
Stories from the
compiler engineering front

Christoph Müllner

Who are we
Embedded design house

Complete solutions for embedded systems (HW, BSP and application)
Building toolchains, cross-compilation, static code analysis, DSLs,
parser generators, custom language runtime, language bindings etc.

Compiler/tools engineering (compiler front)

GCC, LLVM, OpenJDK, [glibc, Linux kernel, jemalloc, openssl] …
Previously: CACAO (Java JIT), HHVM (Facebook’s PHP-JIT, now Hack only)

Current main target architecture: AArch64 (64-bit ARM)

2

What we do (at the compiler front)
Measure
SPEC CPU, SPECjbb, dhrystone, coremark, synthetic benchmarks, phpbench…
Compare CPU cores/architectures, run single-threaded or scaling-up, ...

Analyse
Benchmark results, perf reports, reading disassembly, creating microbenchmarks,
reading processor manuals, ask the CPU designer

Improve
Eliminate performance bottlenecks, improve cache utilization, fix compiler bugs

3

Example patch mail
November 2018

● GCC emits two instructions
● Can be done with one
● Off-by-one bug...

4

The aarch64 ISA specification allows a left shift amount to be applied
after extension in the range of 0 to 4 (encoded in the imm3 field).

This is true for at least the following instructions:

 * ADD (extend register)
 * ADDS (extended register)
 * SUB (extended register)

The result of this patch can be seen, when compiling the following code:

uint64_t myadd(uint64_t a, uint64_t b)
{
 return a+(((uint8_t)b)<<4);
}

Without the patch the following sequence will be generated:

0000000000000000 <myadd>:
 0: d37c1c21 ubfiz x1, x1, #4, #8
 4: 8b000020 add x0, x1, x0
 8: d65f03c0 ret

With the patch the ubfiz will be merged into the add instruction:

0000000000000000 <myadd>:
 0: 8b211000 add x0, x0, w1, uxtb #4
 4: d65f03c0 ret

Tested with "make check" and no regressions found.

Working with GCC
● CPU maintenance in AArch64 architecture backend

○ Adjusting instruction cost table (challenges: GCC’s cost model vs. reality)
○ Instruction scheduling (challenges: out-of-order execution, speculation, multiple issue)
○ CPU specific optimization defaults (function alignment)

● Maintenance of ILP32 for AArch64 (arm64)
○ sizeof(long) == 4 (ILP32) vs. sizeof(long) == 8 (LP64)
○ Irrelevant for most applications
○ Much smaller memory usage
○ Better cache utilization
○ 7-10 % performance gain on average
○ Changes in GCC, glibc, Linux kernel, jemalloc

5

Improve cache utilization
● High-end CPUs have data caches (“memory hierarchy”)
● Load data: data must be in cache, if it’s not there it must be transferred there
● Transfer in blocks (“cache lines”)
● Let’s assume a cache line size of 64 bytes
● Cache hit: load costs 1 cycle (0.3 ns @ 3.0 GHz)
● Cache miss: load costs ~300 cycles (100 ns @ 3.0 GHz)
● Cache is limited -> cache line eviction
● What can be done to improve cache utilization?

○ Use as many bits of a cache line as possible

6

Improve cache utilization: structs/records
● Data often stored as array/list of structs (or records)
● Hot loop: iteration over array/list of structs
● Access to different fields in each loop iteration
● Worst case: we need to get a cache line for a single byte/bit read
● Best case: we need all bytes of a cache line
● Programmers should optimise…
● But compilers could do as well…

struct message {
 [... 63 bytes ...]
 uint8_t is_urgent;
};
struct message
msgs[ARRAY_SIZE];

[...]
for (i=0; i<ARRAY_SIZE; i++) {
 is_urgent |= msgs[i].is_urgent ;
}
[...]

7

Struct reorg transformations: field reordering
● Works for large structs (bigger than one cache line)
● Optimisation 1: order fields by hotness
● Optimisation 2: order fields by access order (PGO)
● No additional costs
● No changes of allocation and access sites required

struct msg {
 int index;
 [... 64 bytes ...]
 uint64_t ctime;
};

struct msg {
 int index;
 uint64_t create_time;
 [... 64 bytes ...]
};

int cmp_le_msg(a, b) {
 if (a->ctime < b->ctime)
 return true;
 if (a->ctime > b->ctime)
 return false;
 return (a->index <= b->index);
} 8

Struct reorg transformations: packing
● Packing structs to improve data density
● Works if unaligned access is no problem on the target machine
● Improves cache line utilisation for sequential processing (e.g. array iteration)
● GCC offers -fpack-struct=N (N...max. alignment)
● Caution: -fpack-struct is dangerous (no escape analysis)

struct s {
 uint8_t a; //offset 0
 void* b; //offset 8
 void8_t c; //offset 16
}; //size 24

struct s {
 uint8_t a; //offset 0
 void* b; //offset 1
 void8_t c; //offset 9
}; //size 10

9

-fpack-struct=1

Struct reorg transformations: padding
● Aligning structs to decrease cache line crossing
● Alignment to cache line
● Each struct starts at beginning of cache line
● In array of structs: average size of struct increases
● Improves cache line utilisation for non-sequential processing (e.g. linked lists)

struct s {
 uint8_t a[40]; //offset 0
 struct s* next; //offset 8
}; //size 48

struct s {
 uint8_t a[40]; //offset 0
 struct s* next; //offset 8
}; //size 64

10

Struct reorg transformations: drop fields
● Abandon unused fields (hey programmer, are you listening?)
● Less memory footprint
● Less cache pollution

struct node {
 char A[];
 char B[]; //unused
 long C, D, E, F, G, H;
 double M;
};

struct node {
 char A[];
 long C, D, E, F, G, H;
 double M;
};

11

Struct reorg in compilers
● Compilers optimise (=change) code for improved efficiency
● We must maintain correctness

○ Data layout of struct needs to be equal for all access locations

● We must follow interoperability rules (calling convention, etc.)
○ Not so strict inside a compilation unit (e.g. static inline functions might not exist)
○ LTO: whole program is compilation unit
○ “That’s cheating!” - Yes, but every compiler does it...

● What information is needed to let a compiler do struct reorg?
○ Which struct can be reorganized? => escape analysis
○ How should a struct be reorganized? => profile guided optimization

● Escape analysis: does one instance of a given type leave a compilation unit
● Recognizing all field accesses is not trivial (pointers, casting, aliasing etc.)

12

#define MYCONST 3.14f
int mycmp(float x) {

if ((MYCONST / x) < 0)
return 1;

return 0;
}

Working with LLVM: Fold C/x < 0 -> X < 0

● MYCONST > 0
● no infinites (“fastmath”)

mycmp(float):
 mov w0, 62915
 movkw0, 0x4048, lsl 16
 fmovs1, w0
 fdivs0, s1, s0
 fcmpe s0, #0.0
 csetw0, mi
 ret

mycmp(float):
 fcmpe s0, #0.0
 csetw0, mi
 ret

#define MYCONST 3.14f
int mycmp(float x) {

if (x < 0)
return 1;

return 0;
}

13

Contact
Feel free to contact me:

christoph.muellner@theobroma-systems.com

If you want to join us:

careers@theobroma-systems.com

Our website:

www.theobroma-systems.com

14

mailto:christoph.muellner@theobroma-systems.com
mailto:careers@theobroma-systems.com
http://www.theobroma-systems.com

