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What is GraalVM?

2 Copyright © 2023, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted [Date]



N 4

GraalVM: High-performance polyglot virtual machine ‘/,\/U\)
High-performance optimizing Ahead-of-Time (AOT) "Native Multi-language support
Just-in-Time (JIT) compiler Image" generator

I‘E;:—U-'g__ Javar ’ Javar JS

(1)

> Q
[ ) -- LLVM

$ java -jar MyApplication.jar $ native-image MyApplication.jar e.g., polyglot plugins, JavaScript
$ ./my-application stored procedures in Oracle DB
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The GraalVM compiler

all GraalVM technologies use one compiler
written in Java
"Sea of Nodes" representation:

» some fixed nodes for strict control flow

» most nodes "float" without fixed order
many innovative optimizations
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Compiler Security Aspects
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Threat model - AOT compilation AN Us

high-level code machine code

A 4
\ 4

AQOT compiler

4

Threats:
« Correctness — bug in lowering the high-level code affects the implementation of a security mechanism
« example: access control logic written in a high-level language

« Language level security mechanisms are not correctly implemented by the compiler
« example: missing bounds check on array access

« Unforeseen properties when lowering
« example: constant time cryptography
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Threat model - JIT compilation AN U

untrusted high- managed runtime
level code
> interpreter
> JIT compiler > unt_rusted
machine code

Adding a JIT compiler to a managed runtime increases the attack surface when processing untrusted code. It
allows an attacker to

» place untrusted machine code in the address space
» JIT spray attacks
« speculative execution side channel attacks

» exploit bugs in the compiler implementation

» less likely
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JIT Spraying

Threat Model

- a control-flow memory corruption primitive ¥

« control over JIT compiled sourcecode

_

A

y

public int method1() {
long evilConstant =

return evilConstant;

0xc3585¢;
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Your Application
e N\
Executable Memory
: Application
» JIT Compiler
| P : Code
|
|
|
I
U
|
|
|
-
mov reg, 0xc3585e
I5e: pop rsi |
58: pop rax i
''c3: ret i
\ ienieiietaieieieeieeineintaintait /
11-04-2024




W
Constant Blinding P A/U\s

Your Application

e

The Principle _ " Executable Memory
« encrypt each constant with a random key

« decrypt at runtime

Application
Code

» JIT Compiler

public int method1() {
long evilConstant = 0xc3585e;

return evilConstant;

mov reg, $Ox6895b1\\
Xor reg, $0xabcdgf

Felix Berlakovich Matthias Neugschwandtner Gergd Barany 0x6895b1
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Look Ma, No Constants: Practical Constant Blinding in GraalVM

ABSTRACT an attacker to control not only the program inputs, but also, to
a certain extent, the generated machine code. At the core of JIT _

With the advent of JIT compilers, code-injection attacks have seen a A - ! '
revival in the form of JIT spraying. JIT spraying enables an attacker Spraying is the attacker’s "“bd“'ﬁ’ to predict the machine C?dc result-
to inject gadgets into executable memory, effectively sidestepping ing from carefully crafted input programs. The JIT spraying attack
WeX and ASLR. was initially demonstrated on Adobe’s ActionScript JIT compiler
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Entry Point Randomization / V4

« Control flow hijacking attacks often rely on a predictable code layout
« where in memory do | point my hijacked code pointer to?

« “Cheap” mitigation: randomize offset of JIT compiled code in memory
« prefix function entry point with a random number of trap instructions
« probabilistic defense

int3

int3

int3

sub rsp,0x38

mov rdi, oxeo

add rdi, QWORD PTR [r15+0x8]
mov eax,DWORD PTR [rip+0xfe8]

lea rax,[ri4+rax*8]
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Control Flow Integrity P A/U\s

Prevent attacker from redirecting control flow to arbitrary addresses

Control Flow Integrity (CFl) “enforces” the intended control flow graph
 ties indirect branches (jumps, calls) to their intended targets

Coarse-grained CFl ties indirect branches to landing pads (single target class)

callsite target

endbré4
mov $rax, <target addr>

cmp [$rax], ENDBR64
je succeed

int3

succeed:

call Srax

* Finer-grained CFl ties indirect branches (individual target classes)
» requires precise CFG
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Spectre - Speculative Execution Side Channels / A/U\‘

Spectre allows an attacker to leak arbitrary memory from the

same address space. address space

The attack requires three primitives: stack
. . . . committed
« Trigger speculative execution on an architecturally memory access
infeasible execution path runtime heap |«
* e.g., incorrect branch prediction speculative X
: : " lication h
- Target a memory location that contains sensitive PRI | | memory access
information sensitive data
- Side channel to infer the information read

« timing information + a shared resource, e.g., cache or JIT compiled code
CPU’s execution ports

application code
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Spectre - Compiler Mitigations P A/U\s

* Prevent triggering speculative execution on an architecturally infeasible execution path
- insert speculation barrier instructions on critical branches

« Speculation barriers have a significant impact on performance - be smart about where to place
them. Strategies:

» Every basic block. Comprehensive, but high runtime overhead
« Check if the target basic block is guarded by a bounds check
» Check if the target basic block deoptimizes
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Spectre - Compiler Mitigations

14

Prevent targeting a sensitive memory location — “safe” speculative execution

« force all memory accesses to a given address range

W
O
o4

» use software fault isolation techniques such as masking that are effective during speculative
execution

GraalVM can use compressed references
» object references are base + offset

« the base register is already setto r14

Masking the memory access:

lea
mov
and
mov

reg,
reg2,
reg2,
reg,

[index * scale + displacement]
MASK

reg

[r14 + reg2]
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address space

application heap

runtime heap

JIT compiled code

A

a masking
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GraalVM Internship Program P A/U\)

» Check out https://www.graalvm.org/community/internship/
» Application period closed, but we remain open to skilled candidates with a background in compilers.
» Send your CV to graalvm-internships_ww_grp@oracle.com
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