
A Satisfiability Modulo Theories Memory-Model
and Assertion Checker for C

Jakob Zwirchmayr

Institute of Computer Languages (E185) - Compilers and Languages Group (E185-1)
Vienna University of Technology, jakob@complang.tuwien.ac.at

Abstract. This paper presents SmacC, a tool for software verification
and SMT benchmark generation. It builds upon a state-of-the-art SMT
solver, Boolector, developed at FMV institute at JKU, Linz. SmacC gets
as input a program that lies in the supported subset of C and transforms
it to SMT formulas. The SMT representation allows verification of prop-
erties that are required to hold on the program. SmacC symbolically ex-
ecutes the programs source code, establishing an SMT (memory-) model
for the program. Some statements and expressions require the construc-
tion of SMT formulas specifying properties about them, the SMT solver
decides their satisfiability. If properties checked do not hold on the SMT
representation, they do not hold on the real program. SmacC can gener-
ate SMT benchmarks by dumping the SMT instances for those checks.

1 Introduction

SmacC symbolically executes a C program in order to find defects or to create
benchmarks to be replayed by an SMT solver. A program consists of a set of
instructions and some memory storing instructions and data of the program.
When the program is executed, instructions are fetched from memory and then
executed by the CPU, repeatedly, in some cases altering data in memory. When
the program is symbolically executed by SmacC, instructions are extracted from
the source and stored in abstract syntax trees (ASTs), organised in a code-
list (CL). The CL is then analyzed, extracting paths through the program. A
Boolector array variable models the memory of the program. Execution of a
path establishes constraints on the array, reflecting valid memory. Additionally,
some statements executed can be checked for defects by constructing an SMT
formula representing an error condition and checking its satisfiability using the
SMT solver.

The front-end of SmacC consists of an input buffer, a lexer and a parser that
parses the source code into ASTs and CLs, respectively. The CLs, containing syn-
tax trees, represent paths through the program. Code-lists are the connection
to the back-end that symbolically executes them one ofter another, establishing
a memory-model in SMT for each path through the program. Loops are han-
dled by loop-unrolling which transforms loops to sequential if statements. When
execution of the program might branch, CLs for each branch are generated.

2 Jakob Zwirchmayr

Checks can be dumped to a file as BTOR or SMT-LIB formula to be used
as benchmark for an SMT solver. A check is a BTOR formula that must be
satisfiable or unsatisfiable on the SMT representation depending on the state-
ment or expression that triggered it. One can differ between two kinds of checks,
verification checks:

– Assertion statement: verify that assertion statement cannot fail,
– Return statements: check if the program returns a specified value in all cases

or check if a specified return value is possible,
– Path conditions: check if an if / else condition is unsatisfiable

and defect checks:

– Assignment: checks validity of address a value is assigned to,
– Indirection: checks validity of address being dereferenced,
– Division by zero: checks if division by zero is possible,
– Overflow: checks for overflow on arithmetic operations,

2 Boolector and BTOR Format

BTOR was developed initially as native format for SMT solver Boolector, sup-
porting the theory of bit-vectors and the theory of one-dimensional arrays, as
supported by SMT solver Boolector. In addition it supports an extension that
can be used for model checking [1].
The SMT solver Boolector was developed at the Institute for Formal Models and
Verification of the Johannes Kepler University and is an efficient SMT solver for
the combination of the quantifier-free fragment of the theory of bit-vectors and
extensional theory of arrays and equality. The quantifier-free theory of bit-vectors
enables Boolector to solve formulas including modular arithmetic, comparison,
two’s complement, logical operations, shifting, concatenation and bit-extraction.
The theory of arrays allows natural modelling of memory. Fig. 1 shows the basic
usage of Boolector in its stand-alone version.

3 Front-End and supported C Subset

Programs supplied to SmacC must compile with an ANSI C compatible compiler,
erroneous programs cannot be handled. Gcc was used as compiler to build SmacC
and to compile C examples against which the behaviour of SmacC was tested. In
general, a program supplied to SmacC should compile with gcc without warnings,
with extra warning flags enabled. The following listing summarizes supported
constructs:

– A valid translation unit may only contain global variable declarations of the
supported types and one function declaration

– if-else, for, assert, malloc, free, sizeof, return, #include

A SMT Memory-Model and Assertion Checker for C 3

$> cat example . btor
1 array 8 32
2 var 32 index
3 const 8 00000000
4 wr i t e 8 32 1 2 3
5 eq 1 1 4
6 root 1 5
$>

$> b o o l e c t o r example . btor −m −d
sat
index 0
1 [0] 0
$>

Fig. 1. BTOR file example.btor and output of invoking Boolector. Boolector prints a
(partial) model in the SAT case when supplying -m, while -d enables decimal output.
In line 1 an array with element width 8 bit and index width 32 bit is constructed.
Line 2 declares a 32 bit bit-vector variable named index. Line 3 declares an 8 bit bit-
vector constant with value 0 that is written to array 1 on position index (2) in line 4,
constructing a new array. Line 5 states that array 1 is equal to array 4. Line 6 sets
line 5 as root node such that the formula can be checked with Boolector stand-alone
version. Boolector returns ’satisfiable’ because it is possible that the element at index
index of array 4 has the same value as the element at index index in array 1.

– Non-augmented assignment statements, compound statement, valid C ex-
pressions (some restrictions)

The front-end gets as input a C file that contains a translation unit which lies
in the supported subset of C. The lexer tokenizes the input stream and the
parser creates ASTs according to the expression grammar, organizing them as
statement elements in a CL.

4 Back-End

The back-end gets as its input the full CL that was generated by parsing the
translation-unit. It extracts and executes paths through the program symboli-
cally by writing to and reading from the BTOR array representing the memory of
the program. It generates SMT formulas for the memory layout and checks satis-
fiability of properties that must hold. Symbolic execution is split into two phases
called path-generation (pathgen) and BTOR-generation (btorgen). Phase one,
path-generation, flattens the full CL by unrolling loops up to a certain bound.
After flattening path-generation processes the CL, generating a new CL until
meeting an element that represents a branching point in the program. When
a branching point is met, the CL is duplicated and both paths are processed
further. When a path through the program was extracted, BTOR-generation
is responsible for the generation of SMT formulas representing the state of the
memory of the program. Some elements in the path require construction of SMT
formulas to check for certain programming errors. SmacC can also be configured
to dump them in both SMT-LIB or BTOR format.

4 Jakob Zwirchmayr

4.1 Path-Generation

Path-generation phase flattens the CL by unrolling iteration-statements to nested
sequences of selection-statements. It can be configured up to which bound SmacC
unrolls for loops. The resulting flat CL is further processed in the path-generation
phase, creating separate CLs for branches through the program. When an ele-
ment in the flattened CL is of kind selection-statement and execution could
branch, the CL representing the path through the program up until this point is
duplicated and path-generation is called for both branches, generating a CLs for
each of them. When a path through the program is fully extracted either after
reaching the last element of the input CL or by processing a return-statement
element pathgen calls btorgen which then symbolically executes the path.

i n t main ()
{

i n t cond ;
i f (cond)

re turn cond ;
re turn 0 ;

}

path 0 : path 1 :
CSENTER @ (1 ,10) CSENTER @ (1 ,10)

CSENTER @ (1 ,12) CSENTER @ (1 ,12)
CDECLL @ (2 ,8) CDECLL @ (2 , 8)
CIF @ (4 ,0) CELSE @ (5 ,0)
CBBEG @ (4 ,0) CRET @ (5 ,8)

CRET @ (4 ,11) CSEXIT @ (6 , 0)
CBEND @ (5 ,0) CSEXIT @ (6 ,0)

CRET @ (5 ,8)
CSEXIT @ (6 ,0)

CSEXIT @ (6 ,0)

Fig. 2. Translation-unit and CLs for both paths through the program.

4.2 Btor-Generation

Btor-Generation constructs BTOR expressions for C statements and expressions
resulting in SMT formulas. Additionally constraints for the array modelling the
programs memory are generated. If an entry in the CL contains an AST repre-
senting C expressions the tree is transformed to BTOR expressions by calling
btorgen_generate. Some entries lead to (verification- or defect-) checks, usually
resulting in one or more SAT-checks by Boolector. Variable declarations require
the construction of Boolector variables, stored with the symbols and used as
addresses for the memory array. When an identifier is parsed in an expression
the Boolector variable for the symbol can be looked up in the AST node for the
expression. Variable declarations in the code also require updates to the SMT
formula representing constraints on the programs memory.

4.3 Memory Model

The memory model is inspired by the memory model usually used in UNIX
systems. It is established by an SMT formula that constrains the array variable

A SMT Memory-Model and Assertion Checker for C 5

i n t
main ()
{

re turn 0 ;
}

2 const 32 0 0 0 . . . 0 0 0 11 u l t 1 5 6
4 var 32 s tack beg 12 u l t 1 6 4
5 var 32 g l o b a l b e g 13 and 1 7 −8
6 var 32 heap beg 14 and 1 13 −9
7 eq 1 2 2 15 and 1 14 −10
8 u l t 1 5 5 16 and 1 15 11
9 u l t 1 4 4 17 and 1 16 12

10 u l t 1 6 6 18 root 1 17

Fig. 3. A C Program and the BTOR instance for the return statement. The BTOR
instance for the return statement return 0; is depicted on the right and will briefly
be explained: line 2 represents the constant 0, line 4, 5 and 6 represent the BTOR
variables necessary to construct the memory model. The BTOR formula for the return
statement is constructed in line 7. The rest of the lines form the constraints for the
memory layout and are conjuncted with line 7 and selected as root in line 18. Lines 8 to
10 are used negated in line 13 to 15 to formulate the properties that the end of stack,
global and heap area must be greater or equal to the beginning of stack, global and
heap area. Initially the addresses that represent the end of the memory areas are equal
to the addresses that represent the begin of the memory areas. Line 10 and 11 establish
the general memory layout which requires that the highest global address is smaller
than the lowest heap address which is smaller than the last lowest stack address. Line
17 is the conjunction of the properties mentioned and the formula specifying the return
value to be equal to zero.

which models the memory of the program. This allows to check whether memory
accesses in the program are valid. If a memory access is invalid for the SMT
representation it is also invalid for the real program. The UNIX memory model
divides memory for a process into three segments [6]:

– Text Segment: machine instructions, executable code
– Global / Data Segment: global variables, constant strings, but also dynamic

memory
– Stack Segment: local variables, parameter variables, grows from high address

to low address

SmacC simplifies the UNIX memory model, there is no text segment, the data
segment is called global area and is only used for global variables. Memory that
is allocated in the data segment by calls to malloc is modeled by the heap area.
The left-hand side of Fig. 4 is a visualization of the memory layout right after
initialization, no variables declared, represented by the following formula:

global beg ≤ global end ∧ global end < heap beg ∧ heap beg ≤ heap end ∧
heap end < stack end ∧ stack end ≤ stack beg ∧ global beg = global end ∧

stack beg = stack end ∧ heap beg = heap end

When variables are declared or dynamic memory is allocated the memory-model
needs to be updated to include constraints about the variable. Consider the

6 Jakob Zwirchmayr

right-hand side of Fig. 4, visualizing the memory model after a few variables
were declared, represented by the following updates to the memory model:

i = global beg ∧ j = global beg + 4 ∧ global end = global beg + 8
heap v1 = heap beg ∧ heap end = heap beg + 4

p = stack beg − 4 ∧ c = stack beg − 4− (4 ∗ 1) ∧ stack end = stack beg − 8

Fig. 4. Simplified view of the UNIX memory-model of a C program and its represen-
tation in SmacC. In the left example no variables are declared. In the right example
the program has integers i and j declared as global variables, integer pointer x and
character array c as local variables and 4 bytes allocated on the heap by a call to
malloc.

SmacC considers the following memory accesses invalid, for the sake of brevity
only the first is discussed in this paper.

– Access out of valid memory: an access is considered out of valid memory if
it accesses indices that are not indices representing stack area, global area
or heap area. Invalid regions are marked grey in Fig. 4.

– Access out-of-bounds: an access is considered out-of bounds if it crosses
boundaries of data elements, for example when data from two valid regions
is read or written. Out of bounds access can happen at all addresses.

5 Checks

While a path is symbolically executed certain statements and expressions lead
to checks. A check is an SMT formula that must be SAT or UNSAT when added
to the formulas of the memory-model and checked via Boolector. SmacC checks
include those that verify that a memory access is valid in the memory’s SMT
representation and hence valid in the C program. Furthermore they are used to
verify assertions, show that an operation does not lead to an error or show that
a path condition cannot be satisfied. The assertion check and the basic memory
check are presented.

A SMT Memory-Model and Assertion Checker for C 7

5.1 Assertion Check

Variations of assertion checks are used to verify program return values and to
check for division by zero. Consider the example in Fig. 5.

void main ()
{

i n t i ;
a s s e r t (i) ;

}

btor vars =
{

global beg , global end ,
heap beg , heap end ,
stack beg , stack end ,
mem, i

}

layout := global beg ≤ global end ∧
global end < heap beg ∧
heap beg ≤ heap end ∧
heap end < stack end ∧
stack end ≤ stack beg ∧
global beg = global end ∧
heap beg = heap end ∧
i = stack beg − 4 ∧
stack end = stack beg − 4

assert := read(mem, i) = 00000000 ∧
read(mem, i + 1) = 00000000 ∧
read(mem, i + 2) = 00000000 ∧
read(mem, i + 3) = 00000000 ∧

Fig. 5. On the left: assertion statement in a C program and declared Boolector vari-
ables. On the right: assumptions about memory layout and the formula representing
the assertion.

The conjunction of formulas layout ∧ assert must be unsatisfiable, otherwise
the assertion might fail.

5.2 Basic Memory Check: Arbitrary-but-Fixed

The basic memory check constructs a Boolector bit-vector variable abf and uses
the SMT formulas for the general memory layout to let abf point to an arbitrary
address in memory but it is fixed to be outside any valid memory. Then it is
checked if the variable abf can be equal to the address addr being read from
or written to. If it is satisfiable that addr is equal to abf it is shown that the
memory access could address an illegal memory address (outside any known
memory region, or in a region that was freed by free). SmacC checks both the
first and last byte of a value being read or written from or to memory. A problem
of the basic memory check is that the results of the check can depend on the
order in which variables were declared. This effect can also occur in C programs
and is hard to capture. The formulas constructed for the check are presented in
Fig. 6.

8 Jakob Zwirchmayr

abf invalid :=
abf > stack beg ∧
abf > global end ∧
abf < heap beg ∧
abf > heap end ∧
abf < stack end ∧
abf < global beg

abf freed :=
abf ≥ free vari ∧

abf < free var i +free vari size

check :=
abf = addr

Fig. 6. Basic Memory Check: constraining a variable to be outside valid memory or
equal to a freed address.

Clearly, because of the constraints on abf , if the SMT formula (abf invalid ∨
abf freed) ∧ check is satisfiable for any byte of addr , then invalid memory is
accessed.

6 Limits of the Model

The array memory check (not treated in this paper) has the weaknesses that
expressions using pointer arithmetic can fool the array (out-of-bounds) memory
check, nevertheless it can be used to verify some pointer arithmetic expressions.
If memory allocated by malloc is deallocated by free it is not used again in fol-
lowing calls to malloc. This can lead to out-of-memory situations where malloc
cannot allocate requested memory, leading to a contradiction in the memory
model and hence invalidating reported results. This could even occur if memory
deallocated by free was reused. If a program allocates all available memory by a
call to malloc and then allocates additional (unavailable) memory, the assump-
tions used to construct the memory model can be contradicting, invalidating
results of checks following the second call to malloc. Assume that the first call
to malloc allocates all memory from the lowest address to the highest address.
Assumptions established for the memory model are (omitting assumptions for
global and local memory regions): SmacC assumes that there is no overflow on
address calculations. Because of the assumption that the first call to malloc
forces heap end to be equal to the highest address, overflow is unavoidable for
address calculation of m2 , a contradiction follows. Another problem emerges
from the way path conditions of loops are handled: after unrolling the loop up
to the specified bound the loop condition is assumed to be true. If it is the
case that the state of the memory contradicts the assumption, then the checks
following the loop return wrong results.

7 Related Work

CBMC is a Bounded Model Checker for ANSI C and C++ programs. It allows
verifying array bounds, pointer safety, exceptions and user-specified assertions
[5]. CBMC takes as input C files and translates the program, merging function
definitions from the input files. Instead of producing a binary for execution,

A SMT Memory-Model and Assertion Checker for C 9

CBMC performs symbolic simulation on the program [4]. CBMC translates re-
fined programs to SAT instances and uses MiniSAT to verify properties.
Recently, preliminary support for SMT solvers (Boolector, CVC3, Yices, and
Z3) has been added via the SMT-LIB theory QF AUFBV [5].
CBMC can also be used to check behavioral consistency of C and Verilog pro-
grams (Hardware and Software Equivalence and Co-Verification) [3].
The major difference to SmacC is that CBMC does not establish a full represen-
tation for the memory of the program and its layout, instead it uses intermediate
variables when accessing variables. CBMC unwinds loops and recursive function
calls and transforms the program until it only consists of if instructions, assign-
ments, assertions, labels and goto instructions [2]. An assertion for each loop
verifies that the unwinding bound [2] is large enough, otherwise the bound is in-
creased. Then it is transformed into static single assignment form, consisting of
bit-vector equations for constraints and verification conditions. The conjunction
of the constraints and the negation of the property is checked for satisfiability.
If the conjunction is satisfiable, the property is violated.

8 Benchmarks

The following C files and algorithms were transformed to a BTOR represen-
tation, and can be used as benchmarks, timing results are presented in Tab.
1.

– Memcopy: A simple memcpy implementation, copying memory from the
source buffer to the destination buffer. Assert that destination buffer con-
tains the same elements as the source buffer after copying.

– Palindrome: implements algorithm to check if a string is a palindrome. If
the algorithm concludes that a string is a palindrome, assert that the string
fulfills palindrome properties.

– Stringcopy: Similar to memcpy but omitting the third parameter, the number
of bytes that must be copied. The loop terminates if null character is read
in source buffer which is then copied to the target buffer.

– Power of 3 equality: Compares if a method to compute n3 using a loop always
yields the same result as a method without a loop.

10 Jakob Zwirchmayr

Benchmark Bound Boolector SmacC CBMC

memcpy.c, array size 30 30 287s 1496s 0.25s

memcpy.c, array size 40 40 565s 5595s 0.33s

memcpy.c, array size 50 50 1114s 7350s 0.34s

palindrome check, n 11 11 639s 3718s 0.18s

palindrome check, n 15 15 1614s 13406s 0.22s

palindrome check, n 16 16 3344s 16220s 0.26s

strcpy array, n 20 20 231s timeout 0.11s

strcpy array, n 30 30 1430s timeout 0.15

strcpy array, n 40 40 7684s timeout 0.20s

power 3 equality 3 timeout timeout timeout

Table 1. Benchmarks were run on an Intel R©CPU at 2.66GHz with 2GB main memory.
Time was measured using the UNIX time command. The table compares Boolector
stand-alone version to library usage in SmacC and to CBMC.

References

1. Robert Brummayer and Armin Biere. Boolector: An efficient smt solver for bit-
vectors and arrays. In Lecture Notes in Computer Science (LNCS), volume 5505.
Springer, 2009. TACAS’09.

2. Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ansi-c
programs. Carnegie Mellon University, 2004.

3. Edmund Clarke, Daniel Kroening, and Karen Yorav. Behavioral consistency of c
and verilog programs using bounded model checking. 2003.

4. CProver. The cprover user manual. Available at
http://www.cprover.org/cbmc/doc/manual.pdf.

5. Daniel Kroening. Bounded model checking for ansi-c. Available at
http://www.cprover.org/cbmc/.

6. Andrew S. Tannenbaum. Modern Operating Systems, 3rd Edition. Pearson, Prentice
Hall, Upper Saddle River, New Jersey 07458, 2007.

