Stories from the

compiler engineering front
Christoph Mullner

heobroma
SYSTEMS

The solution is embedded.

heobroma
SYSTEMS

Who are we

Embedded design house

Complete solutions for embedded systems (HW, BSP and application)
Building toolchains, cross-compilation, static code analysis, DSLs,
parser generators, custom language runtime, language bindings etc.

Compiler/tools engineering (compiler front)

GCC, LLVM, OpendDK, [glibc, Linux kernel, jemalloc, openssl] ...
Previously: CACAO (Java JIT), HHVM (Facebook’s PHP-JIT, now Hack only)

Current main target architecture: AArch64 (64-bit ARM)

heobroma
SYSTEMS

What we do (at the compiler front)

Measure
SPEC CPU, SPECjbb, dhrystone, coremark, synthetic benchmarks, phpbench...
Compare CPU cores/architectures, run single-threaded or scaling-up, ...

Analyse

Benchmark results, perf reports, reading disassembly, creating microbenchmarks,
reading processor manuals, ask the CPU designer

Improve
Eliminate performance bottlenecks, improve cache utilization, fix compiler bugs

The aarch64 ISA specification allows a left shift amount to be applied
after extension in the range of © to 4 (encoded in the imm3 field).

Example patch mall This is true for at least the following instructions:
November 2018 - ADDS. (excanded regieter)
* SUB (extended register)
The result of this patch can be seen, when compiling the following code:
uint64_t myadd(uint64_t a, uint64_t b)
e GCC emits two instructions ' return a+(((uint8_t)b)<<4);
e Can be done with one }

e Off-by-one bug...

Without the patch the following sequence will be generated:

0000000000000 <myadd>:

0: d37clc21 ubfiz x1, x1, #4, #8
4: 8bo0oo20 add x0, x1, x0
8: d65f03co ret

With the patch the ubfiz will be merged into the add instruction:
0000000000000000 <myadd>:

0: 8b211000 add x0, x0, wl, uxtb #4

4: d65fe3ce ret

Tested with "make check™ and no regressions found.

Working with GCC

e CPU maintenance in AArch64 architecture backend
o Adjusting instruction cost table (challenges: GCC’s cost model vs. reality)
o Instruction scheduling (challenges: out-of-order execution, speculation, multiple issue)
o CPU specific optimization defaults (function alignment)

e Maintenance of ILP32 for AArch64 (arm64)

sizeof (long) == 4 (ILP32)vs. sizeof (long) == 8 (LP64)
Irrelevant for most applications

Much smaller memory usage

Better cache utilization

7-10 % performance gain on average

O
O
O
O
O
o Changes in GCC, glibc, Linux kernel, jemalloc

heobroma
SYSTEMS

Improve cache utilization

High-end CPUs have data caches (“memory hierarchy”)

Load data: data must be in cache, if it's not there it must be transferred there
Transfer in blocks (“cache lines™)

Let’'s assume a cache line size of 64 bytes

Cache hit: load costs 1 cycle (0.3 ns @ 3.0 GHz)

Cache miss: load costs ~300 cycles (100 ns @ 3.0 GHz)

Cache is limited -> cache line eviction

What can be done to improve cache utilization?
o Use as many bits of a cache line as possible

heobroma
SYSTEMS

Improve cache utilization: structs/records

Data often stored as array/list of structs (or records)

Hot loop: iteration over array/list of structs

Access to different fields in each loop iteration

Worst case: we need to get a cache line for a single byte/bit read
Best case: we need all bytes of a cache line

Programmers should optimise...

But compilers could do as well...

struct message { [...]
[... 63 bytes ...] for (i1i=0; 1i<ARRAY SIZE; i++) {
uint8 t is urgent; is_urgent |= msgs[i].is urgent;
b7 }

struct message [...]
msgs [ARRAY SIZE];

heobroma
SYSTEMS

Struct reorg transformations: field reordering o

Works for large structs (bigger than one cache line)
Optimisation 1: order fields by hotness
Optimisation 2: order fields by access order (PGO)
No additional costs

No changes of allocation and access sites required

struct msg { int cmp le msg(a, b) { struct msg {
int index; if (a->ctime < b->ctime) int index;
[... 64 bytes ...] return true; uint64 t create time;
uint64 t ctime; if (a->ctime > b->ctime) [... 64 bytes ...]
}s return false; }s
return (a->index <= b->index);

heobroma
SYSTEMS

Struct reorg transformations: packing

Packing structs to improve data density

Works if unaligned access is no problem on the target machine

Improves cache line utilisation for sequential processing (e.g. array iteration)
GCC offers -fpack-struct=N (N...max. alignment)

Caution: -fpack-struct is dangerous (no escape analysis)

struct s { struct s {
uint8 t a; //offset O uint8_t a; //offset O
void* b; //offset 8 -fpack-struct=1 void* b; //offset 1
void8_ t c; //offset 16 void8 t c; //offset 9

}; //size 24 }; //size 10

heobroma
SYSTEMS

Struct reorg transformations: padding
e Aligning structs to decrease cache line crossing

e Alignment to cache line

e Each struct starts at beginning of cache line

e In array of structs: average size of struct increases

e Improves cache line utilisation for non-sequential processing (e.g. linked lists)

struct s { struct s {

uint8 t af[40]; //offset O uint8 t af[40]; //offset O
struct s* next; //offset 8 struct s* next; //offset 8

}; //size 48 }Y; //size 64

10

heobromd
SYSTEMS

Struct reorg transformations: drop fields

e Abandon unused fields (hey programmer, are you listening?)
e Less memory footprint
e Less cache pollution

struct node { struct node {
char A[]; char A[];
char B[]; //unused long C, D, E, F, G, H;
long C, D, E, F, G, H; double M;

double M; };
b

11

heobroma
SYSTEMS

Struct reorg in compilers

e Compilers optimise (=change) code for improved efficiency
e \We must maintain correctness
o Data layout of struct needs to be equal for all access locations
e \We must follow interoperability rules (calling convention, etc.)
o Not so strict inside a compilation unit (e.g. static inline functions might not exist)

o LTO: whole program is compilation unit
o “That’s cheating!” - Yes, but every compiler does it...

e \What information is needed to let a compiler do struct reorg?
o Which struct can be reorganized? => escape analysis
o How should a struct be reorganized? => profile guided optimization

e Escape analysis: does one instance of a given type leave a compilation unit
e Recognizing all field accesses is not trivial (pointers, casting, aliasing etc.)

12

Working with LLVM: Fold C/x <0 -> X <0

#define MYCONST 3.14f
int mycmp (float x) {
if ((MYCONST / x) < 0)
return 1;
return 0;

e MYCONST>0
e no infinites (“fastmath”)

#define MYCONST 3.14f
int mycmp (float x) {
if (x < 0)
return 1;
return 0;

mycmp (float)
mov w0,
movkwO,
fmovsl,
fdiv sO,
fcmpe
cset w0,
ret

heobromd
SYSTEMS

62915

0x4048, 1sl 1o
w0

sl, sO

sO, #0.0

mi

mycmp (float) :

fcmpe
cset w0,
ret

sO, #0.0
mi

13

Contact

Feel free to contact me:

christoph.muellner@theobroma-systems.com

If you want to join us:

careers@theobroma-systems.com

Our website:

www.theobroma-systems.com

heobroma
SYSTEMS

The solution is embedded.

14

mailto:christoph.muellner@theobroma-systems.com
mailto:careers@theobroma-systems.com
http://www.theobroma-systems.com

