
r-TuBound: Loop Bounds for WCET Analysis
(tool paper)

Jens Knoop, Laura Kovács, and Jakob Zwirchmayr?

TU Vienna

Abstract. We describe the structure and the usage of a new software tool, called
r-TuBound, for deriving symbolic loop iteration bounds in the worst-case execu-
tion time (WCET) analysis of programs. r-TuBound implements algorithms for
pattern-based recurrence solving and program flow refinement, and it was suc-
cessfully tested on a wide range of examples. The purpose of this article is to
illustrate what r-TuBound can do and how it can be used to derive the WCET of
programs.

1 Introduction
One of the most challenging tasks in the worst-case execution time (WCET) analysis
of programs with loops comes with the task of providing precise bounds, called loop
bounds, over the number of loop iterations.

In this article we describe the r-TuBound tool for deriving automatically loop bounds
in the WCET analysis of programs. Several software packages for this purpose have al-
ready been developed in the past and can be classified within two categories. One line
of research uses powerful symbolic computation algorithms to derive loop bounds (see
e.g. [1]), but makes very little, if any, progress in integrating these loop bounds in the
program analysis environment of WCET. Another line of research makes use of abstract
interpretation based static analysis techniques to provide good WCET estimates; how-
ever, often loop bounds are assumed to be a priori given, in part, by the user (see e.g.
[10, 4, 7]).

The philosophy of our tool is somewhat in the middle of these two research trends.
Rather than a package integrating powerful symbolic computation algorithms, r-Tu-
Bound uses pattern-based recurrence solving (Section 2.4) for a restricted, yet in prac-
tice quite general class of programs. Loop bounds are inferred to be satisfiable instances
of a system of arithmetic constraints over the loop iteration variable. r-TuBound can thus
derive non-trivial loop bounds, but not only that. The inferred loop bounds are further
used in the WCET analysis of programs. To make the loop bound computation tech-
niques scale for the WCET analysis, r-TuBound translates loops with nested condition-
als into loops without conditionals (Section 2.3) using SMT reasoning in conjunction
with program flow refinement. When evaluated on a large class of benchmarks, our ex-
periments indicate the applicability of r-TuBound in the WCET analysis of programs
(Section 3).
? This research is supported by the CeTAT project of TU Vienna. The second author is supported

by an FWF Hertha Firnberg Research grant (T425-N23). This research is partly supported by
the FWF National Research Network RiSE (S11410-N23) and the WWTF PROSEED grant
(ICT C-050).



Fig. 1. The r-TuBound tool.

The goal of this article is to describe what r-TuBound can do, explain how to use
it, and give implementation details about the structure of r-TuBound. We describe only
briefly how r-TuBound obtains its results and refer to [6] for more details.
Implementation and Availability. r-TuBound is implemented in C++ and the Termite
library [9] for Prolog. It is available at www.complang.tuwien.ac.at/jakob/tubound/. All
results presented in this article were obtained on a machine with a 2.53GHZ Intel Core
i5 CPU and 4GB of RAM. To improve readability, we employed minor simplifications
over the input and output format of the examples discussed in the article.

2 r-TuBound: Tool Description and Usage

2.1 Workflow

The overall workflow of r-TuBound is given in Figure 1.
Inputs to r-TuBound are arbitrary C/C++ programs. In the first part of r-TuBound,

the input program is parsed and analysed. As a result all loops and unstructured goto
statements of the input code are extracted. To this end, various static analysis tech-
niques from [10] are applied, such as parsing by the EDG C/C++ frontend, building the
abstract syntax trees and the control-flow graph of the program, interval analysis over
program variables, and points-to analysis. Further, the extracted loops and goto state-
ments are rewritten, whenever possible, into the format given in equation (M). Doing
so requires, among others, the following steps: rewriting while-loops into equivalent
for-loops, rewriting if-statements into if-else statements, translating multi-path loops
with abrupt termination into loops without abrupt termination, and approximating non-
deterministic variable assignments. The aforementioned steps for parsing, analysing
and preprocessing C/C++ programs are summarized in the loopExtraction part of
Figure 1. If a program loop cannot be converted into equation (M) by the loopEx-
traction part of r-TuBound, r-TuBound does not compute a loop bound and hence
the WCET computation step of r-TuBound will fail.

Next, the loops extracted in the format given in equation (M) are analysed and trans-
lated into equation (S), required by the loop bound computation engine of r-TuBound



1 void test() {
2 int i, a[16];
3 i = 0;
4 while (i < 100) {
5 if (a[i] > 0) i = i ∗ 2 + 2;
6 else i = i ∗ 2 + 1;
7 i = i + 1; }}

Fig. 2. Input C program test.c

1 void test() {
2 int i, a[16];
3 for (i = 0; i < 100; i = i + 1)
4 if (a[i] > 0) i = i ∗ 2 + 2;
5 else i = i ∗ 2 + 1;
6 }

Fig. 3. C program test.c satisfying the format requirements of equation (M)

(see Section 2.3). This step is performed in the loopRefine part of Figure 1. As a
result of loopRefine, the multi-path loops of equation (M) are translated into the
simple loops presented in equation (S).

For deriving loop bounds in the loopBounds step of Figure 1, each loop is ana-
lysed separately and bounds are inferred using recurrence solving. The computed loop
bounds are added as annotations to the loops and are further used to calculate the WCET
of the input program, as illustrated in the wcetComputation engine of Figure 1.
Outputs of r-TuBound are thus the WCET of the input programs. For simplicity, in the
current version of r-TuBound, the execution time of a processor cycle is assumed to be
of 20 nanoseconds per cycle.

Let us note that in the wcetComputation and loopExtraction steps of Fig-
ure 1, r-TuBound makes use of the static analysis framework of [10]. The distinctive
features of r-TuBound, and the main contributions of this article, come with the auto-
matic inference of loop bounds (steps loopRefine and loopBounds of Figure 1).
To this end, r-TuBound implements pattern-based recurrence solving and program flow
refinement techniques, and integrates these techniques in the WCET analysis of pro-
grams.

To invoke r-TuBound, one uses the following command.

Command 2.1 : rTuBound program.c

Input: C/C++ program
Output: WCET of program.c
Assumption: Loops of program.c are or can be transformed in equation (M)

EXAMPLE 2.1 Consider the test.c program given in Figure 2. The WCET returned
by r-TuBound is listed below.

Input: rTuBound test.c
Output: 26

The WCET of test.c is thus inferred to be of 26 time units. For doing so, the
while-loop of Figure 2 is first translated into equation (M), as given in Figure 3. Next,
in the WCET computation of Figure 3, we assume for simplicity that all program ex-
pressions take one time unit to execute. Therefore, the execution of one iteration of the
loop between lines 3-5 of Figure 3 takes 4 time units: 1 unit each to check the boolean
conditions of the loop and of the if-statement, 1 unit to execute the assignment state-
ment i = i + 1 from the loop header, and 1 unit to execute the assignment from one
branch of the if-statement, depending on the boolean test a[i] > 0. Further, r-TuBound



for (i = 0; i < 100; i = i + 1) {
if (a[i] > 0) i = i ∗ 2 + 2;
else i = i ∗ 2 + 1;
}

Fig. 4. Multi-path loop from test.c
(mpath1.c)

for (i = 0; i < 100;
i = 2 ∗ i + 3) {

}

Fig. 5. Over-approximation
(simple1.c)

for (i = 0; i < 100;
i = 2 ∗ i + 3) {

#wcet loopbound(6)
}

Fig. 6. Annotated with loop bound
(annot1.c)

computes 6 to be the loop bound, from which it infers that the execution of all loop
iterations takes altogether 24 time units. As the initialisation of the loop counter i, as
well as the last test of the loop condition takes one unit each, the WCET for test.c
is hence computed to be 26 time units.

2.2 Loop Restrictions

The syntax of program loops that can be handled by the loop bound computation part
of r-TuBound is given below.

for (i = a; i � b; i = c ∗ i+ d) {
i = f0(i);
if (g1) i = f1(i); else i = f2(i);
if (g2) i = f3(i); else i = f4(i);
... ;
if (gm) i = f2m−1(i); else i = f2m(i);

}

(M)

where � ∈ {<,>}, g1, . . . , gm are boolean expressions, and a, b, c, d are symbolic
integer-valued constants such that a, b, c, d do not depend on i and c > 0. The expres-
sions fs, with s = 0, . . . , 2m, are non-constant linear integer arithmetic functions over
i; that is, fs(i) = cs ∗ i+ ds where cs, ds are symbolic integer-valued constants that do
not depend on i and cs > 0. Moreover, either i < c∗ i+d and i ≤ fs(i) hold for i ≥ a,
or i > c ∗ i+ d and i ≥ fs(i) are valid for i ≤ a.

Let us make the following observation over the restrictions of (M). As c > 0 and
cs > 0 in equation (M), the functions i 7→ c ∗ i + d and f0(i), . . . , f2m(i) are all
monotonically increasing. Therefore, when translating arbitrary loops into the format
of equation (M) in the loopExtract part of r-TuBound, we proceed as follows. To
ensure that i < c ∗ i + d and i ≤ fs(i) hold it suffices to check whether i < c ∗ i + d
and i ≤ fs(i) are valid for i = a.

In what follows, we fix some terminology used in the rest of the article. In the
sequel whenever we write loop (M) or (M) we refer to a multi-path loop as given in
equation (M). We refer to the variable i in equation (M) as the loop counter or the loop
iteration variable, whereas the assignment i = c ∗ i + d in the loop header is called
the update expression of the loop. The constant a is called the initial value of i. We
consider a loop a simple loop if there is only one execution path through the body, i.e.
if m = 0 in equation (M). Otherwise, if m > 0, the loop (M) is said to be a multi-path
loop. Finally, the assignments i = fs(i), with s = 1, . . . , 2m, are called the conditional
updates of the loop.



2.3 Program Flow Refinement

Given a multi-path loop (M), the loopRefine part of r-TuBound translates (M) into
a simple loop, such that the loop bound of the simple loop is also a loop bound of the
multi-path loop (M).

To this end, the multi-path behavior of (M) is safely over-approximated, as follows.
The boolean conditions g1, . . . , gm are first ignored, yielding thus a loop body with

non-deterministic conditional statements.
Next, for each s = 1, . . . ,m, we are left with choosing ks ∈ {2s− 1, 2s} such that

fks(i) ≤ f2s−1(i) and fks(i) ≤ f2s(i) for every i . a, (1)

where . ∈ {≤,≥} is defined as follows:
- . is ≥ if i < c ∗ i+ d in (M);
- . is ≤ if i > c ∗ i+ d in (M).

The conditional update i = fks(i) determined by (1) yields thus the minimal increase,
respectively the minimal decrease, over i after an arbitrary execution of the if-statement
with ignored test condition gs. Therefore, by replacing each if-statement with the corre-
sponding i = fks

(i) at every iteration of (M), a safe loop bound for (M) can be derived.
However, a ks ∈ {2s− 1, 2s} might not always be computed from (1), as (1) needs

to hold for every i ≥ a (respectively, for every i ≤ a). That is, the existence of ks ∈
{2s−1, 2s} such that (1) is valid depends crucially on the initial value of a. To overcome
this limitation, we proceed as follows. Whenever ks ∈ {2s−1, 2s} cannot be computed
from (1), we take fks

(i) = i . Based on the restrictions of equation (M), we clearly have
fks

(i) = i ≤ f2s−1(i) and fks
(i) = i ≤ f2s(i) for every i ≥ a (respectively, fks

(i) =
i ≥ f2s−1(i) and fks(i) = i ≥ f2s(i) for every i ≤ a). That is, i = fks(i) yields
a smaller increase (respectively, decrease) over i than any branch of the if-statement
with ignored test condition gs. Therefore, if ks cannot be computed from (1), we define
fks

(i) = i and replace the if-statement with the ignored test condition gs by i = fks
(i).

The loop bound for (M) is thus safely over-approximated.
Based on the above observations, equation (M) is translated into the simple loop

(T), given below.

for (i = a; i � b; i = c ∗ i+ d) {
i = f0(i); i = fk1(i); . . . ; i = fkm(i)}

(T)

Let us write φ(i) = c ∗ i + d, and let ◦ denote the standard operation of function
composition. Using this notation, (T) is further rewritten into the simple loop:

for (i = a; i � b; i = (fkm ◦ · · · ◦ fk1 ◦ f0 ◦ φ)(i)) {} (S)

In the sequel whenever we write loop (S) or (S) we refer to a simple loop as given in
equation (S).

Note that as linear functions are closed under composition, (fkm
◦· · ·◦fk1

◦f0◦φ)(i)
yields a non-constant linear integer arithmetic function over i in (S).

The behavior of loopRefine is summarised below.



for (i = 0; i < 100; i = i + 1) {
if (a[i] > 0) i = i ∗ 3 + 2;
else i = i ∗ 2 + 10;
}

Fig. 7. A multi-path loop (mpath2.c)

for (i = 0; i < 100;
i = i + 1) {

}

Fig. 8. Over-approximation
(simple2.c)

for (i = 0; i < 100;
i = i + 1) {

#wcet loopbound(100)
}

Fig. 9. Annotated loop
(annot2.c)

Command 2.2 : loopRefine loop.c

Input: Loop
Output: a simple loop as in (S)
Assumption: loop.c as in (M)

EXAMPLE 2.2 For translating the multi-path loop given in Figure 4, loopRefine
infers that the conditional update corresponding to the else-branch of the conditional
statement of mpath1.c yields the minimal update over i. The multi-path loop of Fig-
ure 4 is thus rewritten into the simple loop given in Figure 5, as listed below.

Input: loopRefine mathp1.c

Output: simple1.c

EXAMPLE 2.3 Consider now the multi-path loop given in Figure 7. Note that 3∗i+2 ≤
2 ∗ i + 10 does not hold for every i ≥ 0. Similarly, 2 ∗ i + 10 ≤ 3 ∗ i + 2 does not
hold for every i ≥ 0. Hence, no conditional update can be chosen by loopRefine
as the update yielding the minimal increase over i. Therefore, the conditional statement
of Figure 7 is over-approximated by the update i = i, and Figure 7 is rewritten into
Figure 8, as shown below.

Input: loopRefine mpath2.c

Output: simple2.c

The task of choosing ks in (1) such that fks
(i) yields the minimal increase over i, is

encoded in r-TuBound as a set of SMT queries. For doing so, we interfaced loopRe-
fine with the Boolector SMT solver [2]. To this end, for each variable in the program,
a bit vector variable is introduced by loopRefine. An array is used to model the
values of the variables involved. This representation allows loopRefine to capture
the loop behavior in a symbolic manner, by using symbolic values to model the updates
to the loop counter.

2.4 Pattern-based Recurrence Solving

Loop bounds of simple loops (S) are derived by the loopBounds part of r-TuBound.
For doing so, loopBounds implements a pattern-based recurrence solving algorithm,
as follows.

An additional variable, denoted by n, is introduced to speak about the value i(n)
of the variable i at the nth iteration of the loop. Using this notation, the update expres-
sion of (S) can be modeled by a linear recurrence equation with constant coefficient.



Such recurrences can always be solved [3]. Hence, i(n) is expressed as a function,
i.e. the closed form, over n and the initial value of i. However, loopBounds does
not implement the general algorithm for solving linear recurrences of arbitrary orders,
but it makes use of the restrictions imposed over (S). Since i is modified in (S) by
a non-constant linear expression over i, the resulting recurrence equation of i(n) is a
(homogeneous) linear recurrence of order 2. Using the generic closed form pattern of
such recurrences, loopBounds derives the closed form of i(n) by instantiating the
symbolic constants in the generic closed form with expressions over the initial value
of i.

The loop bound of (S) is then inferred by computing the smallest n such that the
loop condition holds at the nth loop iteration but it is violated at the n + 1th iteration
(see [6] for more details). That is, the loop bound is obtained as a satisfying assignment
over n such that the formula below holds:

n ≥ 0 ∧ i(n) < b ∧ i(n+ 1) ≥ b, (2)

where the constant b is as given in (S).
The usage of the loop bound computation part of r-TuBound is listed below.

Command 2.3 : loopBounds simple.c

Input: Simple loop as in (S)
Output: Loop annotated with its loop bound

EXAMPLE 2.4 For the simple1.c loop given in Figure 5 we obtain:

Input: loopBounds simple1.c

Output: annot1.c

where annot1.c is listed in Figure 6. The annotation #wcet loopbound(6) spec-
ifies that loopBounds computed 6 as the loop bound of simple1.c.

Similarly, the annotated loop derived by loopBounds for Figure 8 is given in
Figure 9.

The pattern-based recurrence solving algorithm and the satisfiability checking of
(2) are implemented in loopBounds on top of Prolog. loopBounds operates on
the TERM representation offered by the Termite library [9]. Let us note that the closed
form representation of i(n) in equation (2) involves, in general, exponential sequences
in n. Therefore, to compute the value of n such that (2) holds, loopBounds makes
use of the logarithm, floor and ceiling built-in functions of Prolog.

3 r-TuBound: Experimental Results
The overall flow of r-TuBound is given in Figure 1. The program analysis framework
loopExtraction, the loop refinement step loopRefine and the WCET computa-
tion part wcetComputation of r-TuBound are written in C++. The loop bound com-
putation engine loopBounds of r-TuBound is implemented on top of the Termite lib-
rary of Prolog. The loopExtraction and wcetComputation components of r-
TuBound are based on the work presented in [10]. Our contribution in r-TuBound comes



with extending [10] with an automatic inference of symbolic loop bounds. r-TuBound
offers thus software support for the timing analysis of programs by recurrence solving
and SMT based flow refinement in conjunction with WCET techniques (TuBound).

The loopRefine part of r-TuBound comprises about 1000 lines of C++ code,
whereas the loopBounds engine of r-TuBound contains about 350 lines of Prolog
code. The loopRefine and loopBounds parts of r-TuBound are glued together
using a 50 lines shellscript code.

Experimental evaluation and comparison. We evaluated r-TuBound on a number of
benchmarks coming from the WCET community, as well as on some industrial exam-
ples coming from Dassault Aviation. The results are summarized in Table 1. The first
column of Table 1 contains the name of the analysed benchmark suite. The second and
third columns give respectively the lines of code and the total number of loops in the
benchmark suite. The fourth column presents the number of loops for which r-TuBound
inferred loop bounds. For a detailed evaluation of r-TuBound we refer to [5].

The Debie-1d and Mälardalen examples come from the WCET community and
were used in the WCET tool challenges [11]. These examples are fine tuned for the
WCET analysis of programs. Loop bounds need to be either inferred or assumed to be
a priori given as program annotations. r-TuBound inferred loop bounds for 180 loops
out of the 227 loops coming from the WCET community; some of the 180 loops could
not yet be treated by other WCET tools, such as [10, 8]. The remaining 47 loops could
not be handled by r-TuBound as various restrictions of equation (M) were violated.
Namely, the loops had a nested-loop structure, loop updates contained operations over
arrays and pointers, and non-linear and/or floating point arithmetic was used in the loop
body,

We also run r-TuBound on 77 loops coming from Dassault Aviation. These exam-
ples have not yet been optimised for the WCET analysis of programs. When compared
to [10], r-TuBounds infers non-trivial loop bounds for 46 loops. Out of these 46 loops,
the approach of [10] can only handle 39 loops. The 7 loops that can only be treated
by r-TuBound involved nested loops and multi-path reasoning with non-trivial linear
arithmetic updates over the loop counter. r-TuBound failed on 31 loops coming from
Dassault Aviation, as these loops required the analysis of nested loops with floating
point arithmetic.

The current version of r-TuBound has successfully participated in the WCET 2011
tool challenge [11]. When compared to other WCET tools, such as Sweet [4] and
OTAWA+oRange [7], we observed that the annotation language of r-TuBound has very
little support for specifying variable input ranges or program execution frequencies.
Moreover, r-TuBound was the only WCET tool whose results were obtained on the
C16x microcontroller; the other WCET tools target the ARM7 or the Freescale MPC555x
microcontrollers. Extending the annotation language and microcontroller support of r-
TuBound is left for further work.

Experiments and runtime. We also analysed the runtime of the flow refinement and
recurrence solving parts of r-TuBound. The pattern-based recurrence solving approach
of loopBounds essentially takes no time: for every loop we tried, a loop bound is
inferred in less than 0.5 seconds. The runtime performance of loopRefine is also
relatively good; the flow refinement (i.e. parsing the code, executing the required SMT



Benchmark Suite # LoC # Loops r-TuBound
Mälardalen ∼ 7500 152 121
Debie-1d ∼ 6100 75 59
Dassault ∼ 1000 77 46

Total ∼ 14700 304 226

Table 1. Experimental results with r-TuBound.

queries and writing back the simplified loop) of multi-paths loops with 1000 lines of
code takes on average 5 - 20 seconds.

Our experiments thus suggest that r-TuBound is quite fast in practical application.
We believe that improving the SMT based reasoning engine of loopRefine, for ex-
ample by applying program slicing before monotonicity analysis, would yield overall
better execution times for r-TuBound. We leave this task for further investigation.

4 Conclusion
r-TuBound offers software support for generating loop bounds in the WCET analysis
of programs. The distinctive features of r-TuBound come with a pattern-based recur-
rence solving algorithm and over-approximating loop bounds of multi-path loops. For
doing so, multi-path loops are translated into simple loops by using SMT encodings
and deriving minimal updates over the loop counter. We presented the workflow of r-
TuBound, illustrated how r-TuBound can be used on some example problems, and gave
an overview on experimental results.

References
1. R. Blanc, T. Henzinger, T. Hottelier, and L. Kovacs. ABC: Algebraic Bound Computation

for Loops. In Proc. of LPAR-16, pages 103–118, 2010.
2. R. Brummayer and A. Biere. Boolector: An Efficient SMT Solver for Bit-Vectors and Arrays.

In Proc. of TACAS, pages 174–177, 2009.
3. G. Everest, A. van der Poorten, I. Shparlinski, and T. Ward. Recurrence Sequences, volume

104 of Mathematical Surveys and Monographs. American Mathematical Society, 2003.
4. J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper. Automatic Derivation of Loop

Bounds and Infeasible Paths for WCET Analysis Using Abstract Execution. In Proc. of
RTSS, pages 57–66, 2006.

5. J. Knoop, L. Kovacs, and J. Zwirchmayr. An Evaluation of WCET Analysis using Symbolic
Loop Bounds. In Proc. of WCET, 2011.

6. J. Knoop, L. Kovacs, and J. Zwirchmayr. Symbolic Loop Bound Computation for WCET
Analysis. In Proc. of PSI, pages 116 – 126, 2011.

7. Marianne De Michiel and Armelle Bonenfant and Hugues Cassé and Pascal Sainrat. Static
Loop Bound Analysis of C Programs Based on Flow Analysis and Abstract Interpretation.
In RTCSA, pages 161–166, 2008.

8. Martin Schoeberl and Wolfgang Puffitsch and Rasmus Ulslev Pedersen and Benedikt Huber.
Worst-case Execution Time Analysis for a Java Processor. Software: Practice and Experi-
ence, 40/6:507–542, 2010.

9. A. Prantl. The Termite Library. http://www.complang.tuwien.ac.at/adrian/termite/Manual/.
10. A. Prantl, M. Schordan, and J. Knoop. TuBound - A Conceptually New Tool for WCET

Analysis. In Proc. of WCET, pages 141–148, 2008.
11. R. von Hanxleden et al. The WCET Tool Challenge 2011: Report. In Proc. of WCET, 2011.

under journal submission.


