $a$ on the right hand side and no variable of $a$ is modified.

The set of elementary blocks that reaches $[\ldots a \ldots . .]^{\ell}$ can be computed as reaches。 $(a, \ell)$ where

$$
\begin{aligned}
& \text { reaches }_{\circ}(a, \ell)= \begin{cases}\emptyset & : \text { if } \ell=\operatorname{init}\left(S_{\star}\right) \\
\bigcup \text { reaches. }\left(a, \ell^{\prime}\right) & : \text { otherwise }\end{cases} \\
& \text { reaches }_{\bullet}(a, \ell)= \begin{cases}\left\{B^{\ell}\right\} & \text { if } B^{\ell} \text { has the form }[x:=a]^{\ell} \text { and } x \notin \mathrm{FV}(a) \\
\emptyset & : \text { if } B^{\ell} \text { has the form }[x:=\ldots]^{\ell} \text { and } x \in \mathrm{FV}(a) \\
\text { reaches }_{\circ}(a, \ell) & : \text { otherwise }\end{cases}
\end{aligned}
$$

## Example - CSE

## Example:

$[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{1} ;[\mathrm{y}:=\mathrm{a} * \mathrm{x}]^{2}$; while $[\mathrm{y}>\mathrm{a}+\mathrm{b}]^{3}$ do $[\mathrm{a}:=\mathrm{a}+1]^{4} ;[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{5}$ od

| $\ell$ | $\mathrm{AE}_{\mathrm{o}}(\ell)$ |
| :--- | :---: |
| 1 | $\emptyset$ |
| 2 | $\{\mathrm{a}+\mathrm{b}\}$ |
| 3 | $\{\mathrm{a}+\mathrm{b}\}$ |
| 4 | $\{\mathrm{a}+\mathrm{b}\}$ |
| 5 | $\emptyset$ |$\quad \quad \quad$ reaches $(\mathrm{a}+\mathrm{b}, 3)=\left\{[x:=a+b]^{1},[x:=a+b]^{5}\right\}$

Result of CSE optimization wrt. reaches( $a+b, 3$ )
$[u:=a+b]^{1^{\prime}} ;[x:=u]^{1} ;[y:=a * x]^{2} ;$ while $[y>u]^{3}$ do $[a:=a+1]^{4} ;[u:=a+b]^{5^{\prime}} ;[x:=u]^{5}$ od

## Copy Analysis

The aim of Copy Analysis is to determine for each program point $\ell^{\prime}$, which copy statements $[x:=y]^{\ell}$ that still are relevant (i.e. neither $x$ nor $y$ have been redefined) when control reaches point $\ell^{\prime}$.

Example:
$[a:=b]^{1} ;$ if $[x>b]^{2}$ then $\left([y:=a]^{3}\right)$ else $\left([b:=b+1]^{4} ;[y:=a]^{5}\right) ;[s k i p]^{6}$

| $\ell$ | $C_{0}(\ell)$ | $C_{\bullet}(\ell)$ |
| :--- | :--- | :--- |
| 1 | $\emptyset$ | $\{(a, b)\}$ |
| 2 | $\{(a, b)\}$ | $\{(a, b)\}$ |
| 3 | $\{(a, b)\}$ | $\{(y, a),(a, b)\}$ |
| 4 | $\{(a, b)\}$ | $\emptyset$ |
| 5 | $\emptyset$ | $\{(y, a)\}$ |
| 6 | $\{(y, a)\}$ | $\{(y, a)\}$ |

## Copy Propagation (CP)

The aim is to find copy statements $[x:=y]^{\ell_{j}}$ and eliminate them if possible
If $x$ is used in $B^{\ell^{\prime}}$ then $x$ can be replaced by $y$ in $B^{\ell^{\prime}}$ provided that

- $[x:=y]^{\ell_{j}}$ is the only kind of definition of $x$ that reaches $B^{\ell^{\prime}}$ - this information can be obtained from the def-use chain.
- on every path from $\ell_{j}$ to $\ell^{\prime}$ (including paths going through $\ell^{\prime}$ several times but only once through $\ell_{j}$ ) there are no redefinitions of $y$; this can be detected by Copy Analysis.

Example 1
$[u:=a+b]^{1} ;[x:=u]^{1} ;[y:=a * x]^{2} ;$ while $[y>u]^{3}$ do $[a:=a+1]^{4} ;[u:=a+b]^{5^{\prime}} ;[x:=u]^{5}$ od becomes after CP
$[u:=a+b]^{1} ;[y:=a * u]^{2} ;$ while $[y>u]^{3}$ do $[a:=a+1]^{4} ;[u:=a+b]^{5^{\prime}} ;[x:=u]^{5}$ od

## The Optimization - CP

For each copy statement $[x:=y]^{\ell_{j}}$ in $S_{\star}$ do

- determine the set $\left\{[\ldots x . . .]^{\ell_{1}}, \ldots,[\ldots x \ldots]^{\ell_{i}}\right\}, 1 \leq i \leq k$, of elementary blocks in $S_{\star}$ that uses $[x:=y]^{\ell_{j}}$ - this can be computed from $\mathrm{DU}\left(\mathrm{x}, \ell_{j}\right)$
- for each $[\ldots x . . .]^{\ell_{i}}$ in this set determine whether $\left\{\left(x^{\prime}, y^{\prime}\right) \in \mathrm{C}_{0}\left(\ell_{i}\right) \mid x^{\prime}=x\right\}=\{(x, y)\}$; if so then $[x:=y]$ is the only kind of definition of $x$ that reaches $\ell_{i}$ from all $\ell_{j}$.
- if this holds for all $i(1 \leq i \leq k)$ then
- remove $[x:=y]^{\ell_{j}}$
- replace $[\ldots x \ldots]^{\ell_{i}}$ with $[\ldots y . . .]^{\ell_{i}}$ for $1 \leq i \leq k$.


## Examples - CP

## Example 2

$[a:=2]^{1} ;$ if $[y>u]^{2}$ then $\left([a:=a+1]^{3} ;[x:=a]^{4} ;\right.$ ) else $\left([a:=a * 2]^{5} ;[x:=a]^{6} ;\right)[y:=y * x]^{7} ;$
becomes after CP
$[a:=2]^{1} ;$ if $[y>u]^{2}$ then $\left([a:=a+1]^{3} ; \quad ;\right)$ else $\left([a:=a * 2]^{5} ; \quad ;\right)[y:=y * a]^{7} ;$

## Example 3

$[a:=10]^{1} ;[b:=a]^{2}$; while $[a>1]^{3}$ do $[a:=a-1]^{4} ;[b:=a]^{5} ;$ od $[y:=y * b]^{6}$;
becomes after CP
$[a:=10]^{1} ; \quad ;$ while $[a>1]^{3}$ do $[a:=a-1]^{4} ; \quad ;$ od $[y:=y * a]^{6}$;

## Summary: Forward Analyses



## References

- Material for this 2nd lecture
www. complang.tuwien.ac.at/markus/optub.html
- Book

Flemming Nielson, Hanne Riis Nielson, Chris Hankin:
Principles of Program Analysis.
Springer, (2nd edition, 452 pages, ISBN 3-540-65410-0), 2005.

- Chapter 1 (Introduction)
- Chapter 2 (Data Flow Analysis)

