
Compilers & Security

Gergö Barany

Matthias Neugschwandtner

Oracle Labs Austria

[Date]Copyright © 2023, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted2

What is GraalVM?

High-performance optimizing
Just-in-Time (JIT) compiler

$ java -jar MyApplication.jar

Ahead-of-Time (AOT) "Native
Image" generator

$ native-image MyApplication.jar

$./my-application

Multi-language support

e.g., polyglot plugins, JavaScript
stored procedures in Oracle DB

GraalVM: High-performance polyglot virtual machine

11-04-2024Copyright © 2024, Oracle and/or its affiliates3

• all GraalVM technologies use one compiler

• written in Java

• "Sea of Nodes" representation:

• some fixed nodes for strict control flow

• most nodes "float" without fixed order

• many innovative optimizations

The GraalVM compiler

11-04-2024Copyright © 2024, Oracle and/or its affiliates4

[Date]Copyright © 2023, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted5

Compiler Security Aspects

Threat model – AOT compilation

11-04-2024Copyright © 2024, Oracle and/or its affiliates6

high-level code AOT compiler

Threats:

• Correctness – bug in lowering the high-level code affects the implementation of a security mechanism

• example: access control logic written in a high-level language

• Language level security mechanisms are not correctly implemented by the compiler

• example: missing bounds check on array access

• Unforeseen properties when lowering

• example: constant time cryptography

machine code

Threat model – JIT compilation

11-04-2024Copyright © 2024, Oracle and/or its affiliates7

untrusted high-
level code

managed runtime

interpreter

JIT compiler
untrusted

machine code

Adding a JIT compiler to a managed runtime increases the attack surface when processing untrusted code. It
allows an attacker to

• place untrusted machine code in the address space

• JIT spray attacks

• speculative execution side channel attacks

• exploit bugs in the compiler implementation

• less likely

JIT Spraying

11-04-2024Copyright © 2024, Oracle and/or its affiliates8

Executable Memory

Application
Code

JIT Compiler

Threat Model
• a control-flow memory corruption primitive
• control over JIT compiled sourcecode

Your Application

…
mov reg, 0xc3585e

…

public int method1() {

long evilConstant = 0xc3585e;

return evilConstant;

} 5e: pop rsi

58: pop rax

c3: ret

Constant Blinding

11-04-2024Copyright © 2024, Oracle and/or its affiliates9

The Principle
• encrypt each constant with a random key
• decrypt at runtime

Executable Memory

Application
Code

JIT Compiler

Your Application

mov reg, $0x6895b1
xor reg, $0xabcdef

public int method1() {

long evilConstant = 0xc3585e;

return evilConstant;

}

0x6895b1

⊕ = 0xc3585e

0xabcdef

Entry Point Randomization

11-04-2024Copyright © 2024, Oracle and/or its affiliates10

• Control flow hijacking attacks often rely on a predictable code layout
• where in memory do I point my hijacked code pointer to?

• “Cheap” mitigation: randomize offset of JIT compiled code in memory
• prefix function entry point with a random number of trap instructions
• probabilistic defense

int3
int3
int3
sub rsp,0x38
mov rdi,0xe0
add rdi,QWORD PTR [r15+0x8]
mov eax,DWORD PTR [rip+0xfe8]
lea rax,[r14+rax*8]

Control Flow Integrity

11-04-2024Copyright © 2024, Oracle and/or its affiliates11

• Prevent attacker from redirecting control flow to arbitrary addresses

• Control Flow Integrity (CFI) “enforces” the intended control flow graph
• ties indirect branches (jumps, calls) to their intended targets

• Coarse-grained CFI ties indirect branches to landing pads (single target class)

• Finer-grained CFI ties indirect branches (individual target classes)
• requires precise CFG

callsite
…
mov $rax, <target_addr>
cmp [$rax], ENDBR64
je succeed
int3
succeed:
call $rax

target
endbr64
…

Spectre – Speculative Execution Side Channels

11-04-2024Copyright © 2024, Oracle and/or its affiliates12

Spectre allows an attacker to leak arbitrary memory from the
same address space.

The attack requires three primitives:

• Trigger speculative execution on an architecturally
infeasible execution path

• e.g., incorrect branch prediction

• Target a memory location that contains sensitive
information

• Side channel to infer the information read

• timing information + a shared resource, e.g., cache or
CPU’s execution ports

Spectre – Compiler Mitigations

11-04-2024Copyright © 2024, Oracle and/or its affiliates13

• Prevent triggering speculative execution on an architecturally infeasible execution path
→ insert speculation barrier instructions on critical branches

• Speculation barriers have a significant impact on performance → be smart about where to place
them. Strategies:

• Every basic block. Comprehensive, but high runtime overhead

• Check if the target basic block is guarded by a bounds check

• Check if the target basic block deoptimizes

• Prevent targeting a sensitive memory location – “safe” speculative execution
• force all memory accesses to a given address range
• use software fault isolation techniques such as masking that are effective during speculative

execution

• GraalVM can use compressed references
• object references are base + offset

• the base register is already set to r14

• Masking the memory access:

lea reg, [index * scale + displacement]
mov reg2, MASK
and reg2, reg
mov reg, [r14 + reg2]

Spectre – Compiler Mitigations

11-04-2024Copyright © 2024, Oracle and/or its affiliates14

address space

JIT compiled code

runtime heap

application heap

masking

• Check out https://www.graalvm.org/community/internship/

• Application period closed, but we remain open to skilled candidates with a background in compilers.

• Send your CV to graalvm-internships_ww_grp@oracle.com

GraalVM Internship Program

11-04-2024Copyright © 2024, Oracle and/or its affiliates15

