
Optimizing Compilers
Inter-Procedural Dataflow Analysis

Markus Schordan

Institut für Computersprachen

Technische Universität Wien

Markus Schordan October 2, 2007 1



Syntax

P⋆ ::= begin D⋆ S⋆ end

D ::= D; D | proc p(val x; res y) isℓn S end
ℓx

S ::= ... | [call p(a, z)]ℓc

ℓr

Labeling scheme

• procedure declarations

ℓn: for entering the body

ℓx: for exiting the body

• procedure calls

ℓc: for the call

ℓr: for the return

Markus Schordan October 2, 2007 2



Analysing Procedures

We consider procedures with call-by-value and call-by-result

parameters.

Example:

begin

proc fib(val z,u; res v) is

if z<3 then

(v:=u+1; r:=r+1)

else (

call fib (z-1,u,v);

call fib (z-2,v,v)

)

end;

r:=0;

call fib(x,0,y)

end

Markus Schordan October 2, 2007 3



Example Flow Graph

main proc fib(val z, u; res v)

[is]1

?
[z < 3]2

? ?
[v := u+1]3

?
[r := r+1]4

??
[end]9

[call fib(z-1,u, v)]5
6

?
[call fib(z-2, v, v)]7

8

��

�

�

?
[r := 0]10

?
[call fib(x, 0, y)]11

12

?

-

6

Markus Schordan October 2, 2007 4



Flow Graph for Procedures

[call p(a, z)]ℓc

ℓr

proc p(val x; res y) isℓn S end
ℓx

init ℓc ℓn

final {ℓr} {ℓx}

blocks {[call p(a, z)]ℓc

ℓr

} {isℓn} ∪ blocks(S) ∪ {endℓx}

labels {ℓc, ℓr} {ℓc, ℓr} ∪ labels(S)

flow {(ℓc; ℓn), (ℓx; ℓr)} {(ℓn, init(S))} ∪ flow(S) ∪ {ℓ, ℓx) | ℓ ∈ final(S))}

• (ℓc; ℓn) is the flow corresponding to calling a procedure at ℓc and

entering the procedure body at ℓn and

• (ℓx; ℓr) is the flow corresponding to exiting a procedure body at ℓx

and returning to the call at ℓr.

Markus Schordan October 2, 2007 5



Naive Formulation

Treat the three kinds of flow, (ℓ1, ℓ2), (ℓc; ℓn), (ℓx; ℓr) in the same way.

Equation system:

A◦(ℓ) =
⊔
{A•(ℓ

′) | (ℓ′, ℓ) ∈ F ∨ (ℓ′; ℓ) ∈ F} ⊔ ιℓE

A•(ℓ) = fA
ℓ (A◦(ℓ))

• both procedure calls (ℓc; ℓn) and procedure returns (ℓx; ℓr) are

treated like “goto’s”.

• there is no mechanism for ensuring that information flowing along

(ℓc; ℓn) flows back along (ℓx; ℓr) to the same call

• intuitively, the equation system considers a much too large set of

“paths” through the program and hence will be grossly imprecise

(although formally on the safe side)

Markus Schordan October 2, 2007 6



Matching Procedure Entries and Exits

main proc fib(val z, u; res v)

[is]1

?
[z < 3]2

? ?
[v := u+1]3

?
[r := r+1]4

??
[end]9

[call fib(z-1,u, v)]5
6

?
[call fib(z-2, v, v)]7

8

��

�

�

?
[r := 0]10

?
[call fib(x, 0, y)]11

12

?

-

6

We want to overcome the shortcoming of the naive formulation by

restricting attention to paths that have the proper nesting of

procedure calls and exits.

Markus Schordan October 2, 2007 7



General Formulation: Calls and Returns

proc p(val x; res y)

[is]ℓn

?
[end]ℓx

����������1

PPPPPPPPPPi
[call p(a, z)]ℓc

ℓr

'

&

$

%

?

?

?

-�
�

X

X

fℓc,ℓr
(X, Y )

fℓc
(X)

Y

body

Markus Schordan October 2, 2007 8



“Meet” over Valid Paths (MVP)

A complete path from ℓ1 to ℓ2 in P⋆ has proper nesting of procedure

entries and exits; and a procedure returns to the point where it was

called:

CP ℓ1,ℓ2 −→ ℓ1 whenever ℓ1 = ℓ2

CP ℓ1,ℓ3 −→ ℓ1,CP ℓ2,ℓ3 whenever (ℓ1, ℓ2) ∈ flow⋆

CP ℓc,ℓ −→ ℓc,CP ℓn,ℓx
,CP ℓr,ℓ wheneverP⋆ contains [call p(a, z)]ℓc

ℓr

andproc p(val x; res y) isℓn S end
ℓx

Definition: (ℓc, ℓn, ℓr, ℓx) ∈ interflow⋆ if P⋆ contains [call p(a, z)]ℓc

ℓr

as well

as proc p(val x; res y) isℓn S end
ℓx

Markus Schordan October 2, 2007 9



Example

[is]1

?
[z < 3]2

? ?
[v := u+1]3

?
[r := r+1]4

??
[end]9

[call fib(z-1,u, v)]5
6

?
[call fib(z-2, v, v)]7

8

��

�

�

?
[r := 0]10

?
[call fib(x, 0, y)]11

12

?

-

6

CP10,12 → 10,CP11,12

CP11,12 → 11,CP1,9,CP12,12

CP1,9 → 1,CP2,9

CP2,9 → 2,CP3,9

CP2,9 → 2,CP5,9

CP3,9 → 3,CP4,9

CP4,9 → 4,CP9,9

CP5,9 → 5,CP1,9,CP6,9

CP6,9 → 6,CP7,9

CP7,9 → 7,CP1,9,CP8,9

CP8,9 → 8,CP9,9

CP12,12 → 12

CP9,9 → 9

Some valid paths: [10,11,1,2,3,4,9,12] and [10,11,1,2,5,1,2,3,4,9,6,7,1,2,3,4,9,8,9,12]

A non-valid path: [10,11,1,2,5,1,2,3,4,9,12]

Markus Schordan October 2, 2007 10



Valid Paths

A valid path starts at the entry node init⋆ of P⋆, all the procedure exits

match the procedure entries but some procedures might be entered

but not yet exited:

VP⋆ −→ VP init⋆,ℓ
whenever ℓ ∈ Lab⋆

VP ℓ1,ℓ2 −→ ℓ1 whenever ℓ1 = ℓ2

VP ℓ1,ℓ3 −→ ℓ1,VP ℓ2,ℓ3 whenever (ℓ1, ℓ2) ∈ flow⋆

VP ℓc,ℓ −→ ℓc,CP ℓn,ℓx
,VP ℓr,ℓ wheneverP⋆ contains [call p(a, z)]ℓc

ℓr

andproc p(val x; res y) isℓn S end
ℓx

VP ℓc,ℓ −→ ℓc,VP ℓn,ℓ wheneverP⋆ contains [call p(a, z)]ℓc

ℓr

andproc p(val x; res y) isℓn S end
ℓx

Markus Schordan October 2, 2007 11



MVP Solution

MVP◦(ℓ) =
⊔

{f~ℓ
(ι)|~ℓ ∈ vpath◦(ℓ)}

MVP•(ℓ) =
⊔

{f~ℓ
(ι)|~ℓ ∈ vpath•(ℓ)}

where

vpath◦(ℓ) = {[ℓ1, . . . , ℓn−1] | n ≥ 1 ∧ ℓn = ℓ ∧ [ℓ1, . . . , ℓn] is valid path}

vpath•(ℓ) = {[ℓ1, . . . , ℓn] | n ≥ 1 ∧ ℓn = ℓ ∧ [ℓ1, . . . , ℓn] is valid path}

TheMVP solutionmay be undecidable for lattices satisfying the Ascend-

ing Chain Condition, just as was the case for the MOP solution.

Markus Schordan October 2, 2007 12



Making Context Explicit

• The MVP solution may be undecidable for lattices of finite height

(as was the case for the MOP solution)

• We have to reconsider the MFP solution and avoid taking too

many invalid paths into account

• Encode information about the paths taken into data flow

properties themselves

• Introduce context information

Markus Schordan October 2, 2007 13



MFP Counterpart

Context sensitive analysis: add context information

• call strings:

– an abstraction of the sequences of procedure calls that have

been performed so far

– example: the program point where the call was initiated

• assumption sets:

– an abstraction of the states in which previous calls have been

performed

– example: an abstraction of the actual parameters of the call

Context insensitive analysis: take no context information into account.

Markus Schordan October 2, 2007 14



Call Strings as Context

• Encode the path taken

• Only record flows of the form (ℓc, ℓn) corresponding to a procedure

call

• we take as context
a

= Lab∗ where the most recent label ℓc of a

procedure call is at the right end

• Elements of
a
are called call strings

• The sequence of labels ℓ1c , ℓ
2

c , . . . , ℓ
n
c is the call string leading to the

current call which happened at ℓ1c ; the previous calls where at

ℓ2c . . . ℓn
c . If n = 0 then no calls have been performed so far.

For the example program the following call strings are of interest:

Λ, [11], [11, 5], [11, 7], [11, 5, 5], [11, 5, 7].[11, 7, 5], [11, 7, 7], ...

Markus Schordan October 2, 2007 15



Abstracting Call Strings

Problem: call strings can be arbitrarily long (recursive calls)

Solution: truncate the call strings to have length of at most k for some

fixed number k

•
a

= Lab≤k

• k = 0: context insensitive analysis

– Λ (the call string is the empty string)

• k = 1: remember the last procedure call

– Λ, [11], [5], [7]

• k = 2: remember the last two procedure calls

– Λ, [11], [11, 5], [11, 7], [5, 5], [5, 7], [7, 5], [7, 7]

Markus Schordan October 2, 2007 16



References

• Material for this 4th lecture (part 2)

www.complang.tuwien.ac.at/markus/optub.html

• Book

Flemming Nielson, Hanne Riis Nielson, Chris Hankin:

Principles of Program Analysis.

Springer, (450 pages, ISBN 3-540-65410-0), 1999.

– Chapter 2 (Data Flow Analysis)

Markus Schordan October 2, 2007 17


	Syntax
	Analysing Procedures
	Example Flow Graph
	Flow Graph for Procedures
	Naive Formulation
	Matching Procedure Entries and Exits
	General Formulation: Calls and Returns
	 ``Meet'' over Valid Paths (MVP)
	Example
	Valid Paths
	MVP Solution
	Making Context Explicit
	MFP Counterpart
	Call Strings as Context
	Abstracting Call Strings
	References

