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Abstract

Analyzing and verifying computer programs is an important and challenging task. Banks,
hospitals, companies, organizations and individuals heavily depend on very complex
computer systems, such as Internet, networking, online payment systems, and autonomous
devices. These systems are integrated in an even more complicated environment, using
various computer devices. Technically, software systems rely on software implement-
ing complicated arithmetic and logical operations over the computer memory. If this
software is not reliable, the costs to the economy and society can be huge. Software de-
velopment practices therefore need rigorous methods ensuring that the program behaves
as expected.

Formal verification provides a methodology for making reliable and robust systems,
by using program properties to hold at intermediate points of the program and using
these properties to prove that programs have no errors. Providing such properties man-
ually requires a considerable amount of work by highly skilled personnel and makes
verification commercially not viable. Formal verification therefore requires non-trivial
automation for generating valid program properties, such as loop invariants.

In this thesis we study the use of first-order theorem proving for generating and
proving program properties. Our thesis provides a fully automated tool support, called
Lingva, for generating quantified invariants of programs over arrays, and shows experi-
mentally that the generated invariants summarize the behavior of the considered loops.
Our work is based on the recently introduced symbol elimination method for invariant
generation, using a saturation-based first-order theorem prover.

As program properties involve both logical and arithmetical operations over un-
bounded data structures, such as arrays, generating and proving program properties
requires efficient methods for reasoning with both theories and quantifiers. Another
contribution of this thesis comes with the integration of the bound propagation method
for solving systems of linear inequalities in the first-order theorem prover Vampire. Our
work provides an automated tool support for using Vampire for deciding satisfiability
of a system of linear inequalities over the reals or rationals. We experimentally show
that bound propagation in Vampire performs well when compared to state-of-the-art
satisfiability modulo theory solvers on hard linear optimization problems.
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Our arithmetic solver is limited to conjunction of linear inequalities, while arith-
metic program properties usually have a more complex boolean structure, using a com-
bination of logical conjunction, disjunction and negation. To make our work applicable
for handling such complex arithmetic properties, another contribution of this thesis is
the integration of boolean satisfiability (SAT) solvers within Vampire. Our work exploits
the recently introduced AVATAR framework for separating the first-order reasoning part
of a problem from its boolean structure. We describe our technical and implementation
challenges for integrating the best performing SAT solvers within Vampire, and use our
implementation to evaluate the AVATAR framework on a large set of problems coming
from the TPTP library of automated theorem provers.



Kurzfassung

Die Analyse und Verifikation von Computerprogrammen ist eine sowohl wichtige als
auch schwierige Aufgabe. Banken, Spitäler, Firmen, Organisationen und einzelne Per-
sonen sind auf sehr komplexe Computersysteme wie das Internet, Netzwerktechnolo-
gien, elektronische Bezahlsysteme oder autonome Systeme angewiesen. Diese Systeme
sind in komplexe Umgebungen mit anderen elektronischen Geräten vernetzt. Technisch
gesehen basieren diese Systeme auf Software, welche komplizierte Algorithmen und
Logikoperationen auf dem Speicher ausführt. Arbeitet diese Software nicht zuverlässig,
können der Wirtschaft und der Gesellschaft hohe Kosten entstehen. Bei der Softwa-
reentwicklung sind daher rigorose Methoden nötig, um sicherzustellen, dass sich die
Programme wie erwartet verhalten.

Formale Verifikation bietet eine Methodik, um zuverlässige und robuste Systeme zu
bauen. Ausgehend von Programmeigenschaften, die an bestimmten Programmpunkten
gelten, wird die Fehlerfreiheit des Programms gezeigt. Das manuelle Definieren die-
ser Programmeigenschaften muss jedoch von hochqualifiziertem Personal unter hohem
Zeitaufwand durchgeführt werden, wodurch Verifikation unwirtschaftlich wird. Forma-
le Verifikation erfordert daher eine nichttriviale Automation der Generierung gültiger
Programmeigenschaften wie beispielsweise Schleifeninvarianten.

In dieser Dissertation untersuchen wir, wie mit Beweismethoden der Prädikatenlo-
gik erster Stufe Programmeigenschaften gefunden und bewiesen werden können. Die
erarbeiteten Methoden wurden in einem vollständig automatisierten Tool namens Ling-
va umgesetzt, welches quantifizierte Invarianten über Arrays generiert. Wir zeigen ex-
perimentell, dass die generierten Invarianten das Verhalten der analysierten Schleifen
zusammenfassen. Unsere Arbeit basiert auf der erst jüngst entwickelten Methode der
Elimination von Symbolen bei Generierung von Invarianten, wobei ein sättigungsba-
sierter Beweiser für Theoreme der Prädikationlogik verwendet wird.

Das Programmeigenschaften sowohl logische als auch arithmetische Operationen
über unbeschränkte Datenstrukturen wie Arrays involvieren, sind für das Erzeugen und
Beweisen von Programmeigenschaften effiziente Methoden für das Schlussfolgern in
das Schlussfolgern in den Theorien und über den Quantoren notwendig. Ein weiterer
Beitrag dieser Arbeit ist die Erweiterung des prädikatenlogikbasierten Theorembewei-
sers Vampire um Schrankenausbreitungsmethoden zur Lösung von Systemen linearer
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Ungleichungen. Somit kann Vampire als automatisches Tool zum Entscheiden der Er-
füllbarkeit von Ungleichungssytemen auf der Menge der rationalen Zahlen oder reellen
Zahlen verwendet werden. Wir zeigen experimentell, dass die Effizient der Schranken-
ausbreitung in Vampire im Vergleich mit state-of-the-art Satisfiability Modulo Theory
Lösern auf schweren linearen Optimierungsproblemen gut abschneidet.

Unser arithmetischer Löser ist auf Konjunktionen linearer Ungleichungen limitiert.
Jedoch haben arithmetische Programmeigenschaften üblicherweise eine komplexere boo-
lesche Struktur aus Kombinationen von Konjunktionen, Disjunktionen und Negierun-
gen. Um daher unsere Arbeit auf komplexe arithmetische Eigenschaften anwendbar zu
machen, wurden booleschen Entscheidungsproblem (SAT) Löser in Vampire integriert.
Unsere Arbeit nutzt das kürzlich entwickelte AVATAR Framework um das Schlussfol-
gerungen über Theoreme der Prädikatenlogik von der booleschen Struktur der Probleme
zu trennen. Wir beschreiben die technischen und implementierungsbezogenen Heraus-
forderungen die bei der Integration der effizientesten SAT Lösern in Vampire auftreten
und verwenden unsere Implementierung zur Evaluierung des AVATAR Frameworks mit
einer Vielzahl von Problemen der TPTP Bibliothek automatisierter Theorembeweiser.
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CHAPTER 1
Introduction

Analyzing and verifying computer programs with million lines of code is an important
and challenging task. Banks, hospitals, companies, organizations and individuals heav-
ily depend on very complex computer systems, such as Internet, networking, online
payment systems, and autonomous devices. These systems are integrated in an even
more complicated environment, using various computer devices. Technically, software
systems rely on software implementing complicated arithmetic and logical operations
over the computer memory. If this software is not reliable, the costs to the economy and
society can be huge. Software development practices therefore need rigorous methods
ensuring that the program behaves as expected.

Formal verification provides a methodology for making reliable and robust systems,
by proving that programs have no errors and thus are correct. During the past decades,
formal verification has gained significant academic and industrial interest. For example,
the formal verification of Microsoft drivers reduced the main source of the Windows
operating system crashes down to almost zero. Another example is the use of formal
verification techniques at Airbus in order to ensure that the software operating Airbus
planes respond in a timely manner, in all possible scenarios.

There are various approaches and attempts for formally verifying software systems,
for example automated testing and static program analysis. Testing in general is based
on first creating a set of tests cases on which the program runs and then use these test
cases in conjunction with the expected output of the program. When executing the pro-
gram, one is required to ensure that the program behaves correctly on the considered
test cases and returns the expected result. The major drawback of test-based verifica-
tion, [19,43,46,86] is that it does not ensure correctness of the program; it only ensures
that the program runs correctly on the tested input. In order to ensure correctness one
would need to create a set of tests that cover the entire set of possible input-output
combinations of the program, making it practically unfeasible and commercially not
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viable. Nevertheless, testing remains very useful during software development. One
of the major benefits of test-based software development is that the software is tested
during the development process and if bugs occur they are promptly fixed. By doing so,
one is keeping the cost for software development low and alongside provides a set of
test benchmarks for the refined program.

Contrarily to testing, static software analysis provides efficient and sound approaches
proving that the software is correct on all possible inputs. One such a method is
counterexample-guided abstraction refinement (CEGAR) [23] in model checking [22,
96]. CEGAR works by first abstracting the program and trying to find an unfeasible
trace in the abstraction. If such a trace is found and by following the trace in the orig-
inal program the error state is reached, an error in the program is found. By applying
CEGAR, one can hence detect error states in the program and fix them automatically.
On the other hand, if the detected unfeasible trace is spurious, that is it cannot happen
in the actual program, the program abstraction is refined and used further.

One challenge in static program analysis comes with the treatment of the logically
complex part of the code, such as loops and recursion. For such program parts, formal
verification requires additional program properties to hold at intermediate points of the
program and using these properties to prove that programs have no errors. Typically,
such properties are loop invariants summarizing the loop behavior and ranking functions
ensuring that the loop is terminating. Loop invariants hold before and after every loop
execution and, in most of the cases, they express inductive properties of the program.
Providing such properties manually requires a considerable amount of work by highly
skilled personnel and makes verification prohibitively expensive. Formal verification
therefore requires non-trivial automation and automatic generation of valid program
properties, such as loop invariants, is a key step to such automation.

Extracting and generating invariants for programs containing loops is an active re-
search area. Various automated methods based on Craig interpolation [104], abstract
interpretation [27, 28] and first-order theorem proving [91] have been proposed during
the past years. These methods infer quantified invariants over unbounded data struc-
tures, such as arrays, and differ in the employed user guidance. In the case of inter-
polation, invariants are constructed from interpolants extracted from correctness proofs
of the program and they express valid program properties over various data structures
used in the program [79]. The generated invariants are universally quantified over array
elements and a user-specified postcondition is used in the process of interpolation. User
guidance is also required in [51], where the shape of the invariants is specified by user-
defined templates. The inductiveness property of the invariants is then used to derive
constraints over the unknown parameters of the invariant template. These constraints
are further solved using a satisfiability modulo theory (SMT) solver, and an invariant
without quantifier is obtained. A different approach is described in [50], where pred-
icate abstraction over an a priori defined set of predicates is used to derive quantified
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invariants as the strongest boolean combination of the given set of predicates. Univer-
sally quantified invariants over arrays are also inferred in [26, 52], however in a fully
automated way, by applying abstract interpretation over array segments. User guid-
ance is also not required in [71], where a first-order theorem prover is used to generate
quantified invariants. The distinctive feature of [71] comes with a new method, called
symbol elimination, and is the first ever method generating invariants with quantifier
alternations.

Symbol elimination works as follows. Suppose we are given a loop L over scalar
and array variables. Symbol elimination first extends the loop language L to a richer
language L′ by additional function and predicate symbols, such as loop counters or
predicates expressing update properties of arrays at different loop iterations. Next, we
derive a set P of first-order loop properties expressed in L′. The derived properties
hold at any loop iteration, however they contain symbols that are not in L and hence
cannot yet be used as loop invariants. Therefore, in the next step of symbol elimination,
logical consequences of P are derived by eliminating the symbols from L′ \ L using
first-order theorem proving. As a result, first-order loop invariants in L are inferred
as being logical consequences of P . In this thesis we exploit symbol elimination in
first-order theorem proving, provide a fully automated support for invariant generation
using symbol elimination and experimentally investigate to which extend the generated
invariants express the “intended” meaning of the program.

There are several challenges for making symbol elimination in first-order theorem
proving practically useful. Modern first-order theorem provers, e.g. [63, 87, 94], lack
several features essential for implementing symbol elimination for invariant generation.
These include reasoning with first-order theories, in particular in the combination of the
first-order theories of arrays and linear arithmetic, since almost all essential properties
about computer memory quantify over the memory content, e.g. array elements, and im-
plement operations over integers. Program properties are however typically expressed
as boolean combinations of atomic predicates over data structures, e.g. using logical
disjunction, negation and conjunction. Therefore, to use first-order theorem proving for
invariant generation, one needs to extend the prover with an efficient reasoning engine
for boolean logic which can easily be integrated with the theory reasoning part of the
prover. Finally, automated tool support for symbol elimination in first-order theorem
proving is needed. Only this way, software engineers and developers will be able to use
invariant generation and symbol elimination results in their work, without the need to
become experts in first-order theorem proving. In this thesis we address these challenges
and provide solutions as follows:

1. We provide a fully automated tool support, called Lingva, for program analysis
and invariant generation using symbol elimination (Chapter 3).

2. We integrate first-order theorem proving with a novel procedure for linear arith-
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metic, called bound propagation [67], and experimentally evaluate our integration
on a large collection of benchmarks (Chapter 4).

3. We combine first-order theorem proving with satisfiability (SAT) solvers, support-
ing hence efficient reasoning with both quantifiers and boolean logic (Chapter 5).

1.1.1 Problem Statement
In this thesis we study program analysis and verification using first-order theorem prov-
ing. We provide tool support for invariant generation using symbol elimination and
implement new procedures for automated reasoning in full first-order theories. In par-
ticular, we consider the theories of arrays and linear arithmetic and provide experimental
evidence for using first-order theorem proving for program analysis.

The research topics addressed in this thesis are as follows:

Invariant Generation We study invariant generation by symbol elimination in first-
order theorem proving. We are interested in the performance of symbol elimi-
nation, in particular how efficient can symbol elimination generate useful invari-
ants. In addition to performance, we also investigate the quality of the generated
invariants. To this end, we analyze whether the generated invariants imply the
“intended” meaning of the program, where the intended meaning of the program
is specified by user-given properties.

Theory Reasoning Almost all problems in program analysis and verification require
automated reasoning in the combination of theories of various data structures.
First-order theorem provers are efficient in handling quantifiers but are weak in
theory reasoning. We therefore study how different decision procedures can im-
prove the performance of first-order theorem provers when it comes to generate
and prove properties with both theories and quantifiers. When it comes to arith-
metic reasoning, well-known methods such as the Fourier-Motzkin method [93]
or the Simplex [20] method can be used for solving a system of linear inequalities.
While these methods are very efficient and typically used by state-of-the-art satis-
fiability modulo theory (SMT) solvers, e.g. [11,33,40], they cannot yet be used to
reason about both quantifiers and theories. Recently, several new methods, such
as GDPLL [80], conflict resolution [64], and bound propagation [67], have been
proposed with the purpose of closing the gap between reasoning about the logical
and arithmetic structure of the problem. These methods are similar in structure
with the DPLL procedure [82] used by SMT solvers. While these techniques can-
not yet handle quantifiers, we believe that integrating them with first-order prover
can be done without major changes on the underlining reasoning mechanism of
the prover. Therefore, in this thesis we integrate and evaluate bound propaga-
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tion in the context of a first-order theorem prover for solving systems of linear
inequalities.

SAT Solving We experimentally analyze a new architecture for integrating first-order
theorem proving with SAT solving. The architecture is based on formula ex-
change between the first-order reasoning part and the SAT solver. We therefore
integrate SAT solving in first-order theorem proving and evaluate how the perfor-
mance of a first-order theorem prover is changed by using such a combination for
proving formulas.

In what follows, we overview in more detail each of the above listed research direc-
tions.

Invariant Generation. In this thesis we present a new tool generating quantified in-
variants without any user guidance. Our tool, called Lingva, uses symbol elimination
in first-order theorem proving and infers quantified invariants over arrays, possibly with
quantifier alternations, in a fully automated way. Lingva makes use of the Vampire
theorem prover [72] and stands for Loop invariant generation in Vampire.

Inputs to Lingva are C programs with (multiple) loops. For each input program loop,
Lingva combines program analysis with invariant generation, as follows.

First, the program is analyzed and translated into a collection of logical formulas. To
this end, we used Clang [1] as the front-end C parser and construct the abstract syntax
tree (AST) of the program. Next the AST is traversed and the semantics of the program
is translated into a set of logical formulas, expressed in the internal format of the Vam-
pire theorem prover. For translating programs into logical formulas, we however faced
some challenges related to reasoning about different states and program locations. We
overcame these challenges by extending the language of the theorem prover with new
constructs specific to programming languages. These constructs include if-then-else
and let-in expressions and they allow us to express the transition relation of the program
using first-order formulas extended with if-then-else and let-in. We call first-order for-
mulas with if-then-else and let-in expressions extended first-order formulas. Moreover,
as the considered programs involved arrays and integers, we extended the first-order
theorem prover with built-in support for arrays. With such extensions, the next step of
program analysis is the collection of valid program properties, expressed as extended
first-order formulas. For doing so, Lingva implements various steps of program analy-
sis, based on [70], as follows. First, program variables are collected and classified into
updated or constant variables. Among the updated variables, so-called counter variables
are identified. A counter variable is a variable that is incremented or decremented by a
constant value through the loop. Note that array indexes are typically counter variables.
Properties over counter variables are derived by analyzing how the values of these vari-
ables are changing throughout the loop. Such properties include (strictly) increasing or
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decreasing monotonicity properties, density properties describing at which loop itera-
tion was the variable updated, and the combination of the previous properties. Next,
the array variables of the loop are analyzed and so-called update predicates of array
variables are inferred. An update predicate of an array expresses at which loop iteration
and position was the array updated by what value. Finally, the transition relation of the
program is expressed as an extended first-order formula.

By performing program analysis within Lingva, the input program is translated into
a set of extended first-order formulas, each formulas describing a valid loop property.
However, these properties cannot yet be used as invariants as they use additional sym-
bols not present in the loop, such as the loop counter and update predicates of arrays.
Therefore, the next step of Lingva is symbol elimination, that is eliminating the ad-
ditional symbols from the constructed set of extended first-order formulas. For doing
so, Lingva uses symbol elimination in the Vampire theorem prover and derives logical
consequences of the extended first-order formulas. The derived logical consequences
are such that they only contain symbols present in the loop, and hence they are loop
invariants. For implementing consequence generation and symbol elimination using the
Vampire theorem prover, Lingva relies on special term orderings used by Vampire and
specifies which symbols needs to be eliminated by making these symbols the largest in
the term ordering of the prover.

As a result of invariant generation, a large collection of invariants is generated,
where some invariants imply each other. Therefore, in the last step of Lingva a minimal
set of invariants is inferred, by eliminating invariants that are redundant, e.g. implied by
other invariants.

While powerful and generic, symbol elimination in Lingva has various limitations.
Lingva only supports loops with nested conditionals, but nested loops are not yet han-
dled. Further, program analysis and invariant generation is only supported for integers
and arrays, other unbounded data structures, such as lists or heaps, are not yet supported.
The invariant generation and minimization step of Lingva crucially depends on efficient
reasoning engines for generating and proving properties with both theories and quanti-
fiers, in particular when it comes to the theory of linear arithmetic. We tried to improve
the quality of generated invariants by Lingva, by integrating a new decision procedure,
called bound propagation, in the Vampire theorem prover, as described below.

Theory Reasoning. In this thesis we describe how the bound propagation method [67]
for deciding satisfiability of a set of linear inequalities can efficiently be integrated in a
first-order theorem prover, in particular in Vampire. In addition to deciding satisfiability,
we also describe how to construct a model for the input problem, if the problem is
satisfiable.

The main steps of bound propagation are similar to the DPLL method [82]. For
example, the notion of a clause in the DPLL has its equivalent as a linear inequality in
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bound propagation. Similarly, unit clauses in DPLL correspond to value bounds over
variables in bound propagation, whereas DPLL’s unit propagation is similar to the bound
propagation procedure.

In a nutshell, the bound propagation algorithm, denoted in the sequel by BPA, works
as follows. Given a system of linear inequalities over reals or rationals, BPA tries to
iteratively assign values to variables. After the assignment is done the values are used in
order to derive new value bounds on other variables from the initial problem. Derivation
of new bounds on other problem variables is called bound propagation. The process of
bound propagation either derives an inconsistent pair of bounds on some variable, or
it solves the system. If inconsistency occurs, then a new inequality is computed. This
newly computed inequality is called a collapsing inequality and is used to derive a new
bound on a previously assigned variable. By doing this step we exclude the previously
assigned value to this variable. There are some cases where the newly derived bound is
inconsistent with a previously assigned bound. If this happens it means that the original
system is unsatisfiable. Otherwise, BPA backjumps to the point where a value for the
(conflicting) variable was selected, and selects a new value for the variable.

As reported in this thesis, we implemented the BPA decision procedure for solving
systems of linear inequalities in Vampire. Let us note some of the challenges that we
encountered while implementing BPA. When one tries implementing an efficient ver-
sion of BPA one has to take into consideration various options that can effect the overall
performance of the algorithm. Consider for example the case when a value for a variable
is selected. Since we are dealing with rationals or reals we have an infinite domain for
the variables’ values, hence selecting the right value becomes highly non-trivial. An-
other distinguishing feature of BPA is the used variable ordering. Unlike other decision
procedures, such as like Simplex [20], Fourier-Motzkin [29], GDPLL [80] and conflict
resolution [64], bound propagation does not require a predefined variable ordering. This
feature gives a lot of freedom for using and experimenting with different variable order-
ings in BPA. Inspired by SAT/SMT solving, in our work we implemented a couple of
strategies for variable and value selection in BPA.

We have evaluated BPA on a large number of examples taken from the SMT commu-
nity as well as hard linear optimization problems taken from the MIPLIB library [62].
Our experiments are promising and encouraging. For example, there are some hard
optimization problems on which BPA outperforms the best existing SMT solvers. Nev-
ertheless, our work has some limitations on the shape of the systems of linear inequal-
ities that are accepted as input. Currently, we can only reason about conjunctions of
inequalities, and hence we cannot yet handle an arbitrary boolean structure of inequali-
ties. Similarly to SMT solving, in particular to DPLL(T) [45], such a limitation can be
handled by using a SAT solver to reason about the boolean structure of the problem and
use BPA for solving a conjunction of linear inequalities. For this reason, in our work we
decided to extend BPA, and Vampire in general, with a SAT solver, as detailed below.
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SAT solving in First-Order Theorem Proving. Recently a new architecture, called
AVATAR, for automated first-order theorem provers has been introduced [103]. The
AVATAR architecture combines both first-order reasoning with SAT solvers in order to
boost performance of first-order theorem provers on problems with both theories and
quantifiers.

In a nutshell, AVATAR works as follows. Given a first-order problem one tries
solving it by using a first-order saturation algorithm. In the context of AVATAR the
saturation algorithm has to be modified in such a way that the first-order reasoning
part interacts with a SAT solver. Inside this framework the SAT solver has the same
functionality as a regular incremental SAT solver. The major difference appears on the
first-order reasoning part. In this case the job of splitting clauses is delegated to the SAT
solver. For achieving this goal one has to create a mapping from the first-order clauses
to the SAT clauses and then ask the SAT solver to generate a model. If a model is found
this acts as a guide on how the components have to be used in the first-order reasoning
part. In case the boolean problem proves to be unsatisfiable, it implies that also the first-
order problem is unsatisfiable. Besides these modifications to the saturation algorithm,
the AVATAR architecture works with assertions. Therefore, further modifications on
how clauses are stored have to be done. Similarly the simplification and deletion rules
that are used in the saturation algorithm [83] have to be adapted to the new architecture.

In the case of the Vampire theorem prover, the AVATAR framework was integrated
and a default SAT solver was created. After the first experiments reported in [103], it
became evident that withing this new framework first-order provers can solve problems
that no other solver could solve before. Based on this initial results, in this thesis we
study the AVATAR framework in the case of the Vampire first-order automatic theorem
prover and integrate Vampire with various SAT solvers, including the best existing SAT
solver, Lingeling [17]. We report on our implementation integrating Lingeling within
Vampire, and describe our experiments for using the AVATAR framework of Vampire
with Lingeling and other, less efficient SAT solvers. Our experiments show that, as
expected, using the best SAT solver as a background solver of AVATAR makes Vampire
proving most of the problems, including some very hard problems that could not be
proved before.

1.1.2 Thesis Contribution
The main focus of the present thesis was to experimentally study and better understand
how first-order theorem provers can be used in the context of program analysis and
verification. Summarizing, the present thesis brings the following contributions.

1. Invariant Generation. We present an efficient implementation, called Lingva,
of the symbol elimination method for quantified invariant generation. Our imple-
mentation offers fully automated support for program analysis, invariant genera-
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tion and minimizing the set of generated invariants. For doing so, in our work we
used new extensions of the Vampire theorem prover, such as if-then-else and let-in
constructs, which make first-order provers better suited for program analysis and
verification. We also studied the quality of the generated invariants by using our
invariants in proving the intended properties for programs. Our experiments show
that symbol elimination can generate quantified properties with quantifier alterna-
tions that no other solver could derive so far. Our results have been published as
a peer-reviewed conference paper in the proceedings of the “Perspectives of Sys-
tems Informatics - 9th International Andrei Ershov Memorial Conference (PSI),
2014” [38].

2. Theory Reasoning. We extended the first-order theorem prover Vampire with
support for arithmetic reasoning. To this end, we implemented the bound propa-
gation algorithm for solving systems of linear real and rational inequalities. Our
implementation integrates a wide range of strategies for variable selection and
value selection, allowing us to experiment with the best options within bound
propagation for solving linear inequalities. Our work was the first ever imple-
mentation of bound propagation in a first-order theorem prover. Our results have
been published as a peer-reviewed conference paper in the proceedings of the
“15th International Symposium on Symbolic and Numeric Algorithms for Scien-
tific Computing(SYNASC), 2013” [39].

3. SAT solving. Following the new AVATAR architecture for first-order theorem
prover, we integrated the Vampire theorem prover with various SAT solvers. In
particular, we integrated Vampire with the best performing SAT solver, Lingeling,
and evaluated our implementation on a large number of examples. Our results
have been published as a peer-reviewed conference paper in the proceedings of
the “13th Mexican International Conference on Artificial Intelligence (MICAI),
2014” [18].

The rest of this thesis is structured as follows. In Chapter 2 we make a short overview
of the basic notions used throughout this thesis. We continue by presenting the method
of symbol elimination for invariant generation in Chapter 3 and describe our imple-
mentation and experiments. Next, we present the bound propagation algorithm and its
first implementation in Vampire in Chapter 4. Further, we describe Vampire’s AVATAR
architecture and how we managed to integrate SAT solvers in Vampire in Chapter 5.
Chapter 6 overviews related work and Chapter 7 concludes the thesis.
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CHAPTER 2
Theoretical Preliminaries

In this section we make an overview of different methods that are relevant for the thesis.
We start by first fixing the programming model and describe loop invariants in Sec-
tion 2.1. The approach for invariant generation used in this thesis is based on first-order
theorem proving. In Section 2.2 we next overview the key ingredients of first-order
theorem proving and automated reasoning. Recent approaches proposes SAT solvers to
be used in first-order theorem proving. Section 2.3 therefore overviews the notions and
techniques used in state-of-the-art SAT solvers.

2.1 Programing Model
Automatic discovery of quantified invariants for programs with loops is very important
in the framework of program verification and more precisely in static analysis. In the
following we are going to present the main ingredients used in our work for generating
such invariants.

Our method deployed for automatically generating loop invariants can be viewed in
a nutshell as a three stage process. First stage, starting with a loop containing arrays,
we first try to extract different first-order program properties (formulas) from it using
auxiliary symbols, such as loop counters. In the second stage of this process, using
the collected properties (formulas) we then derive the so-called update predicates for
array variables that appear in the original loop. Finally, in last stage of the process, after
collecting all the properties, we run a saturation-based theorem prover to eliminate all
the auxiliary symbols and obtain loop invariants expressed as first-order formulas using
only symbols that occur in the loop language.

In what follows, we fix the notions that are going to be used throughout the rest of
this thesis. The notations and terminology used in this thesis is based on [71].
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2.1.1 Program and Variables
Consider a program P that contains a single loop and whose body contains assignments,
conditionals and sequencing. In the sequel we consider that P is fixed and all the given
definitions are relativized to it. We denote by Var the set of all variables that occur in P
and by Arr the set of all array variables that occur in it.

The vocabulary (V) of our program model consists of a countable set of typed vari-
ables. The variables that constitute the vocabulary range over data domains used in the
actual program, such as booleans, integers or arrays. Other variables are also used in
order to express the progress in the execution of the program. Each variable from this
vocabulary has a type and this indicates the domain of that variable (e.g. data variable
could range over the natural numbers, while progress variables could range over a finite
set of states).

Whenever we speak about programs containing loops we make the assumption that
it contains array variables, denoted by aa, bb, cc,. . . , and scalar variables, denoted by
a,b,c, . . . . We also introduce a loop counter and denoted it by k.

Programs Semantics

Semantics of a program containing sequencing, assignments and conditionals is defined
in the standard way, as presented by [76]. A simple statement is the basic computation
step and is intended to be executed in a single step. In the following we are going to give
a brief overview of the statements and constructs that can appear in our programming
model.

Assignment statement. Intuitively it can be defined as follows: for a list of variables
v̄ ∈ V ar and ē a list of expression of the same length and corresponding type,
v̄ := ē is an assignment statement.

Sequential composition. The sequential composition of two statements S1 and S2, de-
noted by S1;S2 can be viewed as follows: first the statement S1 is executed and
when it terminates the statement S2 gets executed. It is easy to see how one can
extend sequential composition to more than two statements, S1;S2; . . . ;Sn where
n ≥ 2.

Conditionals (if-then-else). We denote conditional statements by if cond then S1 else
S2. In this construct, S1 and S2 are statements and cond is a boolean expression
(condition). The intended meaning of such a statement can be described as fol-
lows: first the boolean expression cond is evaluated. If cond evaluates to logical
TRUE then we execute statement S1, otherwise, when cond evaluates to logical
FALSE statement S2 is evaluated. In our model there is also a special case of a
conditional statement, that is if cond then S1 which behaves similar to the if-then-
else construct but it executes no instructions if the condition evaluates to FALSE.
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Loop (while-do). We denote a loop statement by while cond do S, where cond is a
boolean expression and S is called the loop body. We defined the loop body as
being the composition of a sequence of statements. The intended meaning of
the loop can be described as follows: in the first step the condition cond gets
evaluated. If it evaluates to TRUE then the loop body S gets executed. After S
terminates execution the condition gets evaluated again. If the condition evaluates
to FALSE then the loop terminates. Otherwise the loop body gets executed once
more.

A program P is a finite sequence of the above statements and is a mapping from
program states to states (see the definition of states below). A computation of a program
P can be viewed as a sequence of states.

2.1.2 Expressions and Semantics
In order to formally describe our invariant generation algorithm we will use the lan-
guage of expressions (Expr). We make the assumption that the language Expr con-
tains constants, including all integer constants, both scalar and array variables (defined
as V ar ∪ Arr) and logical variables. Besides them we also assume that Expr con-
tains some interpreted function symbols, like the standard arithmetical function symbols
(+,−, ·) and interpreted predicate symbols, including the standard arithmetical predi-
cate symbols ≤,≥. We also assume that the expressions are well-typed with respect to
a set τ of sorts. In what follows, we denote by i the sort of integers. We define types in
the following manner: every sort is a type and types can be built from other types using
type constructors × and →. All the scalar variables that we are using are assumed to
have a sort and all the array variables used must have a type i → τ . As syntactic sugar
instead of writing aa(e) we will write aa[e] to denote the element of array aa at position
e.

For defining the semantics of an expression we make the assumption that every sort
has an associated non-empty domain. In the case of i the domain associated to it is the
set of integers. We also assume that all the interpreted function and predicate symbols
that appear in the language are interpreted by functions and relations of appropriate
sorts. For example ≤,≥ are assumed to be interpreted by the standard inequality of
integers.

Semantics of the Expr language is defined using the notion of state. A state σ
maps each scalar variable u of a sort τ into a value in the domain associated with τ ,
σ : Var → Dom(τ ) and we denote it as σ[u]. In the case of an array variable of type
i → τ into a function from integers to the domain associated with τ . Now given a
state σ we can define the value of any expression e over V ar in that state inductively as
follows.
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• The value of a variable v ∈ V ar is simply the value in the particular state, σ[v].

• For an expression f(e1, e2, . . . , en) we define

σ[f(e1, e2, . . . , en)] = f(σ[e1], σ[e2], . . . , σ[en]),

that is the function f is applied to the values of e1, e2, . . . , en in the state σ.

The evaluation of formulas is done in the standard way, see e.g. [76]. For simplicity
reasons we do not consider arrays as partial functions and we are not analyzing array
bounds.

Extended Expressions e(k)

In our framework we are dealing only with programs that contain single loops. We
assume that the computation of a program P starts in an initial state denoted by σ0.
Then, the state reached by the computation of the loop in the kth loop iteration is denoted
by σk.

Let us assume that we have a fixed program loop P and some initial state σ0. The
definition of an expression is then parametrized by the initial state σ0. Also let σk be the
state obtained after k computations of P starting from σ0.

Keeping all the previous assumptions in mind, for every integer expression k and a
loop variable v of type τ , we denote by v(k) the value of v in the state σk. We call v(k) an
extended expression. The value of the extended expression v(k) is of type τ . A formula
ψ, that might contain also extended expressions, is valid if and only if the formula is
true for every computation pf P . That is, the formula ψ is true for all computations of
P that start in the initial state σ0.

During the rest of the thesis we denote by v(0) the value of v in the initial state.
Also in order to reason about programs and for asserting their properties we will use
the notion of extended expression v(k). Note however that extended expressions do not
occur in the program.

Relativized Expressions and Formulas

In a similar way as for extended expressions, we consider make expressions and for-
mulas to be relativized to the loop iteration. We denote by i :: e an expression e that is
relativized with respect to iteration i and i :: ψ a formula ψ that is relativized to iteration
i. In order to define these relativized expressions and formulas, in the sequel we make
the assumption that they do not contain any extended expression or sub-expressions.
That is these relativized expressions and formulas must not contain any occurrences of
terms of the form vj for some variable v and iteration j.
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Definition 2.1.1. Let i denote a loop iteration. An expression or formula relativized to
i is defined inductively, as follow:

1. Assuming we have v a loop variable (v ∈ V ar) and i an integer expression, then
i :: v

def
= v(i).

2. Given two expressions e1 and e2, we have i :: (e1[e2])
def
= (i :: e1)[i :: e2].

3. If e is a constant or a variable (but not an array or scalar variable), then i :: e
def
=

e.

4. If f is an interpreted function, then i :: (f(e1, . . . , en))
def
= f(i :: e1, . . . , i :: en).

5. Given a predicate symbol p, then i :: (p(e1, . . . , en))
def
= p(i :: e1, . . . , i :: en).

6. Given the formulas ψ1, . . . , ψn having no occurrences of extended expressions,
we have i :: (ψ1 ∧ . . . ∧ ψn)

def
= i :: ψ1 ∧ . . . ∧ i :: ψn. For the other logical

connectives we have similar definition.

7. Let y be a variable not occurring in i, and ψ a formula having no occurrences of
extended expressions. Then i :: ((∀y)ψ)

def
= (∀y)(i :: ψ).

8. Let y be a variable not occurring in i, and ψ a formula having no occurrences of
extended expressions. Then i :: ((∃y)ψ)

def
= (∃y)(i :: ψ).

9. Let ψ be a formula and all the variables are occurring in i then we have i ::

((∀i)ψ)
def
= (∀i)(ψ). Similar for ∃.

2.1.3 Loop Body and Guarded Assignments
We represent the loop body of a program P as a collection of guarded assignments. A
guarded assignment is an expression of the form :

G→ α1; . . . ;αm (2.1)

where G is a formula called the guard of the guarded assignment and α1; . . . ;αm are
assignments. Each of the α’s are assignments to either variables or array variables. That
is they have the form v := e or aa[e1] := e2 where v ∈ V ar and aa ∈ Arr and e, e1, e2
are expressions. In this settings the guards of all assignments must be syntactically dis-
tinct. That is, the left hand-sides of the guarded assignments are different, syntactically.
Further, in the case when for arbitrary i, k such that i 6= k, we have αi of the form
aa[e1] := e2 and α2 of the form aa[e3] := e4, then in all states satisfying the guard G
the values of e1 and e3 are different.
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When transforming the program into a collection of guarded assignments we have
to ensure that the guards are mutually exclusive and that in every state at least one of
the guards is true. In [35, 76] the authors present two different ways of converting a
program into a set of guarded assignments. In both works the semantics of a guarded
assignment is set to be the one of a simultaneous assignment. That is, given a guarded
assignment G→ e1 := e′1; . . . ; en := e′n than the semantics of this assignment is that of
(e1; . . . ; en) := (e′1; . . . ; e

′
n), meaning all the expressions are assigned in the same time.

The major problem that arises from transformation of a program into guarded as-
signments is the fact that the conversion can lead to exponentially many formulas in the
size of the program. In order to avoid this problem one has to add more information to
the guards. The information that has to be added are usually equalities and inequalities
that make the guard hold only on some paths of the program.

Let’s assume we have the following sequence of assignments aa[a] := c1; aa[b] :=
c2 as the loop body, where c1, c2 are two different constants. Then we can write the
following guarded assignments:

a 6= b→ aa[a] := c1; aa[b] := c2;

a = b→ aa[b] := c2;

Example 2.1.1. Take as an example of a loop body the statements from Figure 2.1.

if (aa[a] == cc[a]){
bb[b] = a;
b = b + 1;
}
a = a + 1;

Figure 2.1: Loop body example

Than we can write the following guarded assignments:

aa[a] = cc[a]→ bb[b] = a; b = b+ 1; a = a+ 1;

aa[a] 6= cc[a]→ a = a+ 1;

2.1.4 Loop Invariants
In the context of program verification, loop invariants are typically expressed as formu-
las in first-order logic. They are used in order to prove correctness properties (in general)
about loops and by extension in proving different algorithms that are employing proved
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correct loops. Informally a loop invariant is a loop property that should be true on the
entry of the loop and is guaranteed to be true during the execution of the loop. Hence,
the invariant is true before and after each loop iterations. One way to formalize the use
of loop invariants for proving loop properties is by using the Floyd-Hoare logic [53].

A Hoare triple is a formula of the form {P} S {Q}, where P is called the pre-
condition, Q is called the post-condition and S is the code that is executed. Each triple
describes how the execution of a piece of code changes the state of the computation. Us-
ing such a formalization one can prove partial correctness of a program. Intuitively one
can read a Hoare triple as follows. Whenever P holds in the state before the execution of
S, then Q will hold afterward or S does not terminate. In the latter case, there is no “af-
ter”, so Q can be any statement at all. Indeed, one can choose Q to be FALSE to express
that C does not terminate. For proving total correctness of a program, one has to extend
the notion of partial correctness with termination. This step is achieved by modifying
the while rules in order to prove that the program also terminates. That is, whenever S
is executed in a state that satisfies P , the execution of the program terminates and after
S terminates Q holds.

The problem of proving partial correctness of a loop reduces to the problem of find-
ing a property Inv. In this context Inv holds before the execution of the loop, that is
the precondition implies Inv, during the execution of the loop the property is preserved
and after the loop terminates Inv and the loop condition imply the post-condition.

Definition 2.1.2. Assuming we have a formula represented as a Hoare triple of the
form {P} while cond do S {Q}, we define Inv as being an invariant if and only if the
following three conditions hold.

1. Initial condition: P ⇒ Inv;

2. Iterative condition: {Inv ∧ cond} S {Inv};

3. Final condition: Inv ∧ ¬cond⇒ Q.

In general programs have a large set of invariants, but only some can be used in order
to prove program correctness. This thesis focuses on the use of an automated first-order
theorem prover in order to generate useful loop invariants. In the following we are going
to present the main ingredients of first-order theorem proving that are used in our work.

2.2 First-order Theorem Proving
In the following we are going to consider the first-order logic with equality where we
allow all the standard boolean connectors and quantifiers. For a more detailed overview
of the notions presented in this chapter we refer to [7, 72, 83]. We assume that our
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language contains the logical constants TRUE (denoted by >) and FALSE (denoted by
⊥). We also denote terms by l,r,s,t, possibly primed, x,y,z variables and constants by
a,b,c,d,e. Functions are denoted by f,g,h and predicate symbols are denoted by p,q.

An atom is a formula of the form p(t1, . . . , tn), where p is a predicate symbol and
t1, . . . , tn are terms. Equality is denoted as usual by =. Any atom that contains the
equality symbol is called an equality, whereas the negation of an equality formula, that
is the formula ¬(l = r), is denoted by l 6= r. A literal is an atom A or its negation
¬A. A literal that is an atom (e.g. A)is called positive while literals of the form ¬A are
called negative. In general a clause is defined as being a disjunction of literals, denoted
by L1 ∨ . . . ∨ Ln with n ≥ 0. The empty clause, denoted by , is a clause that contains
no literals, or more formally a clause where n = 0. In our settings the empty clause is
always considered to have the truth value false. If a clause contains a single literal we
call it a unit clause, while a unit clause that contains the = is called equality literal. We
denote by A atoms, by L literals, by C,D clauses, and formulas by F,G,R,B, possibly
with indices.

Let F be a formula with free variable x̄, then ∀F (respectively ∃F ) denotes the
formula (∀x̄)F (respectively, ∃(x̄)F ). A formula is called closed, or a sentence, if it has
no free variables. We call a symbol a predicate symbol, function symbol or variable.
Notice that variables are not symbols and that equality (=) is part of the language thus
it’s not a symbol. A formula is called universal (respectively, existential) if it has the
form (∀x̄)F (respectively, (∃x̄)F ), where F is quantifier-free.

A theory is any set of closed formulas. If T is a theory, we write C1, . . . , Cn `T C
to denote that the formula C1, . . . , Cn → C holds in all models of T , this notion is
equivalent to axiomatisable theory from logic. When we are working with theory T , we
call all symbols that occur in T interpreted while all the other symbols uninterpreted.

We call a substitution any expression theta of the form {x1 7→ t1, . . . , xn 7→ tn},
where n ≥ 0. An application of such a substitution on an expression E (term, literal,
atom or clause) is denoted by Eθ and is obtained by simultaneous replacement of each
xi by ti. An expression containing no variables is called ground expression. When we
write E[s] we mean an expression with a particular occurrence of a term s. If we use the
notion ofE[s] and thenE[t] the latter means that the expression is obtained by replacing
the distinguished occurrence of s by t.

A unifier of two expressionE1 andE2 is a substitution θ such thatE1θ = E2θ. If two
expressions have a unifier then they have the so-called most general unifier. There are a
couple of algorithms that deal with computation of most general unifier, see [56,77,92]

2.2.1 Inference Systems
In order to explain how saturation algorithms work in general one needs the notion of
inference systems, orderings and selection functions. An inference is a n-ary relation on
formulas where n ≥ 0. We usually write inferences as follows:
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F1 . . . Fn

F
.

The formulas F1, . . . , Fn that appear above the line are called premises of the infer-
ence rule whereas the formula F that appears below the line is called the conclusion of
this inference rule. We call an inference system I a collection of inference rules. We
call an axiom an inference that has 0 premises.

We call a derivation of an inference system a tree built by sequencing inferences in
I. A proof of a formula F in the inference system I is a finite derivation and all the
leafs are axioms. In a similar manner we say that a derivation of F is from assumptions
F1, . . . , Fn if the derivation is finite and all the leafs of this derivation are either axioms
or one of the Fi formulas. In the same context a refutation is a derivation of ⊥. Assum-
ing that we speak about a formula F being derivable from the assumptions, that means
there exists a derivation of F from the assumptions.

Superposition Inference System

In order to introduce the superposition inference system we first have to define the sim-
plification ordering (�) on therms. � is called simplification ordering if it has the
following properties:

1. � is well-founded, meaning there is no infinite sequence of terms t0, t1, . . . such
that t0 � t1 � . . . holds.

2. � is monotonic, that is assuming a � b, then s[a] � s[b] for all terms a, b, s

3. � is stable under substitutions, if a � b, then aθ � bθ, where θ is a substitution.

4. � has the subterm property, if a is a subterm of b and a 6= b then a � b.

The idea to take from simplification orderings is that they provide a way of saying
which of the expressions are “simpler”. More details about orderings can be found
in [7, 83]. An example of such a ordering is the so called Knut-Bendix ordering [61]
that compares ground terms with regard to the number of symbols that appear in each
of them.

Besides the orderings we also need a way to select the literals that we are going
to resolve upon. More formally a selection function selects in every non-empty clause
a non-empty subset of literals. In general when we speak about selected literals, we
underline them, e.g. L ∨ V that means literal L and possibly other literals are selected
in L ∨ V .

As a general presentation one can see the superposition inference system as a family
of systems that are all parametrised by simplification ordering and selection functions.
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For simplicity we assume that the selection function and the ordering are fixed. In the
following we are going to present the superposition inference system, denoted by Sup.
Resolution:

A ∨ C1 ¬A′ ∨ C2

(C1 ∨ C2)θ

where θ is the most general unifier (mgu in the sequel) of A and A′.
Factoring:

A ∨ A′ ∨ C
(A ∨ C)θ

where θ is the mgu of A and A′.
Superposition:

l = r ∨ C1 L[s] ∨ C2

(L[r] ∨ C1 ∨ C2)θ

where θ is the mgu of l and r, where s is not a variable and rθ � lθ, L[s] is not an
equality literal.

l = r ∨ C1 t[s] = t′ ∨ C2

(t[r] = t′ ∨ C1 ∨ C2)θ

where θ is the mgu of a and c, where c is not a variable and bθ � aθ, t′θ � t[s]θ.

l = r ∨ C1 t[s] 6= t′ ∨ C2

(t[r] 6= t′ ∨ C1 ∨ C2)θ

where θ is the mgu of a and c, where c is not a variable and bθ � aθ, t′θ � t[s]θ.
Equality Resolution:

s 6= t ∨ C
(C)θ

where θ is the mgu of s and t.
Equality Factoring:

s = t ∨ s′ = t′ ∨ C
(s = t ∨ t 6= t′ ∨ C)θ

where θ is the mgu of s and s′, tθ � sθ and t′θ � tθ.
We call a selection function well-behaved if the function selects either all the max-

imal literals or a negative literal. In this case the inference system is sound and refuta-
tionally complete. That is in case the empty clause ( ) can be derived from a set S of
formulas using Sup, then S is unsatisfiable. And by refutationally complete we mean
the fact that if the initial set of formulas S is unsatisfiable, then the empty clause will be
eventually derived from S using Sup.
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2.2.2 Saturation Procedure
A set of clause S is called saturated with respect to an inference system I if and only if
for every inference in I with premises in S the conclusion of applying this inference is
still in S. We call smallest saturate set containing S the set of all clause derivable from
S. Using these notion of saturated set one can reformulate the completeness theorem as
follows:

Theorem 2.2.1. A set S of clauses is unsatisfiable if and only if the smallest set of
clauses containing S and saturated with respect to the inference system (superposition
inference system in our case) also contains the empty clause.

The problem that arises is that this theorem does not provide with a constructive way
of searching for the empty clause. For this purpose saturation algorithms are proposed.
The algorithm’s job is to guide the search for the empty clause. The only steps that such
an algorithm is allowed to take are based on the inference system. More precisely at
every step such an algorithm should select an inference from the inference system and
apply it. From this formalization of the notion of saturation algorithm one can notice that
is really important to have a good strategy for selecting the inference that is to be applied.
Also in order to preserve completeness one has to design a fair inference selection, that
is every possible inference must be selected at some step of the algorithm. We call a fair
saturation algorithm a saturation algorithm that implements a fair inference selection.

Assuming one uses the Sup inference system and a fair saturation algorithm one can
distinguish three possible scenarios for running it on a set of clauses:

1. After a finite number of steps taken by the saturation algorithm the is found. In
this case we can decide that the input set of clauses is unsatisfiable.

2. We manage to saturate the set, that is the saturation algorithm terminates without
generating . In this particular case we can conclude that the set is satisfiable.

3. The saturation algorithm runs forever without generating the , in this case we
also say that the initial set of clauses is satisfiable.

Note that the third case cannot be implemented as is presented due to the fact that it
would run forever or even more precisely it would run out of resources (time, memory,
etc). In general theorem provers implement this case in a bit of a different way as
follows:

3’ Run the saturation algorithm until the system runs out of resources but without
generating the clause. In this case the system will return unknown, since it
is not clear whether the initial set of clause is unsatisfiable or we just ran out of
resources.
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OTTER

Before explaining how saturation algorithms work we have to fix some notions. We call
kept clauses the set of clauses that are currently stored in the search space. We call a
set of clauses to be passive if they are kept by the saturation algorithm and they did not
yet take part in inferences. We call active those clauses that are kept and that did take
part in some inferences. As presented also in 1 saturation algorithms use the notion of
unprocessed clause, that is the initial set of clauses. In the following we are going to
present one simple saturation up to redundancy algorithm.

Named after the theorem prover Otter, the saturation algorithm was first presented
in [78]. A slightly modified and simplified version of this algorithm is presented in 1. In
this case the algorithm accepts as input an initial set of clauses and tries to decide their
satisfiability. In order to understand how this algorithm behaves in practice we first have
to explain how each of the procedures used in the pseudocode behave.

Algorithm 1 A simplified version of the Otter algorithm
1: Input init: initial set of clauses;
2: Var active, passive, generated: set of clauses;
3: Var given: clause;
4: active := ∅;
5: passive := init;
6: main loop
7: while passive 6= ∅ do
8: given := select(passive);
9: passive := remove(given, passive);

10: active := add(given, active);
11: generated := computeInferences(current, active);
12: if provable(generated) then
13: return satisfiable;
14: self_simplify(generated);
15: simplify(generated, active ∪ passive); . Forward simplification
16: if provable(generated) then
17: return satisfiable;
18: simplify(active, generated) . Backward simplification
19: simplify(passive, generated) . Backward simplification
20: if provable(active ∪ passive) then
21: return satisfiable;
22: passive := add(generated, passive); . Create union of two sets
23: endloop
24: return unsatisfiable
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add(. . . ), remove(. . . ). These procedures do exactly what their name suggests. Add
adds either a clause to a set of clauses or a it creates the union of two sets of
clauses. While remove removes a clause from a set of clauses.

computeInferences(clause, setOfClauses). The procedure computes and returns the set
of all clauses that can be generated by applying the inferences implemented in the
prover. It does it by applying all possible inferences between the clause and the
set of active clauses setOfClauses.

self_simplify(setOfClauses). Procedure that applies simplification rules based only on
the clauses that appear in setOfClauses. An example of such a simplification rule
is rewriting by unit equality.

simplify(what, using). This procedure tries to simplify the set of clauses what using
clauses from the set using. In general, when simplification is done the clauses
that get simplified are moved to the passive set of clauses. When we simplify the
set of generated clauses by the already existing clauses from active∪passive we
talk about forward simplification. Whereas when we simplify the clauses from
active and passive by the generated we speak about backward simplification.

One can notice that in practice implementing the algorithm in this exact way is not
going to give the best results.

Besides Otter, in the same family of so called given clause algorithms, there are
some variations that have better practical applicability. The major difference between
these algorithms is in the way they handle passive clauses. More precise, the major
difference consists in whether passive clauses are used for simplification steps or not.
One of these algorithms, called DISCOUNT [6] differs from the algorithm presented in
the sense that it does not allow passive clauses to take part into simplifications.

Another algorithm called Limited Resource (short LRS) [90] is a variation of the Ot-
ter algorithm that uses passive clauses in simplifications but instead of using all passive
and generated clauses it tries to estimate which clauses have no chance in being se-
lected by the selection function by the time limit and it discards them. A more in-depth
comparison of these algorithms can be found in [75, 88, 90]

2.2.3 Redundancy Elimination
Assuming that one does a straightforward implementation of a fair saturation algorithm
the product won’t be an efficient theorem prover. In principle in order to improve one
should rater use the notion of saturation up to redundancy. The general idea behind
redundancy is as follows: given a set of clause S and a clause C ∈ S, C is redundant
in S if it is a consequence of those clauses in S that are strictly smaller than C with
regard to the simplification ordering �. Note the fact that the problem of redundancy is
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undecidable in this formulation. Though state-of-the-art theorem provers implement re-
dundancy elimination. This is done by recognizing the clauses based on some sufficient
conditions.

Tautology deletion. A clause is called a tautology if it has the following form A ∨
¬A ∨ C or l = l ∨ C. That is, this clause is true under any interpretation, or more
formally the clause is valid. The fact that this clauses are valid allows theorem proves
to safely eliminate them.

Subsumption deletion. A clause C is called subsumed by another clause D if the
clause C can be obtained from D using two types of operations. 1) Application of some
substitution θ. 2) Adding of none or more literals. In other words subsumption can be
defined as follows: if by applying Dθ and adding some literals we can derive C then the
clause D subsumes C and C is redundant in the search space and can be removed from
the search space.

In order to define the process of saturation up to redundancy one has to define the
inference process. We call an inference process a sequence (finite or infinite) of formulas
S0, S1, . . . denoted by

S0 ⇒ S1 ⇒ S2 ⇒ . . . . (2.2)

We call a step in this inference process a pair Si ⇒ Si+1.
The concept of redundancy allows one to remove clause to the search space, hence

a process that uses this notion can be described by two types of steps:

• Step that adds to the search space a new clause obtained by an inference whose
premises are in the search space;

• Step that deletes the redundant clause from the search space.

Using these notions one can extend them to use the implemented inference system
as follows. Assuming we have I an inference system, we call a I-process an inference
process that in each of its steps either adds a clause that is the conclusion of an inference
the the search space or deletes a redundant clause from the search space.

Using these notions we can now define saturation up to redundancy and algorithm
that implements an inference process. Of course we still want to define a fair saturation
up to redundancy so that we can guarantee fairness for every initial set of clause S0.

Generating, Simplifying Inferences and Deletion Rules

In general when implementing one of the saturation algorithms it is desirable to remove
as many redundant clauses as possible. The problem of deciding whether a clause is
redundant is undecidable in general. But it is still possible to try in finding “cheap”
sufficient conditions for an inference to result in a deletion and try to apply such steps
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eagerly. Let S be an inference system, and each of the inferences has the following form

C1 . . . Cn

C
.

From this perspective we can classify the inferences as simplifying if by adding the
conclusion of such an inference C, makes at least one of the premises (Ci) redundant in
the search space.

All the inferences that are not simplifying are called generating. They are named
like this due to the fact that they generate a new clause C in the search space instead of
simplifying one.

Most of state-of-the-art theorem provers, including VAMPIRE, implement the fol-
lowing principle: apply simplifying inferences eagerly and apply generating inferences
lazily. That is, try first to minimize the search space as much as possible and postpone
the generation of new clauses in the search space as much as possible. This decision
influences the design of saturation algorithms as follows: from time to time provers try
to search simplifying inferences with the cost of delaying the generating inferences.

Another important issue that has to be carefully integrated is implementation of
different deletion rules. Although simplifying inferences are in place, there is still the
possibility of redundant clause to be found in the search space. Hence they should be
removed. The most common deletion rules implemented by provers are tautology and
subsumption deletion.

In the general framework of first-order automated theorem proving dealing with long
clauses prove to quickly deteriorate performance of a prover. For this purpose there are
a couple of splitting techniques commonly used in theorem provers. In this thesis we
evaluate the performance of a new splitting technique that uses a SAT solver for guiding
the split, introduced in the new AVATAR architecture [103]. In the following we will
briefly overview different notions that are used when dealing with a SAT solver.

2.3 SAT Solving
In this section we are going to introduce the notions used by the satisfiability solvers,
or as found in literature SAT solvers. The algorithms can be categorized in two main
classes complete and incomplete. In the following we are addressing only some essential
algorithms from the sound and complete class, more details can be found in [30,48,97].
We call an algorithm sound and complete if and only if it is guaranteed to terminate
and give a correct decision of satisfiability/unsatisfiability of a given input formula.
Throughout this section when we are referring to a formula ψ we make the assumption
that it is in conjunctive normal form (CNF).

Keep in mind that throughout this section we are working with propositional logic.
We call a proposition a formula that is in CNF. In this logic we are assumed to have a
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finite set of boolean variable denoted by x1, x2, . . . , xn. We call a literal a variable xi
or its complement ¬xi. A clause is a disjunction of distinct literals and we denote it
by ωi. One can see a clause as the set of literals that appear in the clause, {l1, . . . , lm}.
Note that due to our construction it is not allowed to have both l and ¬l in the same
clause ω. Also a clause that contains no literals is called empty clause and is considered
to be inconsistent. A formula ψ is in conjunctive normal form if it is a conjunction of
disjunction of literals. More formally CNF formula should have the following shape:
ψ : ω1∧ . . .∧ωn with ωi : l1∨ . . .∨ lm. Or we can also consider a formula to be a set of
clauses, e.g. {ω1, . . . , ωn}. In case a CNF formula ψ contains no clauses we consider it
to be valid while if ∅ ∈ ψ the formula is said to be inconsistent.

Besides the previous notions in the context of satisfiability checking we also speak
about partial assignments. A partial assignment ρ for a formula ψ is a truth assignment
to a subset of its literal. We call a unit clause a clause that contains a single literal. In a
similar manner we call binary clause a clause that contains two literals.

2.3.1 The DPLL Procedure

The original idea behind this algorithm was first introduced by Davis and Putnam in [32]
but it was only a couple of years later that Davis, Logemann and Loveland (DPLL) [31]
came up with the form it is widely used also today. Basically the DPLL procedure tries
to prune the search space based on the falsified clauses.

Algorithm 2 sketches the basic idea of the DPLL procedure on CNF formulas. In this
procedure one tries to repeatedly assign an unassigned literal l in the input formula and
recursively search for a satisfying assignment for the formula using the value assigned
to l. Commonly in the SAT literature the choice of such a literal l is called the branching
step while the assignment of l to TRUE or FALSE is called the decision step. Another
important notion is the one of decision level which basically keeps track the recursion
depth.

Notice that after the run of this algorithm and in case the formula proves to be
satisfiable we want to have a satisfying assignment constructed. For that purpose at
each stage we keep track of the partial assignment (denoted by ρ in 2) for the variables
that appear in the original formula. At each recursion level the algorithm first applies
unit propagation on the current formula. Unit propagation is a procedure that takes all
the unit clauses that appear in the formula, assigns them to TRUE, adds them to the
partial assignment and goes trough all the clauses where the unit literal appears and
propagates the assigned value. By doing so the initial formula gets simplified and some
other variables might get assigned.

Although the algorithm is presented in a recursive way, in practice it is usually im-
plemented in a iterative manner. But in order to become competitive one has to take lots
of crucial decisions. Next we are going to iterate over a couple of them.
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Algorithm 2 Recursive DPLL, starting with an empty partial assignment
1: ρ := ∅
2: DPLL-recursive(ψ: CNF formula, ρ: partial assignment)
3: UnitPropagate(ψ, ρ); . Apply unit propagation on F and add all derived

assignments to ρ
4: if ( ∈ ψ) then
5: return Unsatisfiable;
6: if (ψ == ∅) then
7: Print the assignment ρ
8: return Satisfiable
9: l := pickLiteral(ρ) . pick a literal that is not assigned in ρ

10: if (DPLL-recursive(ψ|l, ρ ∪ {l}) == Satisfiable) then
11: return Satisfiable;
12: return DPLL-recursive(ψ|¬l, ρ ∪ {¬l})
13: end

Key Features of DPLL

Variable and value selection. The way in which variables are selected tends to vary
most from solver to solver. Strategies developed in order to select the next variable
that has to be assigned influences a lot the overall performance of a state-of-the-art
SAT solver. In the literature one can find strategies as easy as picking a randomly not
already assigned variable to more complex ones like MOMS [59] (maximum occurrence
in clauses of minimum size), VSIDS [81] (variable state independent decaying sum),
DLIS [98] (dynamic largest individual sum).
Backtracking schemes Also called backjumps, these schemes allow the solver to retract
all the decisions made from a specific point until the conflict. The main advantage
of using such procedures consists in the fact that one does not have to backtrack to
decision level 0 and start the search but rather go to some “close” point in the decision
trace. Usually when we speak about backjumping there are two main techniques, one
is conflict-directed backjump which was introduced in [100] or the more recent method
called fast backjumping used in most solvers like zChaff [81] and Grasp [98].
Two watched literal scheme This scheme was introduced in zChaff [81]. This technique
makes the task of constraint propagation much easier. The main idea behind this data
structure is that one keeps track for each active clause that is not FALSE under the partial
assumption of only two literals. These literals can be either assigned to TRUE or they
are not yet assigned. We know that if we manage to find the empty clause the DPLL
process will stop and in case a clause is unit it can be immediately satisfied. Hence it is
easy to find in each clause two such literals. In order to maintain the two watched literal
scheme one is allowed to perform two operations: 1) Suppose that a literal l is set to
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FALSE. We go over the literals in the clause and try to find another one (preferably set
to TRUE) in that clause to watch. 2) We go trough all the clauses that became inactive
(satisfied) by assigning l to FALSE and we make the negation of that literal as being
watched (¬l). This second step basically bumps the priority for positive literals over the
negative ones.

Using this two watched literal scheme one can easily test if a clause is satisfied under
the current assignment, this being done by checking if at least one of the literals is set
to TRUE. Another important improvement comes from the fact that upon backtracking
one has to do absolutely nothing about the watches. This is due to the fact that the
invariants that characterize the watched literals are preserved. More details about how
the two watched literals scheme work can be found in [81]
Restarts It was noticed that if one allows the search to restart from decision level 0
better results can be obtained. The way restarts work is as follows: one keeps all the
learned clauses but retracts all the decisions made until now and starts the search from
the beginning. Since the learned clauses are only clause that prune the search space if
there is a solution then the solver will eventually find it. In practice often restarts proved
to be beneficial for the overall performance of different solvers.

2.3.2 The Conflict Driven Clause Learning procedure (CDCL)
This procedure is similar to the procedure deployed by the iterative DPLL procedure but
with a couple of enhancements, more details can be found in [97]. Algorithm 3 in fact
is a variation to the DPLL procedure. The major difference to DPLL is the call to the
ConflictAnalysis procedure each time a conflict is encountered and the call to Backtrack
in case backtracking is required. Other than that the structure is preserved. Another
issue that is not presented in this general overview is how restarts are implemented, for
more details see [8,47]. Besides restarts state-of-the-art solver also allow learned clause
deletion so that they speed up the process.

The procedure that are involved in this procedure can be succinctly described as
follows:

UnitPropagate(ψ, ρ). This procedure behaves in the exactly like the one presented in
the case of DPLL. The only difference to that is that in case of a conflict it sends
a signal to the original algorithm.

pickVariable(ψ, ρ) and decide(ψ, ρ). These procedures have the role of picking the next
variable to assign and its value. They are similar to the ones presented in DPLL.

allVarsAssigned(ψ, ρ). This procedure is used as a stopping criterion for the search
algorithm. In case all variables are assigned, the algorithm terminates and returns
satisfiable and the assignment ρ.
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Algorithm 3 Typical CDCL algorithm
1: ρ := ∅
2: CDCL(ψ: CNF formula, ρ: partial assignment)
3: if (UnitPropagate(ψ, ρ)==CONFLICT) then . Deduce stage
4: return Unsatisfiable;
5: dl := 0 . Set decision level to 0
6: while (¬allV arsAssigned(ψ, ρ)) do
7: x := pickV ariable(ψ, ρ) . Decision
8: val := decideV alue(x)
9: dl := dl + 1 . Increment decision level

10: ρ := ρ ∪ {(x, val)} . Add variable and value to partial assignment
11: if (UnitPropagate(ψ, ρ)==CONFLICT) then . Deduce stage
12: blevel := ConflictAnalysis(ψ, ρ) . Diagnostics stage
13: if (blevel < 0) then
14: return Unsatisfiable;
15: else
16: Backtrack(ψ, ρ, blevel)
17: dl := blevel . Reset decision level due to backtracking

ConflictAnalysis(ψ, ρ). This procedure has the job to create the conflict clause and to
learn it. They are a couple of techniques that deal with how one can create and
learn conflict clauses from the most recent conflict. Some of these techniques will
be presented next.

Backtrack(ψ, ρ). Backtracks the search to the level computed by the ConflictAnalysis
function.

Conflict Analysis

Each time a conflict is encountered this conflict is analyzed, in the case of our algo-
rithm the ConflictAnalysis procedure is called. During the analysis of a conflict one or
more conflict clauses are learned. Exception is the case where the conflict happens at
decision level 0 meaning that the formula is unsatisfiable. In 2 the procedure returns a
backtrack level less than 0 such that in the next conditional the stopping criterion is met
and Unsatisfiable is returned.

In order to learn a clause the solver is representing the decisions in an implication
graph, where the conflict is marked by k. The procedure starts by visiting all variables
that are assigned at latest decision level, computes all the antecedents of those variables
and keeps track of variables that are assigned at decision levels less than the current
decision level. This procedure is repeated until the most recently decided variable is
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reached. After this step using resolution and at each level, resolution is applied using
the variable decided at that specific level as variable to resolve upon, in order to select
the variable to intermediate clauses are derived until a fix point is reached. When the
fix point is reached the procedure stops and the clause resulted is learned. Notice that
in the worst case the resolution step can be applied at most the number of variables that
appear in the clause times. Also notice that using this learning scheme and backtracking
the procedure is still complete and sound since it implements a variation of the DPLL
procedure, see [31, 32].

But modern SAT solvers use a slightly modified version of clause learning which is
based on the notion of unit implication point (UIP).

Unit Implication Points (UIP’s)

The idea of using the UIP as stopping criterion for the learning procedure was first
introduced by GRASP [98].

The basic idea behind UIP’s comes from graph theory. In the implication graph a
UIP is nothing else than the dominator. We say that a vertex v is dominating another
vertex x in a directed graph if every path from x to another vertex k contains v. In our
case this can be viewed in the implication graph as follows: vertex v (also the first UIP)
dominates vertex x with respect to the conflict k. For finding a UIP in the implication
graph there is a linear algorithm (at any decision level where a single literal is assigned
that variable is a UIP), hence there is not that much overhead added to the solver. It is
easy to extend the procedure to stop at any of the UIP’s found in the implication graph.

Another interesting issue proposed by Chaff [81] is the fact that learning should be
stopped at the first UIP and one should always backtrack given the information from the
learned clause. Backtracking has to be done to the highest decision level of the literals
involved in the learned clause. Stopping at first UIP and backtracking as presented
above is referred in literature as first UIP clause learning.

When developing a SAT solver, naive implementation of these procedures do not
lead to great improvements. For this reason state-of-the-art SAT solvers besides imple-
menting all the previously mentioned featured pay great attention is to the way different
data-structures are implemented.

Improvements

Besides the different clause learning techniques modern SAT solvers also implement
different restarting schemes which prove to influence a lot the results obtained by the
solvers, see [97] for an overview of techniques.

Also one important role in the performance of state-of-the-art SAT solvers relies in
the so called lazy data structures. Most of these data structures try to optimize the way
in which clauses can be visited and how propagation can be done. By using this kind of
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data-structures one can ensure that not much time is lost during propagation and visiting
clauses, for details about these data structures see [16, 42, 81, 97, 106].

Another important role is played by the preprocessing techniques applied on the
formula before the search can start, more details about the preprocessing steps can be
found in [16, 41, 42].

31





CHAPTER 3
First-order Theorem Proving for

Program Analysis

In this chapter we present the techniques used in order to generate loop invariants for
programs using a first-order automatic theorem prover. First we introduce the notion of
update predicates, needed in order to express the properties that are collected from the
input program. Afterwards we present details regarding the properties of interest and
how these properties can be automatically extracted from loops. Having the properties
extracted from loops we then go trough the method of symbol elimination and explain
how it works. Finally, we describe Lingva, a tool that implements all these features. We
conclude by presenting experimental results obtained from running Lingva on a large
set of programs.

3.1 Symbol Elimination for Invariant Generation
Given a program loop P we are interested in generating invariants for this loop. By
invariants we mean properties that are true after an arbitrary number of loop iterations,
where the number of the loop iterations is bounded by the loop counter n. Note that
n ≥ 0. The value that each of the loop variables have at iteration 0 is called initial
value.

In order to generate loop invariants, we proceed as follows. We first extract first-
order formulas that describe the loop behavior. These formulas express valid loop prop-
erties relative to the loop iterations. For this reason we introduce the predicate iter that
is denoting the range of valid loop iterations, formally defined as:

(∀i)(i ∈ iter ⇔ 0 ≤ i ∧ i < n). (3.1)
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Notice that whenever we speak about an iteration we refer to a value in the interval
[0, n− 1]. Besides the iteration predicate for extracting loop properties we make use of
extended expressions, as defined in 2.1.2.

3.1.1 Update Predicates
In order to “force” a saturation based first-order theorem prover to generate loop in-
variants one needs to extract first some properties about the loop and its variables. The
program analysis part of the symbol elimination method is based on the analysis of how
arrays are updated during the execution of the loop [71]. In order to describe the array
behavior, we introduce so-called update predicates and some axioms about them, as
follows.

The update predicates are constructed as follows: for each of the array variables that
are updated in a loop we introduce two predicates. Assume we have an array variable
V that is updated during the loop. We introduce the following two update predicates:

1. updaa(i, p) : this predicate says that the array aa gets updated at loop iteration
i ∈ iter at position p.

2. updaa(i, p, x) : this predicate says that the array aa gets updated at loop iteration
i ∈ iter at position p with value x.

These predicates can be automatically extracted from guarded assignments that we
collect for representing the program.

Example 3.1.1. Take the program from Figure 3.1. In this case only the array bb gets
updated during the loop. Hence, we only introduce the updated predicates updbb(i, p)

1 int a=b=0;
2 while(a<m){
3 if (aa[a]==cc[a]){
4 bb[b]=a;
5 b = b+1;
6 }
7 a = a+1;
8 }

Figure 3.1: Example program

and updbb(i, p, x), as follows.
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We start by writing down the guarded assignments that can be extracted from this
simple loop.

aa[a] == cc[a]→ bb[b] := a; b := b+ 1; a := a+ 1; (3.2)

aa[a] 6= cc[a]→ a := a+ 1; (3.3)

Using the information from the guarded assignment (3.2) one can automatically
generate the following update predicates for array bb:

updbb(i, p)⇐⇒ i ∈ iter ∧ p = b(i)∧
aa(i)[a(i)] == cc(i)[a(i)].

(3.4)

updbb(i, p, x)⇐⇒ i ∈ iter ∧ p = b(i)∧
aa(i)[a(i)] == cc(i)[a(i)]∧
x = cc(i)[a(i)].

(3.5)

3.1.2 Loop Properties
After we have defined and introduced the update predicates for all array variables that
are modified during the loop, we proceed to extract first-order properties of the loop, as
described below.

Update Properties of Arrays

One valid loop property about arrays states that if an array is never updated at a position
p during the execution of the loop than its value remains constant at that position, We
will refer to this property as stability property. Another property expresses the fact
that if an array is updated at some iteration p and afterwards is never updated, then the
value of the array at that position remains the value that the array was updated with at
iteration p. This property can be expressed using the update predicates and we will call
this property last update for an array.

Example 3.1.2. Let us consider again the example from Figure 3.1. Let us analyze the
array bb. In this case one can write the stability property as in equation (3.6) where n is
the loop counter.

(∀i)¬updbb(i, p)⇒ bb(n)[p] = bb(0)[p]. (3.6)
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Using the same settings as before we can formally state the last update property of
bb, as in equation (3.7):

updbb(i, p, v) ∧ (∀j, j > i)¬updbb(j, p)⇒ bb(n)[p] = v. (3.7)

In a similar manner we would like to state that some array remains constant during
the execution of the loop. For doing so, in the case of the array aa from the example
of Figure 3.1, one needs to add the property: (∀i)(aa(i) = aa(0)).For our purposes, in
the sequel for a constant arras we do not introduced extended expressions but use the
array without changes, as it is. Take the case of Figure 3.1, we simply write aa instead
of aa(i) and, for example aa[p] instead of aa(i)[p].

Monotonicity Properties of Scalars

Another set of valid loop properties extracted in the process of analyzing the loop de-
scribe valid properties of scalar variables. We call a scalar variable v increasing if it has
the following property: (∀i ∈ iter)(v(i+1) ≥ v(i)), that is at every iteration of the loop
the value taken by this variable is increased. Similarly we call a variable v decreasing
if it has the property (∀i ∈ iter)(v(i+1) ≤ v(i)) for all possible iterations of the loop.
Using these notions we call a variable v to be monotonic if it is either increasing or
decreasing.

Monotonicity properties about loops can be either discovered by different program
analysis tools or by simply applying some light-weight techniques to discover it. In
our case we rely on the light-weight techniques. Let us start by giving an example of
such a technique. Assuming that during the computation of a loop some variable v gets
assigned expressions of the form v := v+const where const is a non-negative constant,
then it is safe to conclude that this variable is increasing.

Example 3.1.3. Let us take again the program from Figure 3.1. Using the reasoning
above, we can safely conclude that variables a and b are increasing.

A refinement of the increasing (decreasing) properties is the strictly increasing (strictly
decreasing) property. A variable v has the strictly increasing property if throughout the
execution of a loop it preserves the invariant (∀i ∈ iter)(v(i+1) > v(i)).

Example 3.1.4. In the example of Figure 3.1, both variables a and b are strictly increas-
ing.

Another property of scalars that we extract is based on the so-called dense variables.
We call an integer variable v to be dense if every value of the variable is visited by the
loop in an increasing/decreasing manner. That is, the value of v is increased (decreased)
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at every computation of the loop by constants 0 or 1. Formally, this property can be
expressed as:

(∀i ∈ iter)(v(i+1) = v(i) ∨ v(i+1) = v(i) + 1).

Using the combination of the above properties, we also extract the following loop
properties about scalars.

1. Assuming there is a strictly increasing and dense variable v we will add

(∀i)(v(i) = v(0) + i).

Notice that in this formula we are not restricting the computation to range only
over iterations. Also notice the use of the initial value of the variable v(0). It
is not hard to argue that this is the case, since at every computation step we are
incrementing the value of v with 1.

2. In case the variable v is strictly increasing but not dense then we can add

(∀j)(∀k)(k > j ⇒ v(k) > v(j))

to the set of generated properties.

3. In case a variable v is increasing but not strictly increasing we add

(∀j)(∀k)(k ≥ j ⇒ v(k) ≥ v(j)).

4. In case the variable v is increasing and dense but not strictly increasing, then we
have to add the following property

(∀j)(∀k)(k ≥ j ⇒ v(j) + k ≥ v(k) + j).

In a similar manner to the one presented above one can derive the rules for decreasing
variables.

Example 3.1.5. Let us consider again the example for Figure 3.1. Using the analysis
described above, we extract the following properties:

(∀i)(a(i) = a(0) + i)

(∀j)(∀k)(k ≥ j ⇒ b(k) ≥ b(j))

(∀j)(∀k)(k ≥ j ⇒ b(j) + k ≥ b(k) + j)

(3.8)
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Update Properties for Monotonic Variables

Recall the fact that the loop we analyze is represented as a set of guarded assignments.
Suppose that v is a monotonic variable. We would like to express the fact that if the
variable gets updated (in other words, the value of this variable changes) then there ex-
ists an iteration where the conditions in the guards got satisfied. For this reason suppose
that the set U contains all the guarded assignments where the variable v can be changed.
Note that in general we write down the guarded assignments as

G1 → α1

. . .

Gm → αm

Using this notation one can define U = {1, . . . ,m} as the set of guarded assignments
that can change the value of x. In other words one can say that u ∈ U if and only if αu

contains an assignment to variable v. Suppose that v is increasing, for decreasing case
the formulas are similar to the ones presented below, and also dense. Then we add the
following property to the set of generated properties:

(∀val)(val ≥ v(0) ∧ v(i) > val⇒ (∃i ∈ iter)(
∨
u∈U

(i :: Gu) ∧ v(i) = val)). (3.9)

In the case where v is not dense, but still increasing, we have :

(∀val)(val ≥ v(0)∧v(i) > val⇒ (∃i ∈ iter)(
∨
u∈U

(i :: Gu)∧val ≥ v(i)∧v(i+1) > val)).

(3.10)

Example 3.1.6. Consider the example of Figure 3.1. Using the analysis above, we
obtain the following property:

(∀val)(val ≥ b(0)∧b(i) > val⇒ (∃i ∈ iter)(b(i) = val∧aa[a(i)] == cc[a(i)])). (3.11)

Translation of Guarded Assignments

Suppose that G → e1 := e
′
1; . . . ; ek := e

′

k is a guarded assignment in the loop rep-
resentation and that v1, . . . , vl are all scalar variables of the loop not belonging to
{e1, . . . , ek}. Define the translation t(ej) at iteration i of a left-hand side of an as-
signment as follows: for a scalar variable x, we have t(x)

def
= x(i+1) and for any variable

X and expression e we have that t(X[e])
def
= X(i+1)[e(i)]. Then we add the following

axiom:

(∀i ∈ iter)(i :: G⇒
∧

j=1,...,k

t(ej) = (i :: e
′

j) ∧
∧

j=1,...,l

v
(i+1)
j = vij). (3.12)
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Example 3.1.7. Consider again the example from Figure 3.1. We then obtain the fol-
lowing formula:

(∀i ∈ iter)(aa[a(i)] == cc[a(i)]⇒bb(i+1)[b(i)] = a(i)∧
b(i+1) = b(i) + 1);

3.1.3 Reasoning with Theories
In general first-order theorem provers are really efficient when it comes to reasoning
with quantifiers, but they are not that performant when it comes to reasoning with the-
ories. In order to generate loop invariants one however has to reason with different
theories, such as the theory of integers, reals, arrays, and lists. In order to overcome
the problem of theory reasoning withing first-order theorem proving, a straightforward
solution is to add first-order axioms of the respective theories to the theorem prover.
The downside of this approach is the fact that there is no complete axiomatization for
the previous first-order theories if we take into account arbitrary quantification.

Nonetheless, one may use incomplete but sound axiomatization of theories. This
is the approach taken in [71] and the approach we followed in this thesis for invariant
generation. For our purposes, we considered the following incomplete axiomatization
of linear integer arithmetic to be added to the first-order theorem prover:

x ≥ y ⇔ x > y ∨ x = y

x > y ⇒ x 6= y

x ≥ y ∧ y ≥ z ⇒ x ≥ z

succ(x) > x

x ≥ succ(y)⇔ x > y

where > and ≥ are the greater and greater equal arithmetical relations over integers,
x, y are integer variables and the successor function succ, which is equivalent on writing
succ(e)⇔ e+ 1.

In the context of program verification and invariant generation reasoning with the-
ories in an first-order theorem prover is a really hard task. By using simple axiomati-
zation like the one presented above proves to behave well in most situations, but it is
still a challenge to reason about more complex arithmetic. One attempt for integrat-
ing a more powerful technique for arithmetic reasoning is presented in [39, 67] and its
implementation is discussed in Chapter 4.

3.1.4 Invariant Generation
In a nutshell our approach of generating invariants can be described as follows. Starting
with a loop that we are interested in analyzing, Lwe first collect all the variables that ap-
pear in the loop. Next the language of this loop gets extended to a richer language. After
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the loop language is extended, light-weight analysis is applied and properties about the
loop are automatically extracted. After this step we write the loop as a set of guarded
assignments. At this point we have a collections of loop properties that contain also
symbols that are not part of the original loop, e.g. update predicates. In order to gener-
ate invariants we need to mark these symbols in order for the saturation theorem prover
to eliminate them when it generates invariants. As last step we make use of a saturation
theorem prover in order to generate properties (invariants), containing only symbols that
appear in the original program, from the set of extracted loop formulas.

Symbol Elimination for Invariant Generation

Until now we discussed how valid loop properties, including extended expressions, are
generated. Now having a collection of first-order properties one needs to add them to
a theorem prover so that invariants can be generated. Notice that any consequence that
is generated from the set of properties is an invariant. But not all of them are useful
invariants. An invariant is useful if and only if it uses only symbols that appear in the
original loop. In order to “force” a saturation based theorem prover to generate only
properties that satisfy we make use of the so called well-colored derivations [54, 79].

The idea behind well-colored derivations (also called local proofs or split proofs) is
as follows. We define some of the predicates to be colored while others are uncolored.
A symbol, literal or formula is called colored if it has a color, otherwise it is called trans-
parent. We call a derivation to be well-colored if any inference applied in that derivation
uses symbols that have at most one color. We call symbol eliminating inference and in-
ference that has at least one colored premise and the conclusion is transparent.

In the context of invariant generation we can formulate the problem by using one
color, that is, we mark all the newly introduced symbols (symbols that are not in the
loop but used in the loop properties, such as loop counters) as being not useful for the
generated invariants. We leave all the symbols that can appear in the invariant, program
symbols and theory symbols, as being transparent. We call an invariant for the initial
program a property that uses only transparent symbols. Starting from the initial set of
properties and applying symbol elimination inferences on the problem is guaranteed to
obtain a valid transparent formula. Hence the problem of generating invariants can be
formulated in terms of elimination of colored symbols.

However, for making a theorem prover efficient with the task of generating transpar-
ent consequences one has to change the literal selection and simplification ordering so
that colored symbols are greater in the ordering than any other transparent symbol. This
way, the theorem prover will pick colored symbols first, applies inferences over literals
containing colored symbols and eliminates colored symbols in the process of saturation
over the generated set of first-order loop properties. Such orderings can be constructed
using minor changes to the standard Knut-Bendix ordering [74] – see e.g. [54].
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3.2 Lingva: Loop Invariant Generation using Vampire
We implemented our approach for invariant generation described in Section 3.1. Our
implementation provides a fully automated tool support, called Lingva, for generating
and proving program properties, in particular loop invariants.

A overview of Lingva’s workflow is presented in Fig. 3.2. Lingva makes use of the
first-order theorem prove Vampire [72] and is mainly implemented in C++. Besides
the core which is implemented in the framework of Vampire, Lingva consists also of
a couple of Python scripts that make it more user friendly. One can download Lingva
compiled for Linux x64 machine from www.complang.tuwien.ac.at/ioan/
lingva.html. In the following we present the main ingredients used in order to
develop Lingva. For running Lingva one has to execute the following command:

./Lingva problem.c [options]

where problem.c is a C/C++ program with loops and options is a set of optional
parameters that control the behavior of Lingva. As output to this query Lingva creates
a file problem_annotated.c which contains the original loop annotated with the
generated loop invariants.

When compared to other implementations, see e.g [55], the preprocessing part and
the code annotation and conversion parts of post processing are new features. Further,
Lingva extends that approach by more sophisticated path analysis methods and built-in
support for reasoning in the first-order theory of arrays. These features allow Lingva
to handle a programs with multiple loops and nested conditionals and derive quanti-
fied invariants that could not yet be obtained by [55], as arrays and integers, and their
axiomatization, were not yet supported as built-in theories in [55].
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Figure 3.2: The overall workflow of Lingva.
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3.2.1 Preprocessing
Input programs of Lingva are first parsed using the Clang/LLVM infrastructure [73] and
the abstract syntax tree (AST) of the input is created. Although Lingva front-end can
parse arbitrary C/C++ programs, program analysis in the next step has implemented
support for a restricted programming model, as follows. We only handle program loops
with sequencing, assignments, and nested conditionals. Nested loops, recursive or pro-
cedure calls are thus not yet supported. Further, we only treat integers and arrays. Also
we restrict program tests and assignments over integers to linear arithmetic expressions.
If these restrictions are not met, Lingva terminates with an error message that provides
information on the violation of the programming model.

void main() {
//loop 1
while (condition) {

loop_body
}
//. . .
//loop_k: Partition_Init
int a, b, m;
int *aa, *bb, *cc;
while (a < m) {

if (aa[a] == cc[a]) {
bb[b] = a;
b = b + 1;
}

a = a + 1;
}
//. . .
}

Figure 3.3: Example of a input source code.

Code Transformation

In order to address the problem posed by the if-then construct one has to transform
it into an if-then-else. From a programming point of view one can see the if-
then construct as being nothing else but an if-then-else with a skip statement on the
else branch, see Figure 3.4(a). Or one can ppulltthe first statement after the if on both
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branches of the if, see 3.4(b). Assume that we are trying to analyze the program from
Figure 3.3 and more precisely we are interested in analyzing loop k. This loop can be
safely transformed into the loop presented in Figure 3.4 without changing its meaning.

//loop k
while(a<m){

if (aa[a]==cc[a]){
bb[b]=a;
b = b+1;

}else{
skip ;

}
a = a + 1;

}

//loop k
while(a<m){

if (aa[a]==cc[a]){
bb[b]=a;
b = b+1;
a = a+1;

}else{
a = a+1;
}

}
(a) (b)

Figure 3.4: Transformed if-then from Fig 3.3 into an if-then-else construct

Another transformation that is done as soon as the AST gets constructed is con-
version of for loops in to while loops. Notice that throughout the presentation of the
program analysis methods presented we only use while loops. In general for array
manipulation besides while loops also for loops are as used and they appear often in
software. In order for us to analyze for loops we convert them into while loops. There
are a couple of restrictions imposed on the for loops that can be converted. Recall that a
typical for loop looks like :

for ( counter ; condition ; increment ) { body; }

where usually the counter is represented by an integer, condition is the stopping
condition of the for loop and increment represents how the counter gets incremented
(notice that it could get decremented as well). We restrict the loops that can be con-
verted to those that use an integer as a counter. The termination condition is a boolean
expression, like in the case of while loops and where the increment is explicit in the for
construct. The last constrain can be relaxed by simply assuming that the increment is
in the body of the for loop. Using this constraints we can convert the classical for loop
into a while loop

counter; while (condition) { body; increment; }

without losing its meaning. The transformation is accomplished by appending the incre-
ment (decrement) statement at the for body, use the stopping criteria (condition) as
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the while stopping condition and initialization of the counter gets done before entering
the loop. Such a transformation is nicely illustrated by Figure 3.5

for (int a=0; a<m; a++){
if(aa[a]==cc[a]){

bb[b] = a;
b=b+1;

}
}

int a=0;
while(a<m){

if(aa[a]==cc[a]){
bb[b] = a;
b=b+1;

}
a=a+1;

}
(a) (b)

Figure 3.5: Transformation of for loop (a) into a while loop (b)

After the AST construction and after all transformations are applied, each program
loop is analyzed by default by Lingva. However,the user can also specify which loop
or set of loops should be analyzed by calling Lingva with the option -f fn.loopNr.
Where fn is the name of the input’s C/C++ function block and loopNr gives the loop
number of interest within fn.

Example 3.2.1. Consider Figure 3.3. It is written in C/C++ and contains multiple loops,
each loop being annotated with a natural number starting from 1. For simplicity, we only
show and describe Lingva on the kth loop of Figure 3.3; analyzing the other loops can be
done in a similar manner. The kth loop of Figure 3.3 takes two integer arrays aa and cc
and creates an integer array bb such that each element in bb describes an array position
at which the elements of aa and cc are equal. This loop is the Partition_Init
program from Section 3.3. For running Lingva only on this loop, one should execute
the command:

./Lingva problem.c -f main.k

3.2.2 Program Analysis
Program loops are next translated into a collection of first-order properties capturing
the program behavior. These properties are formulated using the TPTP syntax [102].
Note that in TPTP, symbols starting with capital letters denote logical variables which
are universally (!) or existentially (?) quantified. In order to illustrate how Lingva works
and how does the output look we use the TPTP notation.

During program analysis, we extend the loop language with additional function and
predicate symbols, as follows. For each loop, we use an extra integer constant n ≥ 0
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denoting the number of loop iterations and introduce an extra predicate iter(X) ex-
pressing that the logical variable X is a valid loop iteration, that is 0 ≤ X < n. Loop
variables thus become functions of loop iterations, that is a loop variable v becomes the
function v(X) such that iter(X) holds and v(X) denotes the value of v at the Xth loop
iteration. For each loop variable v, we respectively denote by v0 and v its initial and
final values. Finally, for each array variable we introduce so-called update predicates
describing at which loop iteration and array position the array was updated. For exam-
ple, for an array bb we write updbb(X, Y, Z) denoting that at loop iteration X the array
was updated at position Y by the value Z.

For each loop, we next apply path and (scalar and array) variable analysis in order to
collect valid loop properties in the extended loop language. Within path analysis, loops
are translated into their guarded assignment representations and the values of program
variables are computed using let-in and if-then-else formulas and terms. Unlike [55], the
use of let-in formulas (let...in) and if-then-else terms (ite_t) allow us to easily
express the transition relations of programs. These constructs became also standard in
the TPTP [102] library recently. Using them one can express the transition relation in a
more straight-forward manned than by using guarded assignments.

Example 3.2.2. Suppose that one uses the program from example 3.6. It is straight

if ( x > 0 ){
x = x + 1

}else{
x = x + y

}

Figure 3.6: A simple if-then-else construct

forward to represent this into a combination of let-in and if-then-else constructs. Let us
assume that x1 is the value of x in the next state. Then we can write down the following
formula:

x1 := if ( x > 0 ) then ( let x = x + 1 in x )

else ( let x = x + y in x )

Now going back the kth loop of the example 3.3, we can safely add the following trans-
lation of guards to the generated problem.

aa(a) == cc(a) ⇒a( $successor(X0)) = ( let bb(X1) :=

$ite_t( b = X1, a, bb(X1) ) in ( let b :=

$sum(b, 1) in ( let a := $sum(a, 1) in bb(X1)))).
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Further, (i) we determine the set of scalar and array program variables, (ii) compute
monotonicity properties of scalars by relating their values to the increasing number
of loop iterations, (iii) classify arrays into constant or updated arrays, and (iv) collect
update array properties. As a result, for each program loop a set of valid loop properties
is derived in the extended loop language.

...
23. ![X2]: bb(X2) = bb(’$counter’,X2)
22. ![X1]: bb(0,X1) = bb0(X1)
...
16. ![X0, X2, X3]: updbb(X0,X2,X3) => bb(X2) = X3
15. ![X0, X1, X2, X3]: updbb(X0,X2,X3) <=> (let b := b(X0) in

(let a := a(X0) in (let bb(X1) := bb(X0,X1) in (aa(a) =
cc(a) & (a = X3 & iter(X0) & b = X2)))))

...
9. ![X0]: iter(X0) => a(X0) = a0 + X0
8. a(0) =a0
...
2. iter(X0) =>(let a := a(X0) in (let b := b(X0) in

( let bb(X1) := bb(X0,X1) in a<m )))
1. ![X0, X1]: let a := a(X0) in (let b := b(X0) in

(let bb(X1) := bb(X0,X1) in (aa(a) = cc(a) =>
b(X0+1) = ( let bb(X1) := ite_t(b=X1,a,bb(X1)) in
(let b := b +1 in (let a := a + 1 in b))))))

Figure 3.7: Partial result of program analysis

Example 3.2.3. Consider the kth loop of Figure 3.3. A partial set of first-order proper-
ties generated by Lingva in the extended loop language is given in Figure 3.7. Properties
1-2 are derived during path analysis. They express the value of the scalar b during the
program path exhibiting the then-branch of the conditional within the loop and, respec-
tively, the loop condition. Properties 8-9 are derived during scalar analysis. They state
that the values of a are monotonically increasing at every loop iteration; moreover, these
values are exactly defined as functions of loop iterations and the initial value a0 of a.
Properties 15-16 are inferred during array analysis, more precisely when update pred-
icates for arrays are introduced, and they are expressing how the array bb gets updated.
Properties 22-23 are inferred during array analysis, and express respectively, the initial
and final values of the array bb.
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3.2.3 Symbol Elimination
During this step of symbol elimination, for each of the loops that are specified for being
analyzed we derive loop invariants. The main ingredient in deriving loop invariants is
Vampire [72] framework. The entire work behind symbol elimination is delegated to
Vampire so that it will generate logical consequences of the properties that are collected
during program analysis steps.

Up to this point by default we start by first loading, in Vampire, the built-in theories
of integers and arrays. This was achieved by extending Vampire in order to have build-in
support for integer data types. That is now in case one wants to formulate properties us-
ing integers there is no need to express them based on the successor function. Rather we
simply use the newly added data type. For this purpose some extra predicates and func-
tions that handle integers where added. These predicates are : addition ($sum(x, y)),
subtraction ($minus(x, y) and the special case, unary minus $uminus(x)), multiplica-
tion ($mul(x, y)), successor and the standard inequality relations, < ($less(x, y)), >
($greater(x, y)),≤ ($lesseq(x, y)) and ≥ ($greatereq(x, y)).

Assuming that one formulates different properties that contain one of the previous
built-in predicates and functions and adds them to Vampire, the axiomatization is au-
tomatically loaded by Vampire. In case one wants to use it’s own axiomatization for
different operations, this is also possible. When this happens Vampire’s built-in theory
axiomatization is not loaded, but rather it uses just the axioms provided by the user.

Recall that Vampire was the first prover that implemented support for let-in and
if-then-else expressions. Since the properties collected during program analysis might
contain either one of these constructs the first step is to convert the properties into first-
order formulas that do not use let-in and if-then-else terms (one can see this step as a
preprocessing step). Unlike the initial work from [55], Lingva supports now reasoning
in the first-order theories of arrays and uses arrays as built-in data types.

By using the built-in theory axiomatization of arrays and integers arithmetic within
first-order theorem proving, Lingva implements theory-specific reasoning and simpli-
fication rules which allows to generate logically stronger invariants than [55]. Besides
generating invariants, Lingva is used also for proving that some of the generated invari-
ants are redundant (as explained in the post processing step of Lingva).

Next, we collect the additional function and predicate symbols introduced in the
program analysis step of Lingva and specify them to be eliminated by the saturation al-
gorithm of Vampire; to this end the approach of [71] is used. As a result, loop invariants
are inferred. Symbol elimination within Lingva is run with a 5 seconds default time
limit. This time limit was chosen based on our experiments with Lingva: invariants of
interests could be generated by Lingva within a 5 seconds time limit in all examples
we tried. The user may however specify a different time limit to be used by Lingva for
symbol elimination.
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...
tff(inv3,claim,![X0 :$int]: aa(sk1(X0))=cc(sk1(X0)) |

~$less(X0,$sum(b,$uminus(b0))) | ~$lesseq(0,X0)).
...
tff(inv10,claim,![X0:$int,X1:$int,X2:$int]:

~(sk1(X0)=X1) | ~($sum(b0,X0)=X2) | ~$less(X0,
$sum(b,$uminus(b0))) | ~$lesseq(0,X0) | bb(X2)=X1)).

...

Figure 3.8: Generated invariants for loop k from Figure 3.3.

Example 3.2.4. The partial result of symbol elimination on Figure 3.7 is given in Fig-
ure 3.8. The generated invariants are listed as typed first-order formulas (tff) in TPTP.
The invariants inv3 and inv10 state that at every array position b0 + X0 at which
the initial array bb0 was changed, the elements of aa and cc at position bb(b0 + X0)
are equal; recall that b0 is the initial value of b. Note that the generated invariants have
skolem functions introduced: sk1(X0) denotes a skolem function of X0.

3.2.4 Post Processing
Since we rely on a saturation engine to generate consequences from our symbol elim-
ination problem we can notice that some of the loop invariants that are generated are
redundant, that is they are implied by other invariants in the same set. For this purpose
we are interested in minimizing the set of invariants by eliminating those that are re-
dundant. In general we can define the minimization process as follows. Given a set
of formulas, we try to eliminate those formulas that are redundant in this set. In other
words, assuming we have a set of formulas S we want to find the minimal subset of
formulas S ′ such that the formulas in S \ S ′ are consequences of S ′.

In the post processing part of Lingva, we try to minimize the set of invariants by
eliminating redundant ones. For doing this we again rely on Vampire’s infrastructure.
To this point we have generated a set of invariants from the problem we collected. Also
we are assured that all these invariants are logical consequences of the initial problem
and use only symbols that appear in the original loop. Since we are interested in a small
set of powerful invariants that can be used in proving the intended properties we want to
minimize the set of invariants. The problem that arises here is that of proving first-order
properties redundant with regard to a set of properties is undecidable. Hence we decided
to do minimization (redundancy elimination) based on different strategies and with time
limit.
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...
loop invariant
\forall integer X0; aa[sK1(X0)]==cc[sK1(X0)] ||

!(X0<(b-b0)) || !(0<=X0);
loop invariant
\forall integer X2, integer X1; !(sK1(X0)=X1) ||

!((b0+X0)=X2) || !(X0<(b-b0)) ||
!(0<=X0) || bb[X2]==X1;

. . .

while (a < m) {
if (aa[a] == cc[a]) {

bb[b] = a;
b = b + 1;
}

a = a + 1;
}

Figure 3.9: Loop k form Figure 3.3 annotated with invariants in ACSL [12] format

For our purpose we implemented a number of four different strategies each running
with a default 20 seconds time limit. These strategies are basically combinations of
theory-specific simplification rules and special literal selection functions controlled by
options. In a sense one can see each of the strategies as a mix of different Vampire
options that allow fine tuning for the purpose of consequence elimination.

After invariant minimization, by default Lingva converts the minimized set of in-
variants in the ACSL annotation language of the Frama-C framework [24]. But one
can also specify that the output syntax should be TPTP by using the -format tptp
option when running Lingva. The input program of Lingva is then annotated with these
invariants and it either writes a file that contains the annotated program or it outputs
the results in the terminal. Besides this one can also specify that the entire generated
problem has to be collected by using the -completeOutput option. In combination
to this option a folder can be specified so that for each of the analyzed loops a tptp file
containing the generated properties will written. This option can be used only if the
tptp format is used for outputting the the invariants.

Using the ACSL syntax for Lingva to output invariants makes it easier to integrate
the invariants generated by us in the Frama-C verification framework. Inside Frama-C
framework one can add different loops annotated with invariants and using them can
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prove correctness of invariants based on the loop.

Example 3.2.5. In Figure 3.9 we present the kth loop from Figure 3.3 annotated with a
subset of invariants in ACSL format. To be more precise the invariants that are annotated
in this figure are the same as the ones in Figure 3.8. These invariants are actually the
ones that are used in order to prove the intended property for this loop.

Proving Program Properties

In addition to the default workflow given in Figure 3.2, Lingva can be used not only
for generating but also for proving properties. That is, given a program loop with user-
annotated properties, such as post-conditions, one can use Lingva to prove these prop-
erties in two steps. In the first step the program analysis method is applied as presented
before and invariants are generated. While in the second step Lingva tries to prove that
the annotated property is a logical consequence of the set of generated invariants.

To be more precise, during the first step of the proving process, the input program,
without the annotations is passed to Lingva. By doing so loop invariants are generated
based on the set options. Note that for using this feature one has to specify as output
language to be TPTP. Besides the output format one can ask Lingva to generate sep-
arate files for each of the loops that are analyzed. Each of these files will contain the
set of invariants in TPTP format prepared for the proving step. As a preparation step
Lingva takes care of changing the formulas so that each of the invariants will be used as
hypothesis in the new problem.

As per the second step, the user has to manually convert the intended property (an-
notations in the original code) into TPTP format. After this process is done, one adds
the property to be proven as a conjecture to the generated TPTP file. By doing so a new
TPTP problem is created. For proving this conjecture Lingva relies again on Vampire.
What happens is that Vampire gets called on the TPTP problem and tries to solve the
problem. If a refutation is found it actually means that the property to be proven (user
annotated) is a consequence of the generated set of invariants. Vampire also generates
a proof for refutation. From this proof one can easily extract information about which
invariants where used in order to prove the intended property. Example of extracted
invariants that are used in proving the intended properties are presented in more details
in Subsection 3.3.

Example 3.2.6. Consider the simplified program given in Figure 3.10. Note that the
loop between lines 2-8 corresponds to the kth loop of Figure 3.3. The code between lines
9-11 specifies a user-given safety assertion, corresponding to the first-order property
∀j : 0 ≤ j < b =⇒ aa[bb[j]] = cc[bb[j]]. This safety assertion is the property that
has to hold after execution of the loop. Using the invariants generated by Lingva on this
loop one can prove the intended property. For doing this one has to apply the method
presented before and convert the assertion into first-order logic and then call Vampire on
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1 int a=b=0;
2 while(a<m){
3 if (aa[a]==cc[a]){
4 bb[b]=a;
5 b = b+1;
6 }
7 a = a+1;
8 }
9 for (int j=0; j <= b-1; j++){

10 assert(aa[bb[j]]=cc[bb[j]]);
11 }

Figure 3.10: Program with assertion

the new problem. By doing these steps one can prove the intended property in basically
no time. To prove this property Vampire makes use of two of the generated invariants.
More details about the used invariants can be found in Table 3.2.

3.3 Experiments using Lingva

For evaluating Lingva we focused on two major benchmarks. First we collected a set
of example programs that appear in academic research papers dealing with invariant
generation, see [36,55,99]. On the other hand we also wanted to quantify the usefulness
of Lingva on production source code. For the latter case we decided to collect a set of
loops from different archiving packages and try to analyze them. All our experiments
were conducted using a Lenovo W520 laptop with 8GB of RAM and Intel Core i7
processor running Ubuntu 64bit. The problems that we used in our experimental section
are available for download from Lingva’s homepage 1.

Let us start by giving an overview of the results obtained using Lingva. Table 3.1
summarizes the entire set of experiments. The first column lists the number of examples
from each benchmark suite. Second column presents the number of loops collected in
each of the benchmarks, while third column gives the number of problems that could
be analyzed by Lingva. We say that a loop is analyzable by Lingva if it can generate
invariants for that loop without user intervention. We also consider analyzable the loops
that require minimal user intervention. The fourth column shows the average number

1Lingva homepage www.complang.tuwien.ac.at/ioan/lingva.html
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of generated invariants, whereas the fifth column lists the average number of invariants
after minimization.

Program ] Loops ] Analyzed Loops Avg. ] Inv. Avg. ] Min. Inv.
Academic Benchmarks [36, 55, 99] 41 41 213 80
Open Source Archiving Benchmarks 1151 150 198 62

Table 3.1: Overview of experimental results obtained by Lingva.

From this table one can notice that invariant generation using Lingva produces on
average 200 invariants. These invariants are generated using a time limit of 5 seconds
per problem. In the case where loops contain conditionals or nested conditionals the
number of generated invariants increases a lot. The reason behind this increase comes
from the way we formalize into first-order the input program. One can also notice that
the formalization of such a loop creates many more properties. This translates into
having a bigger input problem for the saturation engine. Due to such a behavior and the
fact that in most practical applications when we speak about array manipulation loops
contain conditional structures it is essential for us to try minimizing the set of invariants.

In our case we apply a couple of strategies, to be more precise we use the same
strategies that are presented in the post processing part of Lingva. From different exper-
iments using minimization strategies we decided that a time limit of 20 seconds or more
for each strategy proves to give best results. Throughout our experiments we set the time
limit for each of the minimization strategies to be 20 seconds. From our experiments we
can observe that the average number of invariants that are outputted after minimization
is performed decreases significantly. Table 3.1 summarizes the results obtained in our
experiments. Following the results summarized in this table one can notice that indeed
the number of invariants left after minimization decreases significantly. When consid-
ering the percentage of discarded invariants, one can notice that in the case of academic
benchmarks 63% of the invariants are proved to be redundant. In the following we
analyze in more details the results obtained using the two benchmarks.

3.3.1 Academic Benchmarks
A summary of the experiments that we have conducted can be found in Table 3.2 and 3.3.
Loops that are presented here come from various research papers, for more details
see [36, 55, 99]. To be more precise these research papers either handle with the prob-
lem of program verification in more general sense or explicitly invariant generation. Ta-
ble 3.2 presents loops that handle arrays and contain some conditionals, while Table 3.3
presents different loops that do not contain conditionals. Since these examples come
from academic research papers, each of them were already annotated with properties to
be proven.
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Both of the tables are organized in the following manner. On the first column we
present the original loop that is to be analyzed and its origin. The program annotation
that has to be proven is deprecated in second column of these tables. Finally, third
column lists a subset of invariants generated by Lingva. These invariants are actually
the ones used in order to prove the properties from column two. In order to collect these
invariants, we investigated the refutation proofs produced by Vampire for proving the
intended property, presented in column two. From this refutation proofs we collected
all invariants that are used and added them to the table.

Tables 3.2-3.3 show that Lingva succeeded to generate complex quantified invariants
over integers and arrays, some of these invariants using alternation of quantifiers. Al-
though existential quantifiers do not explicitly appear in the invariants, skolem functions
do.

Take the Partition_Init for example. Invariants generated by symbol elim-
ination make use of skolem functions, in our example denoted by sk1. Now if one
would apply de-skolemisation to these functions we would obtain invariants that have
quantifier alternations. Recall that in order to eliminate existential quantifier one needs
to introduce a new unary function that depends only on the universally quantified vari-
ables. Now the reverse process eliminates these functions and introduces existential
quantified variables. But it is not always a good idea to try de-skolemizing invariants.
More precise, after the de-skolemization process is done, it could be the case that the
invariants are not strong enough to prove the intended properties.

Analyzed loop Program annotation Generated invariants implying annotation
Partition [99]
a = 0; b = 0; c = 0;
while( a < m ){
if( aa[a] >= 0){
bb[b] = aa[a];
b = b+1;}

else {
cc[c] = aa[a];
c=c+1;}
a = a+1;}

∀x : 0 ≤ x < b =⇒
bb[x] ≥ 0∧
∃y : 0 ≤ y < a∧

bb[x] = aa[y]

inv1:
∀x0 : aa(sk4(x0)) ≥ 0∨

¬(0 ≤ x0) ∨ b ≤ x0

inv42:
∀x0 : 0 ≤ sk4(x0)∧

sk4(x0) < a
inv81:
∀x0 : ¬(0 ≤ x0) ∨ b ≤ x0∨

aa(sk4(x0)) = bb(x0)

Partition_Init [55]
a = b = 0;
while( a < m ){
if(aa[a]==cc[a]){
bb[b]=a; b=b+1;}

a = a+1;}

∀x : 0 ≤ x < b =⇒
aa[bb[x]] = cc[bb[x]]

inv3:
∀x0 : ¬(0 ≤ x0) ∨ ¬(x0 < b)∨

aa(sk1(x0)) = cc(sk1(x0))
inv10:
∀x0, x1, x2 : ¬(sk1(x0) = x1)∨

¬(x0 = x2)∨
¬(x0 < b)∨
¬(0 ≤ x0)∨
bb(x2) = x1

Table 3.2: Experimental results of Lingva on some academic benchmarks with condi-
tionals.

We are not aware of any other tool that is able to generate invariants with quantifier
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alternations. We further note that all user-provided annotations were proved by Lingva,
in essentially no time. While proving the intended properties only a subset of the gener-
ated invariants where used. Basically those are the invariants presented in column three
of the tables.

Another interesting aspect of the invariants generated by Lingva is that usually the
interesting invariants are generated at the beginning of the process. Take for example
Partition_Init, in this case the interesting invariants are those used to prove the
intended property. One can notice from Table 3.2 that invariants inv1, inv42 and
inv81 are used for proving the property. Where inv1 means that this is the first
generated invariant and so on.

Analyzed loop Program annotation Generated invariants implying annotation
Initialization [55]
a = 0;
while(a<m){
aa[a]=0;
a=a+1;}

∀x : 0 ≤ x < a =⇒
aa[x] = 0

inv90:
∀x0 : ¬(0 ≤ x0)∨

a ≤ x0 ∨ aa[x0] = 0

Copy [99]
a = 0;
while( a < m ){
bb[a]=aa[a];
a=a+1;}

∀x : 0 ≤ x < a =⇒
bb[x] = aa[x]

inv104:
∀x0, x1 : ¬(0 ≤ x0) ∨ a ≤ x0∨

¬(bb[x0] = x1)∨
aa[x0] = x1

Init_non_const [36]
i = 0;
while(i<size){
aa[i]=2*i+c;
i=i+1;}

∀x : 0 ≤ x < i =⇒
aa[x] = 2 ∗ x+ c

inv128:
∀x3, x4 : i ≤ x3 ∨ ¬(0 ≤ x3)

c+ (2 ∗ x3) = aa[x3]

Copy_odd [36]
i = 0; j = 1;
while( i < size ){
aa[j]=bb[i];
j++;i+=2;}

∀x : 0 ≤ x < j =⇒
aa(x) = bb(2 ∗ x+ 1)

inv206:
∀x3, x4 : j ≤ x3 ∨ ¬(0 ≤ x3)∨

aa[x4] = bb[2x3 + 1]

Reverse [36]
i = 0;
while(i<size){
j=size-i-1;
aa[i]=bb[j];
i++;}

∀x : 0 ≤ x < i∧ =⇒
aa[x] = bb[size− x− 1]

inv111:
∀x4 : i ≤ x4 ∨ ¬(0 ≤ x4)∨

bb[size− x4 − 1] = aa[x4]

Strlen [36]
i = 0;
while(str[i] 6=0){
i=i+1;}

∀x : 0 ≤ x < i =⇒
str(x) 6= 0.

inv5
∀x0 : i ≤ x0 ∨ ¬(0 ≤ x0)∨

str(x0) 6= 0

Table 3.3: Experimental results of Lingva on some academic benchmarks without con-
ditionals.

Whereas in the case of invariants generated for loops that do not contain any condi-
tionals we noticed that in most of the cases the intended property appears actually as an
invariant in the generated ones. Of course the main difference to the intended property
is the fact that our generated invariants are in CNF form.
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3.3.2 Open Source Benchmarks
In order to evaluate Lingva also on open source software we investigated the source code
of some famous archiving software, GZip [44], BZip [95], and Tar [2]. After manual
inspection of the source code we have collected a set of 1151 loops that contain array
manipulation. From this set of loops only 150 could be analyzed by Lingva, summary
is given in Table 3.1. The number of analyzed loops seems small compared to the
number of loops extracted. When further investigating the 1001 loops that could not be
analyzed by Lingva we noticed why this is the case. Most of these loops are nested, in
this case we cannot analyze them, we can analyze only nested conditionals. Analysis of
nested loops is left for future work and investigation. Other loops implemented abrupt
termination, bit-wise operations, pointer arithmetic or had some procedure calls. In the
current version of Lingva we do not handle these kind of constructs. But we believe that
extending and combining Lingva with more sophisticated program analysis methods,
such as the ones presented in [51, 52, 99], would enable us to handle more general
programs then we currently do.

On the other 150 loops Lingva successfully generated interesting invariants. These
loops are mostly variations of the loops presented in Table 3.3 and Table 3.2. To this
extent we noticed that in general when dealing with arrays programs mostly contain
loops that do copy, initialization, shift and has been successfully evaluated implemented
array copy, initialization, shift and partition operations, similarly to the ones reported
in our experiments with academic benchmarks. For these examples, Lingva generated
quantified invariants, some with alternations of quantifiers, over integers and arrays.

We were also interested to see how Lingva behaves on examples coming from open
source software when it comes to proving program properties. To this end, we manu-
ally annotated the 150 loops with properties expressing the intended properties. In all
of these cases Lingva was used and managed to prove the intended properties from the
set of generated invariants. All these properties were proved in essentially no time, un-
derlining the strength of Lingva for generating complex invariants in a fully automated
manner.

3.3.3 Initial Version and Limitations
The first implementation of symbol elimination was already described in [55], by using
the first-order theorem prover Vampire [72]. This implementation had however various
limitations: it required user-guidance for program parsing, implemented tedious trans-
lation of programs into a collection of first-order properties, had limited support for the
first-order theory of arrays and the generated set of invariants could not yet be used in
the context of software verification.

Although most of these limitations are addressed in the new implementation of
Lingva, there are still a couple o problems that should be addressed. The current im-
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plementation is not suitable for use with nested loops. Although we are able to handle
nested conditionals the problem of handling nested loops is much more difficult. Among
the limitations of our tool handling nested loops is one of the hardest problems.

Besides the problem of reasoning about nested loops, automated theorem provers
in general are not that well suited for arithmetical reasoning and with combination of
theories. For this purpose we decided to integrate bound propagation for arithmetical
reasoning in Vampire. But besides this decision procedure one can think about inte-
gration of more theories that prove to behave well in the context of SMT also inside
Vampire. Another direction that could be taken is to actually create a SMT like engine
inside of Vampire and make communication between the first-order part of Vampire and
the SMT facile.

Some other directions that can improve the usability of Lingva are related to the user
interface. From this point of view, reading the properties to be proven directly from the
source file and internally converting them into TPTP formulas would greatly improve
usability of Lingva among program developers. Also experimenting with Lingva and
combinations of other theories than the ones we have implemented for now represents
and interesting challenge.

In Chapter 4 we present the first implementation of bound propagation method. This
method is meant to address the problem of having decision procedures for different
theories in the context of first-order theorem provers. More precisely bound propagation
is meant to improve reasoning with theories in the context of Vampire. For Lingva using
a combination of different theories should greatly improve invariant quality. This is due
to the fact that in general in program verification arithmetic is essential.
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CHAPTER 4
Bound Propagation for Arithmetic

Reasoning

The problem of solving systems of linear inequalities is a well studied problem. In this
chapter we present the bound propagation method for solving systems of linear inequa-
tions. We will then continue by presenting the first ever implementation of this method
in the framework of Vampire. In order to make this implementation efficient there are a
couple of important points where some essential decisions have to be taken. We present
in details all these points and conclude this chapter by presenting the experiments that
we conducted with bound propagation.

4.1 Bound Propagation Method
Solving a system of linear inequalities over rational and/or real numbers is a well studied
problem. The main methods used to solve such systems are Simplex [20] and interior
point [93]. Several new methods have recently been developed in the automated rea-
soning and SMT community. These include the conflict resolution method [64] and
GDPLL [80], and the recently introduced bound propagation method [67]. The state-
of-the-art SMT solvers, such as Z3 [33] and Yices [40], use Simplex. They also use
sophisticated preprocessing algorithms to simplify the input problem.

In this chapter we start first by describing the general bound propagation method
introduced in [67], also denoted by BPA in the sequel. After we make a short overview
of this method we continue and present details about how we managed to implement
BPA in the first-order theorem prover Vampire. The chapter is concluded by presenting
experiments done using the newly implemented method. When compared to Z3 and
Yices, our experiments show encouraging results. In particular, BPA can solve problems
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which are difficult for both Z3 and Yices, see Section 4.4. This is especially promising,
given that our implementation of BPA in Vampire does not use any preprocessing steps.

In a nutshell, BPA works as follows. Given a system of linear inequalities over
reals, BPA tries to iteratively assign values to some variables and, using these values,
derive bounds on other variables of the problem by bound propagation. By a bound
on a variable x we mean a linear inequality x ≥ c or x ≤ c, where c is a real constant.
This process either derives an inconsistent pair of bounds on some variable, or generates
an assignment that solves the system. If such a pair is found, BPA builds a collapsing
inequality, which is used to derive a new bound on a previously assigned variable v,
so that the new bound excludes the value previously assigned to this variable. In some
cases this new bound is inconsistent with a previously known bound on v, which means
that the system is unsatisfiable. Otherwise, we backjump to the point where we selected
a value for v and select a new value for v, this time satisfying the newly derived bound.

From this brief description of BPA, one may identify many similarities between
BPA and propositional DPLL [82], in particular when it comes to inequality/clause
learning, variable selection/ordering and backjumping. Generalizing the ideas of DPLL
to arithmetic reasoning is also the key ingredient of the conflict resolution [64, 65] and
GDPLL [80] method.

4.1.1 General Presentation

Let us first start by fixing the notions that are used throughout this chapter. The material
of this section is based on that of [67] and adapted to our setting.

We denote variables by v, x, y, z and real constants by c, maybe with indices. We call
a literal a variable x or its negation −x and denote literals by l. By a linear inequality
we mean an expression c1l1 + · · · + cnln + c ≥ 0, where the variables in literals are
pairwise different. Throughout this chapter we consider only non-strict inequalities so
that it is easier to present. Note that although here we use only non-strict inequalities,
both the BPA method and our implementation, applies to systems that may contain both
strict and non-strict inequalities.

We say that an inequality is trivial if it contains no variables. For simplicity, we
assume that trivial inequalities are either −1 ≥ 0 or 0 ≥ 0.

An assignment σ over a set of variables {x1, . . . , xn} is a mapping from {x1, . . . , xn}
to the set of real numbers R, that is σ : {x1, . . . , xn} → R. For a linear term q
over {x1, . . . , xn}, we denote by qσ the value of q after replacing all variables xi ∈
{x1, . . . , xn} by the corresponding values σ(xi). An assignment σ is called a solution
of a linear inequality q ≥ 0 if qσ ≥ 0 is true; in this case we also say that σ satisfies
q ≥ 0 (otherwise, it violates q ≥ 0). An assignment σ is a solution of a system of
linear inequalities if it is a solution of every inequality in the system. A system of linear
inequalities is said to be satisfiable if it has a solution.
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A bound on a variable x is an inequality of the form x ≥ c, called lower bound, or
−x ≥ c, called upper bound. For example, x ≥ 0 is a (lower) bound on x. The bounds
x ≥ c1 and −x ≥ c2 are said to be contradictory or inconsistent if c1 + c2 > 0. A
pair of inconsistent bounds on x is called a conflict. A (lower) bound x ≥ c1 improves
a (lower) bound x ≥ c2 if c1 ≥ c2. Similarly, an (upper) bound −x ≥ c1 improves an
(upper) bound −x ≥ c2 if c1 ≥ c2.

4.1.2 Resolution with Inequalities
We define resolution in the context of bound propagation similar to the way of solving
upon a variable in the general settings of algebra.

Definition 4.1.1. Assume that we have two linear inequalities I1, having the following
form d1x+ I ′1 ≥ 0, and I2, of the form −d2x+ I ′2 ≥ 0. As in the general framework of
mathematics we define the resolution of these two inequalities to resolve them upon the
variable x. By applying resolution on I1, I2 and solving upon x we obtain the following
inequality d2I ′1 + d1I

′
2 ≥ 0, called resolvent of I1 and I2. In general we call Resolution

the inference that takes two inequalities and derives an resolvent for them.

Example 4.1.1. Take for example the following two clauses (inequalities) : x+3y+2z+
9 ≥ 0 and−2x−5y+4 ≥ 0. We can apply resolution on these two clauses. Depending
upon which variable we resolve we get two resolvents. That is, resolving upon x we
obtain y + 4z + 22 ≥ 0, whereas if we resolve upon y we obtain −x+ 10z + 57 ≥ 0 as
resolvent for the two equations. Note that any of the two resolvents are consequences of
the initial inequalities. Another important feature is the fact that resolution is compatible
with equivalence. That is, assuming we replace one of the premises (inequalities) by
another equivalent inequality the result obtained after applying resolution will be the
same as if no replacement would happen.

Assume that we now have a bound, let’s call it b, and an inequality I. Applying
resolution on the b and I would eliminate a variable from the inequality I. To be more
precise it will remove exactly the variable contained in the bound. Therefore assuming
we have a linear inequality I containing n variables x1, . . . , xn and we have a set of
bounds for x2, . . . , xn we can apply n times the resolution step and would obtain a
bound on the variable x1. Using this idea of repeated applications of resolution we can
define the bound resulting resolution as follows.

Bound Resulting Resolution

Definition 4.1.2. Assume that we have any linear inequality I of the form d1l1 + ... +
dnln + c ≥ 0. And let bi be bounds of the form l̄i + ci ≥ 0, where i = 2, . . . , n,
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on literals complementary to the literals in I. Then we can derive, by a sequencing
resolution inferences, from b2, . . . , bn and I the following bound on b on l:

l1 + (c+ d2c2 + . . .+ dncn)/d1 ≥ 0 (4.1)

We will say that this bound b is obtained by bound resulting resolution from b2, . . . , bn
and I .

Similar, let bi be bounds of the form l̄i + ci ≥ 0, where i = 1, . . . , n, on literals
complementary to the literals in I. Then by applying the a sequence of inferences on the
bounds b1, . . . , bn and I and obtain the following trivial inequality:

c+ d1c1 + d2c2 + . . .+ dncn ≥ 0 (4.2)

In this case we will say that the trivial inequality is obtained by the bound resulting
resolution from b1, . . . , bn and I

If we now consider resolution and bound-resulting resolution as inference rules, we
can put together sequences of these steps and we will obtain a derivation. That is a tree
that contains only inferences. Take for example the derivation ( 1).

x+ y − z − u ≥ 0 u− 1 ≥ 0 −y ≥ 0
u− 1 ≥ 0 z − u+ 1 ≥ 0

z ≥ 0
x− 1 ≥ 0

(1)
In this case the bound x−1 ≥ 0 is a derivation of a bound from two bounds u−1 ≥ 0

and−y ≥ 0 and two inequalities z−u+1 ≥ 0 and x+y−z−u ≥ 0. Applying multiple
times bound-resulting resolution inferences we repeatedly derive new bounds for the
variables. Repeated application of such rules is also known as bound propagation, and
is formalized next.

Bound Propagation

Definition 4.1.3. Let B be the set of all non-trivial bounds that contain no contradiction
and a L a system of linear inequalities. A bound propagation from B and L is a sequence
of bounds b1, . . . , bn, such that

1. n > 0

2. For all k such that 1 ≤ k ≤ n, the bound bk is not implied by B ∪ {b1, . . . , bk−1}

3. For all k such that 1 ≤ k ≤ n, the bound bk is obtained by bound-resulting
resolution from B ∪ {b1, . . . , bk−1} and an inequality in L.

The same definition applies in the case when the newly derived bound is a trivial in-
equality.
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At this point one can collect all bound propagation steps in a tree and by doing so
one can see the process of bound propagation as being a derivation of a bound b from B
and L

Since the bound propagation method is similar to the DPLL one can see the process
of bound propagation to be similar to the process of unit propagation in the DPLL proce-
dure. The major difference between the two is that unit propagation always terminates,
while bound propagation can be an infinite process.

Example 4.1.2. Assume we have the following equations:

x− y ≥ 0

y − x− 1 ≥ 0
(4.3)

and the current set of bound to be y ≥ 0. Let us demonstrate that bound propagation
can be non terminating by using resolution steps. Starting from the bound y ≥ 0 and
equation x−y ≥ 0 by applying bound resulting resolution we obtain x ≥ 0. Now using
the newly derived bound x ≥ 0 and the equation y− x− 1 ≥ 0 and applying resolution
we obtain y− 1 ≥ 0, which improves the original bound on y. Applying now resolution
with y−1 ≥ 0 and the first equation x−y ≥ 0 we obtain an improved bound x−1 ≥ 0.
Applying again the previous steps with the current bounds we would obtain x − 2 ≥ 0
and y − 2 ≥ 0. By repeatedly applying these steps we can always improve the bounds
on x and y, making bound propagation non-terminating.

Collapsing Inequalities

We will explain the notion of collapsing inequalities by using the example derivation
from example derivation (1). In order to derive the new bound x−1 ≥ 0 two inferences
are applied. And the bounds u − 1 ≥ 0 and −y ≥ 0 from the set of current bounds
are used. But during the application of these two inferences another bound is derived,
that is z ≥ 0. Now let’s assume that we would first resolve x + y − z − u ≥ 0 and
z − u + 1 ≥ 0 upon z, then we will obtain x + z − 2u + 1 ≥ 0 as result. It is obvious
that this newly obtained equation does not improve any bounds. If we now use this new
equation and the current bounds u − 1 ≥ 0 and −y ≥ 0 we can obtain the improved
bound x− 1 ≥ 0 by a single inference, as presented in 4.4.

u− 1 ≥ 0 −y ≥ 0 x+ z − 2u+ 1 ≥ 0
x− 1 ≥ 0

(4.4)

Instead of applying the original inferences (two) and first resolving the two equations
we obtain a new equation that has the interesting property that it makes the derivation
of x− 1 ≥ 0 collapse into a single inference. The following theorem summarizes what
we have informally explained.

61



Theorem 4.1.1. Let L1 and L2 be two systems of linear inequalities such that L1 ∪ L2

implies a linear inequality I . Then there exist two linear inequalities I1 and I2 such
that:

1. L1 implies I1 and L2 implies I2;

2. the system {I1, I2} implies I .

Proof of this theorem and also other important properties for collapsing inequalities
are found in [67, 68].

4.1.3 An Example of Bound Propagation
In this section we illustrate on a small example the main steps of bound propagation
algorithm. Although a more formal presentation of the bound propagation algorithm is
presented in Subsection 4.2.3, here our intention is to show how it behaves on a small
system of linear inequalities in order to give the reader the flavor of BPA.

Consider the following system of inequalities:

S = {x− 3y ≥ 2, x+ 3y ≥ 1,−x+ y ≥ 0}.

Notice that in the initial step none of the variables has any bounds, hence the context
(set of current bounds) B is initially empty. In the following we present in some details
each of the essential steps of BPA.

(1) Initialize and Decide. In the first step of BPA we pick a variable x and assign to it
an arbitrary value within the current bounds for this variable. The variable that is chosen
to be assigned is referred as decision variable, while the value that is assigned to this
variable is called decision value. Let’s choose for our example the variable x. Now that
we have decided which variable to assign and since in this example there are initially no
bounds we choose to assign 0 to x.

(2) Bound Propagation. During this step we have do propagate all the values that
have been derived in the previous step. Using x = 0 and the inequality −x+ y ≥ 0, we
derive a new bound y ≥ 0. The process of deriving a new bound over y using a bound on
x is called bound propagation. Further, y ≥ 0 and x−3y ≥ 2 yield a new bound x ≥ 2,
which contradicts the decision value assignment x = 0. Note that the contradiction
was obtained using the asserted assignment x = 0, so we cannot yet conclude that S is
unsatisfiable. In this case we continue by trying to analyze the conflict in recover so that
the process can continue.
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(3) Conflict Analysis. Using −x + y ≥ 0 and x − 3y ≥ 2, that is, those inequalities
from S that were used to derive the contradiction, we infer an collapsing inequality.
Remember that bound propagation algorithm works in a similar way to the DPLL pro-
cedure. That is, in case a conflict is found and unsatisfiability cannot be decided, one
has to analyze the conflict and learn from it. In our case the collapsing inequality is
the bound −x ≥ 1 for x. It is be obtained by eliminating the variable y in the above
inequalities.

Notice though that in general the collapsing inequality is not necessarily a bound. In
our case, using the collapsing inequality yields to the exclusion of decision value 0 for
variable x. Since we have to recover from the conflict, next we backjump to the decision
value assignment x = 0. At this point we have to remove the assignment x = 0 and
assert the new bound −x ≥ 1 for variable x. Let us note that a collapsing inequality is
always implied by S. The role of collapsing assignment in this step is that of excluding
a previously decided assignment.

(4) Bound Propagation. After we have recovered from a conflict we perform bound
propagation using the new bound −x ≥ 1 and by doing so we manage to derive two
new bounds for y. That is, using−x ≥ 1 and the given inequation x−3y ≥ 2 we obtain
−3y ≥ 3 which yield−y ≥ 1. And from−x ≥ 1 and x+3y ≥ 1 we obtain y ≥ 2

3
If we

now inspect the two newly derived bounds we notice that they are inconsistent, meaning
we found a contradiction. Since at this stage all the derived bounds do not depend on
any assignment, remember that we backjumped in the previous step, BPA terminates by
reporting unsatisfiability of S.

4.2 Integrating Bound Propagation in Vampire
This section describes algorithmically the bound propagation method and how we man-
aged to implement it in Vampire. Throughout this section, when we introduce new
notions that can influence the performance of bound propagation we also present the
implemented option in Vampire.

We start by giving the general overview of how BPA is integrated in the context
of Vampire. Figure 4.1 presents a summary of how BPA was implemented. In the
following subsections we describe in details each of the steps deprecated in Figure 4.1
as well as implementation details. One can run Vampire’s bound propagation decision
procedure for solving systems of inequalities by invoking the bound propagation mode
of Vampire. This can be done by specifying at command line the -mode bpa option.
When using this mode one also has a vast palette of options implemented in Vampire
that allow the user to better control the behavior of bound propagation. Next we will go
through the most important options and present them as well as the ideas that lead to
their implementation.
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Figure 4.1: Bound Propagation for Arithmetic Reasoning in Vampire.

4.2.1 Input Problems
The input problems to BPA are systems of linear inequalities over reals or rationals.
Although the bound propagation decision procedure can be used both for real and ratio-
nal linear arithmetic, in our current implementation if input contains rationals they are
internally converted to floating point numbers.

As input for BPA in Vampire one has to provide a conjunction of linear inequalities.
This is a rather strict constraint since in general problems that deal with linear arithmetic
contain also arbitrary boolean combinations. In order to address this problem we work
now towards extending Vampire and BPA to accept arbitrary combinations of linear
inequalities.

In general state-of-the-art SMT solvers implement a variety of preprocessing steps.
These are intended both for handling the boolean structure of the problem and also for
simplifying the problem. In the case of BPA and Vampire no preprocessing is done
on the input problem. We focused more on assessing the power of BPA than on the
preprocessing steps, hence implementing different preprocessing steps is left as future
work.

Input Syntax

Problems that are accepted by Vampire with BPA must be represented in either SMT-
LIB [9] format or in MIPLIB [62] format. Current state-of-the-art SMT solvers imple-
ment support for SMT-LIB format, while most of the optimization tools provide support
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for MIPLIB input format. In our case we provide support for both input formats.
One can specify the format of the input problem by using the following option from

command line
-input_syntax [value]

This option has three possible values: smtlib for SMT-LIB version 1.2, smtlib2,
for the SMT-LIB version 2.0 and xmps for MIPLIB. Where the default value is set to
be smtlib.

4.2.2 Representation of Reals
In the current implementation of BPA inside of Vampire we provide three ways of rep-
resenting numbers, as follows:

(i) by using the long double type of C++;

(ii) by using the GNU Multiple Precision library [4];

(iii) by using our implementation of rational.

From a user perspective a couple options are implemented in order to allow control over
the number representation. Using the option:

-bp_start_with_precise [on/off]

allows one to choose the use of precise number representation from the beginning. In a
similar manner, for representing the numbers using our rational numbers implementa-
tion one has to use the option:

-bp_start_with_rational [on/off]

Note that these two options are mutually exclusive.
When a satisfying assignment is found, it is checked whether it is a solution to the

original constraints using the multiple precision representation. If it is not and the long
double or rational representation is used, Vampire restarts the search using the
multiple precision representation.

Although it is possible to build proof objects when BPA derives the contradiction,
this is not yet implemented and is left as future work. When unsatisfiability is detected,
no attempt is made to check whether the result is correct, since currently Vampire does
not build a proof object.
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4.2.3 Arithmetic in Vampire
Given an input problem, we first translate this problem into the internal input format of
Vampire. To reason about the reals, we had to extend Vampire with typed terms and
formulas. We also added the built-in sort for reals and built-in functions and predicates
over them, including multiplication, addition and standard comparison operators. But
these additions are also used in other contexts inside of Vampire. For example in stan-
dard theorem proving mode of Vampire all these additions are used together with an
axiomatization of reals.

Using these theory specific extensions of Vampire, we translate the input problem
into the internal typed Vampire representation. After the translation is done we prepare
the process of bound propagation by setting all the parameters according to the options
and run bound propagation on it.

In the following we will go over the bound propagation algorithm implemented in
Vampire.

Bound Propagation Algorithm

A pseudo-code for our bound propagation algorithm is given in Algorithm 4, highlight-
ing the main steps of our BPA implementation. To resolve conflicts (i.e. inconsistent
bounds), Algorithm 4 calls Algorithm 5.

Based on Algorithms 4 and 5, we now overview the main steps of BPA. Given a
system S of linear inequalities, BPA searches for a solution by applying bound propaga-
tion, variable decision and conflict analysis until either a satisfying variable assignment
is found, or otherwise a contradiction is derived.

Bound propagation incorporates important DPLL optimization like backjumping,
lemma learning and propagation of bounds, although with essential differences. For
example, our analogue of the DPLL learned clause is the collapsing inequality. Unlike
in the case of DPLL collapsing inequalities are not added to the list of inequalities but
rather used for backjumping. In the following we focus on the main steps of our bound
propagation implementation. We also highlight main differences between DPLL and
BPA in our presentation.

Initialize

We start by collecting initial bounds for variables from S , this step is deprecated in line 3
of Alg. 4. Let us denote by B the set of obtained bounds. Notice the fact that we do
not assume that each variable has an initial bound. Take the example from Section 4.1.3
where we initially have B = ∅ and the set S initially contains no bounds.

Throughout the run of the BPA algorithm, the set B will be changing. In addition
to the bounds, we also store assignments of values to decision variables that we make
during the run of BPA. An assignment is represented by an equality v = c, which is also
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Algorithm 4 The BPA Algorithm
1: Input: a set of linear inequalities S
2: Output: satisfying assignment/“unsatisfiable”
3: (Initialize) collect input bounds B ;
4: set decision level DL := 0;
5: while no solution found do
6: (Propagate) propagate bounds;
7: if conflict then
8: (Conflict Analysis)
9: call Conflicts Analysis ( Alg. 5);

10: else
11: if there exist variables without decision then
12: (Decide)
13: DL := DL + 1;
14: select next decision variable v (the decision
15: variable of level DL);
16: select a decision value d for v;
17: add decision bounds v ≥ d and −v ≥ −d
18: to B;
19: else return the map from the variables to
20: their decision values as a solution;

Algorithm 5 Conflict Analysis in BPA
1: while there are conflicting variables do
2: build the collapsing inequality CI;
3: if CI is −1 ≥ 0 then
4: return “unsatisfiable”;
5: CV := variable in CI with the maximal decision level;
6: DL:= decision level of CV;
7: backjump to the decision level DL;
8: add the new bound on CV generated by CI to B;
9: select a new decision value for CV;

10: add new decision bounds on CV to B;
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treated as a pair of bounds v ≥ c and v ≤ c in B. The set of assignments is assumed to
be initially empty/

The decision level (DL) of BPA corresponds to the number of decision value assign-
ments to variables. Decision level in the context of BPA is similar to the decision level
in the context of DPLL. In the case of BPA as in the case of DPLL we start from deci-
sion level 0, line 4 of Alg. 4. For more information about how and when we increase or
decrease the decision level see the Decide step.

Propagate

We use the bounds in B to derive new bounds (line 6 of Alg. 4), which are added to
B. The new bounds are logical consequences of B and S. The process of deriving new
bounds using other bounds is called bound propagation. Unlike DPLL, bound prop-
agation can become non-terminating, for example by deriving ever improving bounds
for the same variable (e.g. x ≥ 0, x ≥ 1, x ≥ 2, etc). For this reason, in our BPA
implementation we perform limited bound propagation, as described below.

If bound propagation derives an inconsistent pair of bounds x ≥ c and x ≤ d with
c > d, then we proceed to Conflict Analysis (line 9 of Alg. 4). Otherwise, if some
variables are not assigned, we move to the Decide step and select the next decision
variable and a value for it (lines 13-17 of Alg. 4). Finally, if all variables of S are
assigned, we report satisfiability of S and output the assignment (line 19 of Alg. 4).

Limited bound propagation

To ensure termination of BPA, we perform limited bound propagation in our BPA im-
plementation (line 6 of Alg. 4). To this end, we use the option

-bp_bound_improvement_limit k

to specify the upper limit k on the number of improved bounds derived by bound prop-
agation on the same variable at the current decision level. The value k is a positive
integer, its default value is set to 3. Bound propagation will terminate as soon as some
variable’s bound was improved k times.

Our choice of the default value was motivated by our experiments: it turned out that
in most cases value 3 (and sometimes 2) yields the best results.

Conflict Analysis

At this stage we derived an inconsistent pair of bounds on a variable (line 9 of Alg. 4).
We analyze these inconsistencies (conflicts), as summarized in Algorithm 5. If there
are no assigned variables, we report unsatisfiability (line 4 of Alg. 5). Otherwise, we
analyze the derivation of these bounds and compute the so-called collapsing inequality
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of this derivation (line 2 of Alg. 5). The collapsing inequality is implied by S and can
be used to derive a bound b on a previously assigned variable x such that b contradicts
to the existing assignment for x. We backjump by removing all assignments made since
the assignment to x and all bounds derived using these assignments (lines 5-8 of Alg. 5).
We then add b to B (lines 9-10 of Alg. 5) and go to the Propagate step. It is possible
to modify this method by using the collapsing inequalities also in the propagation step.
This means that during the propagation step one has to take into consideration also the
collapsing inequalities. This idea is similar to clause learning used by SAT solvers. One
can enable this method by:

-bp_add_collapsing_inequalities on

During our experiments we noticed some improvement by adding collapsing inequali-
ties, but they can also cause slowdown because bound propagation becomes more ex-
pensive.

Decide

At this stage, we have no inconsistent bounds but satisfiability of the system is not yet
established (line 11 of Alg. 4). We therefore pick an unassigned variable x. Since the set
of bounds B is satisfiable, so is the current set of bounds for x. We assign to x a decision
value satisfying these bounds, increment the decision level and go to the Propagate step
again (lines 13-17 of Alg. 4).

4.3 Strategies for Variable and Value Selection
When selecting variables and their values, our BPA implementation uses no a priori
fixed variable ordering. Picking the “right” variable and choosing its value during bound
propagation clearly affects the efficiency of BPA. We studied and implemented several
strategies for variable and value selection. Some of these strategies were inspired by
SAT solving heuristics [81]. In the rest of this section we discuss the strategies imple-
mented for both variable and value selection. Also in the context of algebraic computa-
tion the effects of variable ordering was also well studied, see [21, 37]. But we did not
yet implement these heuristics in BPA, this is left as an interesting task of future work.

4.3.1 Variable Selection
In this subsection we discuss different variable selection strategies for BPA implemented
in Vampire. To specify the variable selection strategy in Vampire, one should use the
option:

-bp_variable_selector [value]

69



where value specifies which strategy should be used. If this option is omitted, BPA
uses the default random variable selection.

In the sequel we will refer to yet unassigned variables as eligible variables. Below
we describe various values for the variable selection option of BPA:

random : In case this option is used, the strategy picks a random variable from the set
of eligible variables.

first : This strategy selects the first eligible variable. This first eligible variable is
selected given some fixed predefined order on variables. In our implementation
this ordering is basically the order variables appear in the problem.

tightest_bound : Pick an eligible variable with the tightest bound. Thigthness of
a bound is computed by doing the difference between the upper and lower bound
of a variable. This strategy has the advantage of selecting variables which are
more likely to derive either a contradiction or to allow fast process in the search.

conflicting : This strategy, inspired by the VSIDS heuristics of [81], picks an el-
igible variable which appears most often in conflicts. That is we keep track of
all variables that appear in conflicts and at the next decision step we pick the one
which appeared more often.

conflicting_and_collapsing : Pick an eligible variable which appears most
often both in conflicts and collapsing inequalities.

recent_conflicting : This strategy allows us to pick an eligible variable which
appears most often in recent conflicts.

recent_collapsing : Using this strategy we select an eligible variable which ap-
pears most often in recent collapsing inequalities.

4.3.2 Assigning Values to Variables
Different decision values can affect both the number of steps performed by the algorithm
and the size of the numbers involved in bound computations. Since both items are
important for efficiency of BPA algorithm, we implemented several strategies for value
selection.

To specify the variable value selection strategy in Vampire one should use the option:

-bp_assignment_selector value

where value specifies which strategy should be used.
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In addition to the value selection, we also implemented a mechanism to keep track
of previously assigned values to variable, which can be toggled using:

-bp_conservative_assignment_selection [on/off]

The conservative value selection was considered in order to speed up the value se-
lection computation. By default, this option has the value off. When this option is
on, we store the history of all variable assignments. Upon the backtrack in BPA (see
Alg. 5), we first try to find an old value of the variable which satisfies new bounds and
only if there is no such value we choose a new value for this variable. Of course this
value is choosen according to the strategy specified the option that controlls which value
selector is in use:

-bp_assignment_selector [value]

In what follows we describe some of the BPA strategies for assigning values to
decision variables. The value that has to be passed to this option in order to activate
each of the described options is in parantesis after its name. For simplicity, if a variable
has no upper bound, we will sometimes consider ∞ as its upper bound, and likewise
−∞ for the lower bound. We will call the interval for a variable the set of all values
between the lower and the upper bound.

Random value assignment (random) As the name suggests this strategy tries to
select a random value for the variable. If the variable has both bounds, the strategy will
pick a random value between these bounds. In case the upper bound is missing, the
algorithm behaves as if some large positive number was the upper bound. Similar for a
missing lower bound the algorithm behaves as if some really large negative number was
the lower bound. This strategy is currently the default one.

Smallest absolute value assignment (smallest) This strategy picks the value with
the smallest absolute value between the lower and upper bounds of the variable. If 0
belongs to the interval described by the bounds of the variable that we are trying to
assing then we pick 0. Now in case both bounds are positive, we pick the lower bound
as the variable value (this just in the case of nonstrict bounds), otherwise we pick the
upper bound. If the selected lower bound is strict, we add a small number δ to it, and
likewise for the upper bound.

Alternating lower and upper bound (alternating) This strategy implements al-
ternations of picking a lower or upper bound of a variable. In case when the bound on
the variable is strict, the variable value picked is the bound plus/minus some small value
δ. If the selected bound is missing, a large number is taken instead.
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There are also similar values lower_bound and upper_bound for this option.
For example, when upper_bound is used, the behavior is as follows. Where is no
upper bound, a large positive value is chosen. If there is a non-strict upper bound, this
bound is chosen. Otherwise when the upper bound b is strict, we choose b− δ for some
small δ.

Middle value (middle) This strategy picks the arithmetic mean of the interval de-
fined by the lower and upper bound of a variable. If the upper bound is missing some
very large positive value is used instead, and similar for the lower bound.

Tight (tight) This strategy picks a value such that it differs from the upper or lower
bound by a small δ. If both bounds are present, we randomly choose which bound to
use. If none is present, we choose 0 as value for the variable.

Binary decomposition (bmp) Having a lower and upper bound for a variable, the
strategy starts by computing the arithmetic mean of the integer approximation of the
bounds. That is, the arithmetic mean of the floor and ceiling of respectively the lower
and upper bound is calculated. Having computed this mean, before assigning it to the
variable we have to test whether it is in the interval described by the bounds. If this
value lies within the interval bounding the variable then we assign it to the variable.
Otherwise, if this value is greater than the upper bound, we compute the arithmetic
mean of this value and the floor of the lower bound and re-iterate the process of checking
whether the value belongs to the interval. If the value is smaller than the lower bound,
we compute the arithmetic mean of the interval defined by this value and the ceiling of
the upper bound, and re-iterate the process again. Main advantage of using this strategy
in order to assign the value of a variable is that it uses division by 2. In modern computer
architectures division by 2 is cheap and also precise up to a certain limit.

Continued fraction decomposition (cfd) This strategy is based on the continued
fraction decomposition of rationals. The method implemented is based on iteratively
representing the number as the sum of integer part and the reciprocal of the fractional
part. In order to pick a good value in between two numbers one has to iteratively de-
compose both numbers and stop at the point where the integer part of the numbers first
differ. When this happens we start computing the result of fractions obtained until that
point. The procedure ensures that we are always picking a rational value with the small-
est denominator and numerator among all rationals in the interval. Using this method
we can pick the value with the best rational representation in the interval.

In particular, this method always picks an integer value, if one exists in the interval.
This is convenient due to the fact that working with integer numbers is much less expen-
sive in terms of speed and memory consumption. The major bottleneck associated to
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this method is that it requires in some cases a considerable number of extra computation
steps. This just in order to decompose the bounds. Our implementation of the method is
designed in such a way that cheap operations are preferred, meaning that we are trying
to avoid division and multiplication as much as possible.

4.3.3 Using Vampire’s BPA
To use BPA in Vampire for solving systems of linear inequalities, one should execute
the following command:

vampire -mode bpa problem
-input_syntax [smtlib/smtlib2/xmps]
-bp_start_with_precise [on/off]
[Optional Parameters]

where the input parameter problem is the problem to be solved in the corresponding
syntax. In order to control how BPA initially represents the numbers one has to enable
the following flag:

-bp_start_with_precise [on/off]

By using this flag one ensures that BPA starts computing using precise number repre-
sentation. More precise, using this flag enables BPA to represent numbers using the
GMP precise number representation. In the same manner one can use

-bp_start_with_rational [on/off]

option which enables BPA to start computing using our rational number implementa-
tion. The Optional Parameters are different combinations of options, as pre-
sented in Section refsec:strategies. In a nutshell one can see these options as being a
good way of controlling the way variables and their value are selected. As well as a
good way of obtaining different strategies fine tuned for different problems.

For controlling the time limit when running Vampire with BPA, one should use the

-time_limit seconds

option. The default time limit of BPA is 60 seconds. Of course in case one has different
application domains this time limit can and should be changed accordingly.

Our BPA implementation adds an arithmetic decision procedure to Vampire. We
extended Vampire with the new built-in sort of reals and built-in theory symbols for
them. We added theory axiomatisations for these symbols and extended Vampire with
typed first-order formulas. We also changed the SMT parser of Vampire to read SMT-
LIB problems for linear real arithmetic. Further, we implemented the BPA algorithm
as described above. As for data structures and memory management, we used the stan-
dard libraries, data structures and memory allocations functions of Vampire [72]. All
together, the BPA implementation in Vampire contains about 8500 lines of C++ code.
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Combinations of Strategies

During experiments we extensively evaluated many different combinations of the pre-
viously described options. In many cases different combinations solve different sets of
problems. Some combinations of options prove to solve more problems than others.
Let us note that, even if a strategy solves only a small number of problems, we cannot
qualify it as a bad strategy since some problems could be solved only by this strategy.

There are however a few combination of strategies which turned out to perform
the best in most of our experiments. For example, the combination of the assignment
selector tight, cfd and the variable selector tightest_bound manages to find all
unsatisfiable cases, but on satisfiable cases does not give the best results. Although in
general this strategy is not the best for satisfiable problems, we found a few examples
that could be solved only by these value selections strategies. Using cfd in combination
with internal conversion of native numbers to rationals or precise proves to solve most of
the problems. Experimenting with strategies which dynamically adjust options during
the run of the algorithm is an interesting task to be investigated as future work.

4.4 Experiments using Vampire’s new Decision
Procedure

In this subsection we present the experiments done using BPA’s implementation in
Vampire. For the entire set of experiments we decided on a 60 seconds time limit.
Experiments where conducted on the Infragrid infrastructure from West University of
Timisoara [5]. The infrastructure is build from 100 machines and each of them is
equipped with an Intel Quad-core running at 2.00 GHz frequency and 14GB of RAM
per CPU.

Benchmarks

We evaluated our implementation of bound propagation in Vampire on three sets of
problems as presented below.

(i) We ran BPA on 128 problems generated by using the Hard Reality tool [66]. These
problems were generated by the tool by using the QF_LRA benchmark suite of
the SMT-LIB library [9]. The reason why we could not directly run BPA on
SMT-LIB problems is that SMT-LIB examples have a non-trivial Boolean struc-
ture. Hard Reality Tool is basically a tool that extracts random hard and realistic
theory problems, from SMT problems with non-trivial structure. The output of
Hard Reality are problems that are basically conjunctions of constraints, that is
the problems in the supported input for Vampire with BPA. In order to achieve
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Solver Sat Avg. Time Unsat Avg. Time Unknown

Vampire 2797 0.362 17100 0.236 1576
Z3 3193 0.072 18205 0.144 75

Yices 3206 0.001 18267 0.001 0

Table 4.1: Experiments on problems generated with GoRRiLa.

this Hard Reality uses an SMT solver in the background and extracts from the in-
put problem systems of linear inequalities that are hard for the background SMT
solver.

(ii) We generated 21,473 hard random linear arithmetic problems using the GoRRiLa
tool [66]. GoRRiLa is a tool that allows us to generate random linear arithmetic
problems and propositional problems according to some user specifications. In
our case we decided to generate problems containing on average 60 variables
and 100 inequalities. By using these specifications for GoRRiLa we managed to
generate a large set of problems some of them hard even for the state-of-the-art
SMT solvers.

(iii) In order to evaluate our approach also on problems coming from different research
fields we decided on using some of the benchmarks from linear optimization
field. For this reason we extracted a number of 224 linear optimization prob-
lems from the MIPLIB library of mixed integer problems [62]. The problems
basically model different optimization problems, most of them coming from in-
dustry. Although these examples contain both integer and boolean variables we
treat them as real variables. That is for each boolean problem we add them as
being reals and we add as lower bound for these variables to be 0 while the case
of upper bound is set to be 1.

Vampire with bound propagation and the examples used for our experiments can be
downloaded from bound propagation webpage: http://www.complang.tuwien.
ac.at/ioan/boundPropagation.

Since BPA implementation in Vampire is a new method for solving systems of linear
inequations we decided to compare against state-of-the-art solvers like Z3 and Yices.
Both these solvers implement some variations of the Simplex-based methods. When we
ran our experiments the same time limit of 60 seconds was set also for Z3 and Yices. In
case of Z3 we used version 3.2 while for Yices we used version 1.0.36.
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Solver Sat Avg. Time Unsat Avg. Time Unknown

Vampire 33 5.23 18 3.78 77
Z3 76 2.89 22 3.40 30

Yices 85 9.90 26 6.02 17

Table 4.2: Experiments on the SMT-LIB problems generated with HardReality.

Strategies

For better understanding how different options influence the performance of BPA we
experimented with various combinations of options. In this context we call a combi-
nation of options to be a strategy for BPA. For providing a good cover of options we
devised different strategies that include random, tight, conflicting, collapsing and con-
flicting variable selectors. As well as random, middle, binary decomposition, continued
fraction decomposition and alternating value selectors. Since we know that bound prop-
agation can be infinite and that the limit imposed to bound propagation influences the
performance we decided to evaluate our implementation by using a limit of 3, 4, 5 and
6 propagations.

In order to have a more broad view of how different strategies influence results on
hard problems, we did a comparison among all the strategies using the MIPLIB bench-
marks, Figure 4.2. From the experiments we notice that choosing a good assignment
selector makes a big difference when compared with the default one. In terms of as-
signment selector, best results were obtained using the continued fraction decomposi-
tion (cfd). Alongside this selector, also the one based on binary decomposition (bmp)
selector and the upper bound (upper_bound) selector proved to perform well. Vari-
able selector plays also an important role in performance. In this case tightest bound
(tightest_bound) variable selector proves to perform best.

We also observed that choosing an appropriate value as the upper limit of bound
propagation -bp_bound_improvement_limit option is essential. From the one
to one comparisons among options we observed that our decision procedure performs
best in case the upper limit for propagation is set to be 2, 3 or 4. Although these values
are not universally best performing, we noticed that in general choosing a propagation
bound limit higher than 4 does not improve the number of solved problems.

Results

Tables 4.1 ,4.2, 4.3 summarize the results we obtained. All the tables are organized in
the same way, that is, the first column lists the name of the solver. Columns two and
four show the number of problems whose satisfiability (SAT), respectively unsatisfiabil-
ity (UNSAT) were proved, whereas columns three and five give the respective average
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solving times in seconds. Column six lists the number of problems that could not be
solved within 60 seconds.

We started by evaluating Vampire with BPA on 21,473 random hard theory problems
generated by GoRRiLa. The number of variables in these problems was around 60, and
each problem contained about 100 inequalities. Table 4.1 summarizes the experiments
we have conducted with the problems generated by GoRRiLa. Unlike the 128 SMT-
LIB experiments, in this case we evaluated Vampire using BPA only with the default
values for options. All together, Vampire solved 19,897 problems with a very small
average solving time, and timed out on 1576 problems. Not surprising all the problems
that could be solved by Vampire could also solved by Yices. However they were 75
problems that could be solved by Vampire but not be solved by Z3. Besides the fact that
these problems could be solved by Vampire also the time required to do so was small,
on average 0.01 seconds. But it turned out that also Z3 can solve all them if the time
limit is increased to 240 seconds.

Further, Table 4.2 describes our results on the 128 SMT-LIB problems that we tried.
In this case, the 51 problems that where solved by Vampire using BPA proved to be
a subset of the problems solved by Z3 and Yices. Also, these 51 problems are not all
solved by a single strategy for BPA, but rather the total number of problems that Vampire
with BPA managed to solve. Throughout these experiments we have deployed approx-
imately 3000 strategies for Vampire using BPA. This big number of strategies allowed
us to fine tune BPA and also better understand how each of the options influences the
overall result. There where also 77 problems that could not be solved using this decision
procedure implementation. We believe that a relatively weak performance of Vampire
on these benchmarks is due to the absence of preprocessing. By further investigation on
the problems we noticed that the benchmarks contain many redundancies. Hence if pre-
processing is implemented for this decision procedure we believe that the performance
of Vampire with BPA will significantly increase.

Finally, Table 4.3 describes our results on 224 problems taken from the MIPLIB li-
brary. These examples encode optimization problems coming from academic and indus-
trial applications of mixed integer linear programming benchmark suite. The MIPLIB
problems we used contained thousands of variables and inequalities, each problem be-
ing over a few MB in size. Since some of these problems contain integer and/or Boolean
variables, we created their relaxations, where all variables are treated as real. Further,
we converted optimization problems into corresponding satisfiability problems.

Since the problems are in a different format than the one accepted in general by state-
of-the-art SMT solvers we decided to interface Vampire with a MIPLIB parser. By doing
so and adding an SMT-LIB printer to Vampire we managed to convert the problems
into SMT-LIB v1.0 format that is accepted by the other solvers as well. Applying this
technique we managed to convert a set of 224 problems on which we can experiment
with all three solvers. As in the previous experiments, results presented in the table
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Solver Sat Avg. Time Unsat Avg. Time Unknown

Vampire 79 6.43 28 4.54 117
Z3 96 6.20 25 2.13 103

Yices 103 3.44 26 0.31 95

Table 4.3: Experiments on MIPLIB problems.

represent the total number of problems which Vampire was able to solve.
In the case of these benchmarks Vampire using BPA managed to solve in total 107

problems. The problems that where solved by Vampire contained in average 1526 vari-
ables and several thousands of inequalities. Among these problems we found 8 that
could not be solved by Z3 within the time limit of 60 seconds but can be solved by
Vampire. Notice that in the case of MIPLIB experiments we also deployed approxi-
mately 3000 strategies for Vampire using BPA. In order to obtain these results we ran
Vampire with the same combination of strategies as for problems presented in Table 4.2.
Another interesting aspect is that Vampire using BPA proved to perform better than Z3
and Yices on unsatisfiable problems.

Summarizing, Table 4.3 shows that the first implementation of BPA in Vampire
gives competitive results when compared to state-of-the-art SMT solvers and performs
relatively well on very large examples coming from applications.

Comparison of Strategies

We also compared the performance of Vampire with BPA using different strategies on
the MIPLIB examples. Figure 4.2 summarizes our results. X-axis of Figure 4.2 rep-
resents the total number of solved instances by each of the strategies. While Y-axis
represents the average time needed for Vampire with BPA to solve those instances. We
also computed and plotted the Pareto line for minimization of average time and max-
imization of solved instances. On this graphic the strategies that appear in the lower
right corner represent best performing strategies. This is due to the fact that they solve
a large number of problems in the smallest ammount of time.

From Figure 4.2 one can observe which are the strategies that perform well in the
case of MIPLIB problems, at least on the subset we tested. In our case using a combi-
nation of tightest_bound variable selector and bmp assignment selector and doing
only 2 propagation updates per variable before bound propagation proves to be a good
choice. Using this strategy, we actually managed to solve the highest number of prob-
lems. A variation of these strategies where we use tight instead of bmp and 3 propa-
gation updates also performs relatively well when it comes to solving time of Vampire
with BPA.
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Further Improvements

Our bound propagation decision procedure implementation in Vampire requires fur-
ther experimentation and improvements. In particular, we are interested in (i) finding
performant heuristics for choosing “good” values for options such that we better ad-
dress different classes of problems. (ii) Another important issue is raised by the use of
strategies for bound propagation. One can find some inspiration for this process in the
literature regarding SAT solvers development. (iii) Extending the parsers of Vampire so
that one can start with constratins that contain rational numbers. By doing so we are
gain both time that otherwise is spent in internal transformation of numbers and also
in precision. (iv) Another interesting problem is generation of collapsing inequalities.
Currently we have a naive implementation for generation of collapsing inequalities. If
one would invest more time in finding better collapsing inequalities, we believe that the
entire process of solving systems of linear inequalities can be speed-up significantly. (v)
Implement preprocessing techniques.

We believe that proper settings for (i)–(v) can speed up Vampire using BPA by orders
of magnitude. The exact same thing happened in the context of SAT solvers and SAT
solving techniques in the past years. Finally, one should investigate the best ways of
running bound propagation in an SMT solver. While bound propagation has the main
advantage that its steps can be interleaved with the SAT solver steps. Even backjumping
and constraint propagation can be interleaved with SAT solving steps.
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CHAPTER 5
Use of SAT Solvers in Vampire

Recently, a new reasoning framework, called AVATAR, integrating first-order theorem
proving with SAT solving has been proposed. In this chapter we overview the new
AVATAR architecture for first-order theorem provers. We will then continue with pre-
senting how we managed to integrate different SAT solvers in Vampire. Interestingly,
our experiments on first-order problems show that using the best SAT solvers within
AVATAR does not always give best performance. There are some problems that could
be solved only by using a less efficient SAT solver than Lingeling. However, the in-
tegration of Lingeling with Vampire turned out to be the best when it came to solving
most of the hard problems.

5.1 AVATAR Architecture
This chapter aims to experimentally analyze and improve the performance of the first-
order theorem prover Vampire [72] on dealing with problems that contain propositional
variables and also other clauses that can be splitted. The recently introduced AVATAR
framework [103], proposes a way of integrating a SAT solver in the framework of an
automatic theorem prover. The main task that a SAT solver has in this framework is that
of helping the theorem prover in splitting clauses. Although initial results obtained by
using this framework in Vampire proved to be really efficient, for details see [103], it is
unclear whether efficiency of AVATAR depends on the efficiency of the used SAT solver.
We will address this problem using various SAT solvers and experimentally evaluate
AVATAR as follows. First integrate the Lingeling [3,17] SAT solver inside Vampire and
then compare its behavior against a less efficient SAT solver already implemented in
Vampire.
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Splitting clauses is a well studied problem in the community of automated theorem
provers. The first method was introduced in the SPASS [105] theorem prover. In that
case SPASS tries to do splitting and uses backtracking to recover from a bad split. An-
other way of dealing with splittable clauses was introduced in Vampire [89] and takes
care of splitting without backtracking. Both ways of splitting on a clause are highly
optimized for the theorem prover that introduced them. Implementing one or the other
splitting technique is not trivial and it can highly influence the overall performance of
the theorem prover. An extensive evaluation on how different splitting techniques influ-
ence performance of a theorem prover can be found in [57]. In the case of first-order
theorem provers the use of splitting in general proves to help improve performance of
the solver, these techniques are not as performant as the ones deployed by a SAT solver
or even the ones used in an SMT solver on ground instances [103].

The problem of dealing with splitting clauses in AVATAR is motivated by the way
first-order theorem provers usually work. In general first-order provers make use of
three types of inferences: generating, deleting and simplifying inferences. In practice,
using these inferences one can notice a couple of problems.

• Usually the complexity for implementing different algorithms for the inference
rules are dependent in the size (length) of the clauses they operate on. As an
example of simplifying inference, subsumption resolution is known to be NP-
complete and the algorithms that implement it are exponential in the number of
literals in a clause.

• Another issue arises when we want to use generating inferences. In this case
assuming we have two clauses containing l1 and l2 literals and we apply resolution
on them then the resulting clause will have l1+l2−2 literals. Now if these clauses
are long it means we generate even longer clauses. This also raises the question
of storage for these clauses for example by indexing [84].

• They are a couple of methods that deal with large clauses, for example limited
resource strategy [90] which is also implemented in Vampire. This method will
start throwing away clauses that slow down the prover. An alternative would be
to use splitting in order to make the clauses shorter and easy to be manipulated by
the prover.

5.1.1 Setup for AVATAR
This section overviews the main notions that are used in order to define the AVATAR
framework, for more details we refer to [72, 103]. In the framework of first-order logic,
a first-order clause is a disjunction of literals of the following form L1∨· · ·∨Ln, where
a literal is an atomic formula or the negation of an atomic formula. Usually when we
speak about splitting we speak about clauses as being sets of literals. By using this
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definition for a clause we can safely assume that we do not have duplicate literals in
the same clause. We also assume that predicates, functions are uninterpreted and the
language might contain the equality predicate (=).

Splitting

In a nutshell the notion of splitting for clauses starts from the following remark. Suppose
that we have a set S of first-order clauses and C1 ∨ C2 a clause, such that the variables
of C1 and C2 are disjoint. Then ∀(C1 ∨ C2) is equivalent to ∀(C1) ∨ ∀(C2). This
transformation implies that the set S ∪ {C1 ∨ C2} is unsatisfiable if and only if both
S∪{C1} and S∪{C2} are unsatisfiable. In practice one can notice the fact that splittable
clause usually appear when theorem provers are used for software verification purposes.

Let C1, . . . , Cn be clauses such that n ≥ 2 and all the Ci’s have pairwise disjoint sets
of variables. We can safely say that SP def

= C1 ∨ · · · ∨ Cn is splittable into components
C1, . . . , Cn. We will also say that the set C1, . . . , Cn is a splitting of SP . An example
of such a splittable clause can be considered any ground clause that contains multiple
literals.

One problem that arises in splitting is the fact that there are multiple ways of splitting
a clause. But this is not a major issue since we know that there is always a unique
splitting such that each component cannot be splitted more. We call this splitting of a
clause maximal. Computation of such a splitting proves to always give the maximal
number of components of a clause, see [89] for details.

FO to SAT Mapping

Let us first discuss how the mapping between the first-order problem and the proposi-
tional problem is done. In the propositional problem that is sent to the SAT solver we
basically keep track of clause components. In order to do that we have to use a mapping
[.] from components to propositional literals. The mapping has to satisfy the following
properties:

1. [C] is a positive literal if and only if C is either a positive ground literal or a
non-ground component;

2. for a negative ground component ¬C we have [¬C] = ¬[C];

3. [C1] = [C2] if and only if C1 and C2 are equal up to variable renaming and
symmetry of equality.

In order to implement this mapping Vampire uses a component index, which maps ev-
ery component that satisfies the previous conditions into a propositional variable [C].
And for each such component C the index checks whether there is already a stored
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component C‘ that are equal than it returns [C‘] as propositional variable. Doing so we
ensure that we do not have multiple propositional variables that are mappings of equal
components.

In case there is no such component stored in the index, than a new propositional
variable [C] is introduced and we store the association between C and [C]. A model
provided by the SAT solver for the propositional problem is considered a component
interpretation. Such a model contains only variables of the form [C] or their negations
and does not contain in the same time both a variable and its negation.

The truth definition of a propositional variable in such an interpretation is standard.
With the small difference that in case for a component C neither [C] not ¬[C] belongs to
the interpretation, than [C] is considered undefined, meaning it is neither true nor false.

AVATAR in a Nutshell

The first-order reasoning part works as usual, using a saturation algorithm [72]. The
main difference with respect to a classical approach is the way it treats splittable clauses.
A general overview of this process is deprecated in Figure 5.1. In the case that a clause
C1 ∨ C2 · · · ∨ Cn is splittable in C1, C2, . . . , Cn components and the clause passes the
retention test it is not added to the set of passive clauses. Instead we add a clause
[C1]∨ [C2]∨ · · ·∨ [Cn] to the SAT solver and check if the problem added to the solver is
satisfiable. If the SAT solver returns unsatisfiable, it means that we are done and report
it to the first-order reasoning part. In case the problem is satisfiable, we ask the SAT
solver to produce a model. This model acts as a component interpretation I. If in the
interpretation a literal has the form [C] for some component C then we pass to the first-
order reasoner the component, where C is used as an assertion. Exception from this rule
are those literals of the form ¬[C], where C is a non-ground component. This is due to
the fact that such a literal does not correspond to any component.

Figure 5.1: Interaction between the SAT solver and the FO reasoning part in AVATAR.
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In our context a SAT solver has to expose an incremental behavior. By incremental
we mean that the solver receives from time to time new clauses that have to be added
at the propositional problem and checks whether the problem is satisfiable upon request
from the first-order reasoner. If the problem is satisfiable than all it has to do is to pass
back to the first-order reasoner a model (component interpretation) for all the proposi-
tional variables. Otherwise it simply has to return unsatisfiable and communicate the
unsatisfiability result to the first-order reasoning part as well.

5.1.2 AVATAR Algorithm
To better explain the cooperation between the SAT solver and the first-order reasoner,
we have to modify the superposition calculus to deal with assertions. In the context
of AVATAR the notion of an assertion is similar to the one used in splitting without
backtracking but not entirely the same. In our context, we define an assertion to be a
finite set of components.

We define a clause with assertions (A-clause) as being a pair that consists of a clause
X and an assertion A. In general we denote an assertion clause by (X ← A) or in case
the assertion A = ∅ we denote the clause by X . Or more formally we an A-clause
can be seen as (X ← C1, . . . , Cm) which is equivalent to ∀X ∨ ¬∀C1 ∨ . . . ∨ ¬∀Cm.
Using this definition we can safely say that any standard clause X can be considered an
A-clause that contains the empty set of assertions.

Since we are using a mapping from first-order to SAT we have to extend the map-
ping such that it works with clauses with assertions. The extension is straight for-
ward, considering the same mapping function ([.]) as before we can extend it for an
assertion as follows. Consider you have an assertion A = {C1, . . . , Cm}, we define
[A] = {[C1], . . . , [Cm]} to be the mapping of assertion A from FO to propositional.

Since AVATAR works with A-clauses instead of normal clauses we have to modify
the superposition calculus to a calculus that uses A-clauses instead of standard clauses.
This modification is done by transforming any inference rule for the superposition cal-
culus that has the form:

X1 . . . Xk

X

into a set of rules of the form :

(X ← A1) . . . (Xk ← Ak)

(X ← A1 ∪ . . . ∪ Ak)

where A1, . . . , Ak are assertions. Also keep in mind that at each point in time AVATAR
uses as assertions those components that are computed by the SAT solver in its last
model. The problem that we have to overcome now is that of changing SAT models,
that translates into clauses with assertions being added or deleted at any point in time.
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In order to cope with the fact that clauses with assertions can be deleted and in the
next step undeleted the notion of locked A-clause. Throughout the modified saturation
algorithm this kind of storage will be denoted by locked. Elements of this locked storage
are pairs of the form (F, λ) where F is an A-clause and λ, also called lock of F, is a set of
component literals (C-literals). Note that in this case an A-clause F can occur multiple
times in locked by having different locks.

We say that an interpretation I returned by the SAT solver unlocks a pair ((X ←
A), λ) if all the C-literals in [A] are true in the interpretation and at least one C-literal
in λ is either false or undefined in A. Throughout the execution AVATAR maintains the
following invariant: for every A-clause (D ← A) in the search space each of the literals
in [A] is true in this model. That is, for all the pairs (F, λ) that are added to the set of
locked, all of the literals in λ are true in the current model, interp. If throughout the
computation one of the literals in λ become false or undefined, then the pair (F, λ) has
to be removed from the locked and added to the set of unprocessed clauses, lines 20-21
from Algorithm 6.

Notice that in the case of AVATAR algorithm we have to keep track of more col-
lections than a general saturation algorithm that keeps track only of active, passive and
unprocessed. In our case we have to keep track of the model produced by the SAT
solver, that is a C-interpretation, deprecated in the algorithm by interp. This interpre-
tation is needed so that at each point we can keep track of which clauses get locked or
unlocked. In order for this operation to be performed the difference between previous
C-interpretation and the current one is done.

Besides the interpretation one also needs to keep track of the clauses that have to
be passed to the SAT solver. We do this by maintaining the sat_queue and adding to
it clauses for the SAT solver. One can avoid keeping track of this queue by simply
adding the SAT clauses to the solver as they are created. This raises the problem of
computation of locked and unlocked clauses after every new clause is added to the SAT
solver slowing down the prover, since in most of the cases the interpretations change.
The only exception appears in case an empty A-clause is derived. In this case we directly
add it to the SAT solver and recompute the interpretation. This is due to the fact that
the new interpretation will make the given clause, and potentially many other, locked or
even deleted.

Of course these changes influence the way simplifation and term indexing works.
Details about how this changes influence the subsumptions, subsumption resolution and
rewriting by unit equalities (demodulation) can be found in AVATAR paper [103]. In the
same paper details about how indexing works in the context of AVATAR is explained.

SAT Solvers for AVATAR

In the context of AVATAR a SAT solver has to behave in the way they are designed
for. Baiscally one does not have to modify the SAT solver in order to integrate it in
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Algorithm 6 Modified version of the first-order algorithm
1: Var active, passive, unprocessed: set of clauses;
2: Var given, new: A-clause;
3: Var sat_queue: set of A-clauses
4: Var locked: set of pairs (A-clause, lock)
5: Var interp: C-interpretation
6: for all D ∈ initial clauses do
7: if D is splittable or empty then
8: move it to sat_queue
9: else

10: move it to unprocessed
11: main loop
12: if sat_queue 6= ∅ then
13: for all A-clauses (C1 ∨ . . . ∨ Cn ← C ′1 ∨ . . . ∨ C ′m) ∈ sat_queue do
14: pass [C1] ∨ . . . ∨ [Cn] ∨ ¬[C ′1] ∨ . . . ∨ ¬[C ′m] to SAT-solver

15: sat_queue := ∅
16: Ask SAT-solver to solve the problem
17: if SAT-solver returns unsatisfiable then
18: Return unsatisfiable
19: interp := C-interpretation returned by SAT-solver
20: for all pairs((C ← A), λ) ∈ locked unlocked by interp do
21: remove the pair from locked and add (C ← A) to unprocessed
22: for all A-clauses (C ← A) ∈active,passive or unprocessed s.t [A] 6⊆ interp do
23: remove (C ← A) from the set and add ((C ← A), ∅) to locked
24: for all components [C] ∈ interp s.t (C ← C) 6∈ active ∪ passive ∪ unprocessed do
25: add (C ← C) to unprocessed
26: for all new ∈ unprocessed do
27: if new is splittable or empty then
28: add new to sat_queue
29: else
30: if retained(new) then
31: simplify new by clauses in active ∪ passive
32: if new is added to unprocessed then
33: simplify clauses in active ∪ passive by new
34: if satqueue is non-empty then
35: start the main loop again
36: if passive = ∅ then
37: Return satisfiable or unknown
38: given := select(passive)
39: move given from passive to active
40: unprocessed := forward_infer(given, active)
41: add backward_infer(given, active) to unprocessed
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this architecture. The only desired behavior that should be exposed by the SAT solver
would be incrementallity. In the following we will give some details about the SAT
solver implemented in Vampire, in the context of AVATAR architecture.

Vampire Default SAT Solver

Vampire implements it’s own SAT solver that follows the MiniSAT [42] guidelines, thus
implementing a variation of CDCL architecture. That is, it implements an incremental
SAT solver that uses most of the optimizations presented in the context of MiniSAT. The
advantage of havins a SAT solver implemented in the context of Vampire is that one can
easily customize the behavior of such a component to fit different needs. In our case,
assuming that the SAT solver returns that the problem is unsatisfiable, then also the FO
reasoner should report unsatisfiability of the problem.

The problem that arises here consists on giving a proof of unsatisfiability. Since
we use a SAT solver in the background it is the solver’s job to prove a trace of how
unsatisfiability was decided and then ask the FO reasoning part to output the FO proof
based on the proof of unsatisfiability returned by the SAT solver.

Of course, one can argue that outputing the refutation proof based on the entire SAT
problem actually gives a good proof for refutation. But in case we are interested in hav-
ing succint and readable proofs one would need to select only those clauses that where
involved in proving unsatisfiability of the SAT problem. Such a behavior is actually
implemented in the case of the Vampire SAT solver.

Lingeling

Lingeling is the best performing SAT solver over the last years SAT competition. The
solver, implements a variation of the CDCL algorithm and a multitude of inprocess-
ing and preprocessing techniques. Although it is used in commercial applications, the
source code of Lingeling is open for academic and non comercial use.

Details about different preprocessing techniques implemented by Lingeling can be
found in [41]. More details about Lingeling’s interface can be found in [16], where
PicoSAT’s interface is presented. In the case of Lingeling, the interface has similar
functionality as the one of PicoSAT. Also for a in-depth description of the inprocessing
rules, we reffer to [58].

5.2 Integrating Lingeling SAT Solver in AVATAR
We now describe how we integrated the Lingeling SAT solver in the framework of
Vampire. When we describe implementation decisions also an overview of the options
implemented in order to control the behavior of Lingeling in the AVATAR framework
of Vampire. Although Lingeling is used in commercial applications, the source code
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is publicly available. Also the default license allows Lingeling to be used in non-
commercial and academic context. Our main goal after integrating the new solver in
Vampire framework was to obtain better performance in the process of solving first-
order problems.

5.2.1 Integrating Lingeling
In general any SAT solver is designed to accept as its input problems described in the
DIMACS format [16]. We have decided to implement an interface that allows us to
directly control Lingeling via its API. By using the API one can control the options for
the background SAT solver much easier at run time depending on the strategy being
deployed. We call a strategy a combination of options that are meant to influence the
behavior of different components of Vampire.

As presented in the AVATAR algorithm, in case the SAT solver establishes satisfia-
bility of a given problem, we are interested in obtaining a model for the problem. This
model is basically equivalent to the interp, C-interpretation, from Algorithm 6. Since
this is all the interaction between the FO reasoner and the SAT solver in case of satisfia-
bility, we can safely say that it matches the intended use for the majority of SAT solvers
on the market, in particular also Lingeling’s.

Many computation steps depend on the model generated by the SAT solver, take
for example indexing, forward simplification steps. In this particular case we are also
interested in finding similar models upon two different calls to the SAT solver. That is,
in case the SAT solver returns satisfiable, and we add new clauses to the solver and the
status of the problem remains satisfiable, we are interested in a model that has minimal
change when compared to the previous one. Similar models reffer to those models
that have small number of changes (ideally no change to the previous model and only
assignments to the newly added SAT variables) when two or multiple times the SAT
solver is called on the problem in incremental way. As mentioned before, by doing so
we are actually minimizing the work that has to be done by the FO reasoning part after
each call to the SAT solver.

For the purpose of our work, we use Lingeling in an incremental manner, but there
is still the question of how should we add the clauses to the solver. Incrementality in
the context of SAT solving refers to the fact that a SAT solver is expected to be invoked
multiple times. Each time it is asked to check satisfiability status of all the available
clauses under assumptions that hold only at that specific invocation. The problem to be
solved thus grows upon each call to add new clauses to the solver, for details see [42].

In the context of Vampire at some particular point the first-order reasoner can add
a set of clauses to the existing problem. In order to add these clauses to the underlying
SAT solver we implemented two versions of using Lingeling in the AVATAR architec-
ture of Vampire. The first version, given in Algorithm 7, iterates over the clauses that
appear in the original problem and adds them one by one to Lingeling. After we have
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added the entire set of clauses to the SAT solver we call for satisfiability check. We call
this method of adding clauses “almost incremental” since it does not call for satisfia-
bility check after each clause is added. Algorithm 7 is very similar to non-incremental
SAT solving at each step when the first-order reasoning part asks for satisfiability check,
since the call for satisfiability is done only after all the new clauses are added to the
solver (line 5). Overall, the approach is still based on incrementality of the underlying
SAT solver, since we keep adding clauses to the initial problem.

Algorithm 7 “Almost” incremental version of Lingeling in Vampire
1: Input: a set of clauses to be added
2: while not all clauses added do
3: Add clause to Lingeling
4: Keep track of the added clause
5: Call SAT procedure
6: if UNSATISFIABLE found then
7: Report Unsatisfiability
8: else
9: Return a model

Another way of using the underlying solver would be to simulate the pure incremen-
tal approach, as presented in Algorithm 8. This approach is similar to the previous one
with the difference that now as soon as a new clause is added to Lingeling we are also
calling for a satisfiability check (line 4).

In order to be able to use any of the previous ways of integrating Lingeling in Vam-
pire one has to be careful when adding clauses to Lingeling. Internally Lingeling tries
to apply preprocessing on the problem and during preprocessing a subset of variables
could be eliminated. This can lead to some problems since we eliminate a subset vari-
ables during the preprocessing and in some future step we might add some of them back
to the solver. The issue that arises here is the fact that performing these operations can
lead to unsoundness of the splitting solution generated by the first-order reasoner.

In order to avoid the issue of not allowing the solver to eliminate variables while
performing the preprocessing steps, Lingeling relies on the notion of frozen literals [17].
One can see a frozen literal as a literal that is marked as being important and not allowing
the preprocessor to eliminate it during preprocessing steps. Using freezing of literals we
are ensured that although preprocessing steps are done, it will inhibit the elimination of
marked variables. In our case it actually means that one has to freeze all the literals
that appear in the initial problem and also all the literals that are due to be added. The
process of freezing literals is done on the fly when new clauses are added to the solver.
In order to do be efficient and not freeze multiple times the same literal we keep a list
of previously added and frozen literals.
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Algorithm 8 Incremental version of Lingeling in Vampire
1: Input: a set of clauses to be added
2: while not all clauses added do
3: Add clause to Lingeling
4: Call SAT procedure
5: Keep track of the added clause
6: if UNSATISFIABLE found then
7: Report Unsatisfiability
8: else
9: Return a model

Although the freezing of all literals proves to be a suitable solution of enforcing
Lingeling not to eliminate some variables during the preprocessing steps, this also limits
the power of the preprocessing implemented in the solver. One improvement could be
to develop a methodology that would allow “predicting” which literals are not going to
be used later on and allow the SAT solver to eliminate them if necessary.

5.2.2 Using Lingeling in Vampire
In order to run Vampire1 with Lingeling as a background SAT solver one has to use
from command line the following option:

-sat_solver lingeling

By default when one enables the use of Lingeling as a background SAT solver, the
solver is used as presented in Algorithm 7. This means that we add first all the clauses
to the SAT solver and only then call for satisfiability check.

In case one wants to use Lingeling in Vampire as presented in Algorithm 8 the
following option needs to be used

-sat_lingeling_incremental [on/off]

This enables the incremental use of Lingeling as presented in the algorithm. By default
this option is set to off.

We are also interested in generating similar models when we use incrementally the
underlying solver. In order to control this behavior, one should use the option:

-sat_similar_models [on/off]

By default this option is set to off. As for the previous options activating similar model
generation has effect only in the case where Lingeling is used as background solver. In
the following we present the results obtained by running Vampire with combinations of
these options.

1Vampire with all the features presented in this paper can be downloaded from vprover.org
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Strategy Vamp L L S L I L I S

Average Time 3.4747 3.0483 4.2159 2.6728 3.8490
# of solved instances 142 146 156 143 144

# different 2 12 16 10 11

Table 5.1: Results of running Vampire with default values for parameters on the 300
CASC problems.

5.3 Experimenting with Vampire’s AVATAR
Currently, there are all together 5 different combinations of values for the new options
controlling the use of SAT solvers in Vampire. In order to benchmark these strategies
we used problems coming from the TPTP [102] library. The experiments where run
on the InfraGrid infrastructure of West University of Timisoara [5]. The infrastructure
contains 100 Intel Quad Core processors, each one with dedicated 10GB of RAM. All
the experiments presented in this paper are run with a time limit of 60 seconds and with
memory limit of 2GB.

5.3.1 Benchmarks and Results
As a first set of problems we have considered the 300 problems from the first-order
division of the CASC 2013 competition see [101]. Besides these problems we also used
6637 problems from the TPTP library. These 6637 problems are a subset of the TPTP
library that have ranking greater than 0.2 and less than 1. Ranking 0.2 means that 80%
of the state-of-the-art automatic theorem provers can solve this problem, while ranking
1 means that no state-of-the-art automated theorem prover can solve the problem.

Generally using a cocktail of strategies on a single problem proves to behave al-
ways better in first-order automated theorem proving. For this purpose we have decided
to evaluate our approaches of using SAT solving in the AVATAR framework of Vam-
pire both using a mixture of options and also using the default options implemented in
Vampire.

CASC Competition Problems

We evaluated Vampire using all the new SAT features and kept all other options with
their default values, from now on we will call this version of Vampire default mode.
Also we evaluated the mode where we launch a cocktail of options (strategies) with
small time limits and try to solve the problem, called the casc mode. A summary of the
results obtained by running these strategies can be found in Table 5.1 and Table 5.2.
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Strategy Vamp L L S L I L I S

Average Time 3.4679 3.0615 4.2701 2.8139 3.7852
# of solved instances 230 233 240 232 232

# different 1 8 13 8 7

Table 5.2: Results of running Vampire using a cocktail of strategies on the 300 CASC
problems.

All tables presented in this paper follow the same structure: the first row presents the
abbreviations for all the used strategies, the second row presents the average time used
by each of the strategies in order for solving the problems. Here we take into account
only the time spent on the problems that can be solved using a particular strategy. The
third row presents the total number of problems solved by each strategy. The last row
presents the number of different problems.

By different problems we mean problems that could be solved either by Vampire
with the default SAT solver and not solved by any of the strategies involving Lingeling
and the problems that can be solved only by at least one strategy that involves Lingeling
but cannot be solved by Vampire using the default SAT solver.

The abbreviations that appear in the header of each table stand for the following:
vamp stands for Vampire using the default SAT solver, L stands for Vampire using Lin-
geling as background SAT solver, in an “almost” incremental way, L S similar to L
but turning the generation of similar models on the SAT solver side on, L I stands for
Vampire using Lingeling as background SAT solver in pure incremental way and L I S
is similar to L I but with the change that it turns similar model generation on the SAT
solver side.

Table 5.1 reports on our experiments using the default mode of Vampire on the 300
CASC problems. Among these 300 problems, 23 problems can be solved only by either
Vampire using some variations of Lingeling as background SAT solver or by Vampire
using the default SAT solver. Table 5.2 shows our results obtained by running Vampire
in casc mode on the 300 CASC problems. Among these 300 problems there are 18
problems that can be solved only by either Vampire using some variation of Lingeling
as background SAT solver or by Vampire using the default SAT solver.

Figure 5.2 presents a comparison between Vampire using the default SAT solver
and each of the new strategies. The scatter plots present on the x-axis the time spent by
Vampire in trying to solve an instance, while on the y-axis the time spent by different
strategies on the same instance. In order to have more concise figures we have decided
to normalize the time spent in solving by a factor of 10. Doing so one can compare
time-wise the performance of each of the strategies. A point appearing on the diagonal
of the plot represents the fact that both strategies terminated in the same amount of time.
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(a) Vampire with default SAT solver
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(b) Vampire with default SAT solver
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(c) Vampire with default SAT solver
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(d) Vampire with default SAT solver
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Figure 5.2: Comparison of performance between Vampire with the default SAT solver
and different Lingeling strategies run in default mode. Default SAT solver is compared
against: (a) Lingeling “almost” incremental, (b) Lingeling “almost” incremental and
similar models, (c) Lingeling incremental and (d) Lingeling incremental and similar
models

A point appearing on top of the main diagonal represents the fact that Vampire using
the default strategy managed to solve that instance faster than Vampire using Lingeling
variations. Similar a point below the diagonal represents the fact that Vampire using the
new strategy solved the problem faster than Vampire using the default SAT solver.

The plot presents one to one comparison between the strategies and the default strat-
egy. In Figure 5.2 we present the results obtained by running Vampire in “default” mode
but varying the SAT solver as described above. From this figure one can notice the fact
that more points appear above the diagonal, meaning that the default values of Vam-
pire are better. We can notice however that there are some problems on which Vampire
with default SAT solver time out while using Lingeling they can be solved in very short
time. From these plots one could conclude that taken individually these strategies and
compared to the default one, they seem to be have similar behavior as the default one.
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Nevertheless, if we take them together and compare them to the default strategy we
notice the fact that indeed they behave better.

Table 5.2 and Figure 5.3 present a similar comparison on the same problems, using
the same variations of the underlying SAT solver and the same limits as for the default
mode.
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(b) Vampire with default SAT solver
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(c) Vampire with default SAT solver
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(d) Vampire with default SAT solver
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Figure 5.3: Comparison of performance between Vampire with the Default SAT solver
and different Lingeling strategies run in casc mode. Default SAT solver is compared
against: (a) Lingeling “almost” incremental, (b) Lingeling “almost” incremental and
similar models, (c) Lingeling incremental and (d) Lingeling incremental and similar
models

Other TPTP Problems

In a similar manner as for the 300 CASC problems we have evaluated our newly added
features on a big subset of TPTP problems. The problems that have been selected for
test have ranking in the interval [0.2, 1), having the status of either: Unsatisfiable,
Open, Theorem or Unknown.
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Strategy Vamp L L S L I L I S

Average Time 6.0440 5.9982 6.5992 5.6805 6.5025
# of solved instances 2672 2810 2925 2750 2788

# different 104 350 422 328 334

Table 5.3: Results of running Vampire using default values for parameters on the 6.5K
problems.

Strategy Vamp L L S L I L I S

Average Time 6.1019 6.0895 6.1139 6.3069 6.0638
# of solved instances 4788 4822 4881 4809 4792

# different 81 212 245 207 194

Table 5.4: Results of running Vampire using a cocktail of strategies on the 6.5K prob-
lems.

In Table 5.3 we present the summry of obtained results from running Vampire with
all the variations on the set of problems in default mode. Table 5.4 presents the summary
of our results obtained by running Vampire in casc mode on the same set of problems
using the same variations as above described.

From our experiments we noticed that using Lingeling as a background SAT solver
in the “almost” incremental and with the similar model generation turned on proves to
perform the best among the newly implemented strategies. This sort of behavior can
be due to multiple reasons. First it could be due to the fact that the solver tries to keep
the model for as long as possible, due to similar model generation option. Another
explanation for best performance can be the fact that using this options we do not call
the SAT solver after each clause is added, but rather only after we add all the clauses
generated by the first-order reasoning part, hence decreasing the time spent by the SAT
solver in solving.

5.3.2 Analysis of Experimental Results
While integrating the new SAT solver inside Vampire and during the experiments we
observed some issues that might increase the performance of future SAT solvers inside
the Vampire’s AVATAR architecture.

(i) It is not necessary that a state-of-the-art SAT solver, as Lingeling, behaves better
inside the AVATAR framework.
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(ii) Integration of new solvers is less complicated than fine tuning the newly integrated
solvers in order to match the performance of the default SAT solver, which is
hard.

(iii) Using an external SAT solver just in case the SAT problems are hard enough could
be a good trade-off. We discuss these issues below.

Performance First, let us discuss the performance issue. At least in the case of Lin-
geling upon integration we have noticed that it behaves really nice on some of the prob-
lems while on some others it seems to fail. There are a couple of factors that could
influence the behavior of such a performant tool. (1) Calling the solver many times de-
creases its performance. Although the solver is designed to be incremental upon adding
new clauses to the problem and call for satisfiability check, it restarts. Now the prob-
lem appears when we call many times the solver. For example in the case of “pure”
incremental way, we call the solver after each clause is added. Although the speed with
which the check is done is incredibly fast, calling it n times makes it n times slower. (2)
Due to this behavior in the worst case we have n restarts on the SAT solver side, where
n is the number of clauses added to the solver. Both these points showed up in the statis-
tics from the experiments we have performed. It is not uncommon that the first-order
reasoning part will create a problem containing 10K or even 100K clauses. Now even if
for one call the SAT solver spends 0.01 seconds it results in a timeout.

Own SAT solver? The default SAT solver implemented in Vampire follows the gen-
eral structure of the MiniSAT [42] SAT solver. This architecture is an instantiation of the
Conflict-Driven Clause Learning (CDCL) [97] architecture. Although it is incremental,
it deals with incrementality in a different manner. Assuming that we add a clause to the
solver, first we check whether we can extend the current model so that we can satisfy
also the newly added clause if the clause gets satisfied by the current model we keep the
model and add the clause to the database. In case the clause is not directly satisfied by
the model but does not contain any variable that is used in the model we try to satisfy
the clause by extending the model. If we cannot do that, we do not restart, but rather
backtrack to the point where the conflict comes from. A conflict can appear only if
variables that are used in the model appear also in the newly added clause. If that is the
case we take the lowest decision level among the conflict variables and backtrack to it.
From there on we continue the classical SAT procedure and try to find a new model.

Using this approach, the SAT solver brings a couple of advantages for the first-order
reasoning part. Due to the fact that we try to keep the model with minimal changes, we
do not have to modify the indexing structures so often in the first-order part and also
from our experiments we have noted that the actual SAT solving procedure gets called
less often than in the case of calling for satisfiability check on an plugged-in solver.
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Integrating other solvers Adding a new external SAT solver inside the framework of
Vampire is not complicated. One has to take care about how the first-order reasoning
part and the SAT solver communicate and do some book keeping. The issue arises when
one has to fine-tune the SAT solver so that it performs well in it’s new environment.
Usually state-of-the-art SAT solvers are highly optimized in order to behave well on
big problems coming from industry but sometimes seem to get stuck in small problems.
Also one important component of a state-of-the-art solver is preprocessing [41], which
for our purpose has to be turned off in order to ensure that we do not eliminate variables
that might be used for splitting in the first-order reasoner. Due to the fact that we do
not use all the power of a SAT solver we have to answer the question whether it is the
case that state-of-the-art, or commercial, solvers behave better in this context. In the
case of the AVATAR architecture for an automated theorem prover producing different
models for the SAT problems means that a clause gets splitted in different ways. That
also translates into the fact that in some cases the use of an “handcrafted” SAT solver
might produce the right model, but it also means that in other cases the state-of-the-
art solver produces the right model at the right time. This results in either solving the
problem really fast or not at all. Some interesting fact that we have noticed during
the experiments is the fact that the AVATAR architecture is really sensitive towards the
models produced by the SAT solver.

Future Directions

Starting from the initial results of the newly introduced AVATAR framework for an
automatic theorem prover, we investigate how does a state-of-the-art SAT solver behave
in this framework. We describe the process of integrating a new SAT solver in the
framework of Vampire using the AVATAR architecture. We also present a couple of
decisions that have been made in order to better integrate the first-order proving part
of Vampire with SAT solving. From our experiments we noticed that using a state-of-
the-art SAT solver like Lingeling inside the framework of an automated theorem prover
based on AVATAR is useful and behaves well on TPTP problems. However there are
also cases where using Lingeling as background solver Vampire does not perform as
good as using a less efficient SAT solver.

We believe that further refinements on the SAT solver part and better fine tuning
of the solver will produce even better results. We are investigating different ways of
combining the Vampire built-in SAT solver with the external SAT solver such that we
do not restart upon every newly added clause. Besides splitting, Vampire uses SAT
solving also for instance generation [69] and indexing. We are therefore also interested
in finding out whether the use of a state-of-the-art SAT solver improves the performance
of Vampire.
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CHAPTER 6
Related Work

Verifying program properties using a first-order automatic theorem prover is challenging
and actively studied reseach problem. Besides verification also the problem of generat-
ing properties about programs poses lots of interesting questions that are still waiting for
an answer. In the following we make a short overview of different approaches that are
described in literature and which are directly related to the research directions carried
out throughout this thesis.

6.1 Invariant Generation
To the best of our knowledge symbol elimination method for generating loop invariants
for programs containing arrays is implemented only in the context of Vampire. The way
invariants are generated is different than the other presented methods in multiple ways.
Symbol elimination does not need any user guidance and the generation of invariants
is based on a modified version of Vampire, saturation based first-order theorem prover.
On the other hand some other state-of-the-art approaches prove to produce really good
results as well.

McMillan in [79] proposes a different way of generating universally quantified loop
invariants. The method proposed here is based on modifying an interpolating theorem
prover to generate invariants. In order to achieve this goal the theorem prover has to be
enhanced with so called procrastination inference rules. After doing so one has to ensure
that the refutation proofs that are generated by the prover are local and only then the the
proof can be used in order to generate invariants. Besides locality of the proofs one also
has to make sure that the proofs do not diverge. This work also proves to be a starting
point in the study of controlling divergence of proofs. In order to do so their method is
based on successive loop unrolling until an inductive invariant is found. Although the
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method can be fully automated it is a bit more complicated to fully grasp. In this work
the authors present also the modifications done to SPASS [105] theorem prover in order
to obtain invariants for some simple programs that handle arrays and lists. Although
the generated invariants prove to be useful in small practical examples using this type
of invariant generation does not generate invariants with quantifier alternations, thus
making the invariants harder for a human reader to understand.

Unlike the method proposed by McMillan, Srivastava and Gulwani in [99] propose
a different approach for generating quantified invariants. That is, they propose a method
not completely automatic but rather a semi-automatic process where they use an SMT
solver as a black box. This method is based on the concept of invariant templates pro-
vided by the programmer. These templates contain “holes” that must be filled by the
analysis. Although this technique is not fully automatic it benefits of the advances in
SMT solvers, since it makes use of them in order to fill the invariants. The downside
of using such a method would be the fact that users, programmers, have to annotate
the code with templates for invariants. On the plus side however, using the techniques
proposed by the authors one can verify more complex programs, that is it can safely
analyze and prove intended properties of nested loops. Whereas the symbol elimination
method, although fully automatic still cannot achieve that.

In [14] the authors propose a modification of the counter-example guided abstraction
refinement technique (CEGAR) [23] for program verification. The modifications that
are added to this technique aim to limit the number of false positives that are generated.
For this purpose the so called “path invariants” are used. These invariants are basically
template based inducted invariants generated for parts of the original program. To be
more precise, that part of the program that is responsible for generation of the spurious
counterexample in the CEGAR loop. In order to generate path invariants the authors
make use of the technique presented in [15]. This technique is also part of the class
of techniques that use templates in order to generate invariants but in the combined
theory of linear arithmetic and uninterpreted functions. Unlike the method proposed by
Gulwani where an SMT solver is used, in the approach proposed here invariant synthesis
is done by constraint solving.

All the above methods make use of both properties to prove and/or templates, while
in the case of symbol elimination, we do not need properties to prove and/or templates
in order to generate properties for arrays. Similarly in the sense that no user intervention
is needed, Halbwachs et al. in [52] present a way of generating properties about array
content. The method presented in this paper, is inspired from the one presented in [49]
that is, each array gets mapped into symbolic intervals. For each such interval and for
each array a new variable is considered and relational properties about these variables
are taken into consideration.

In [52], the semantics of simple programs mapped to intervals is described as well
as a first implementation of the method and initial experimental results. In [85] for
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proving more interesting properties about content of arrays the authors deploy a different
approach than the one of mapping arrays to sets. More precise they are interested in
properties that cannot be expressed by simple quantifier alternation in first-order logic,
like the fact that two arrays are equal up to a permutation. In order to discover these
global properties over arrays content, they use multisets and the method proposed is
basically an abstract interpretation that propagates different multiset equations.

6.2 Arithmetic Reasoning
In general when we speak about solving systems of linear inequalities we have meth-
ods like Fourier-Motzkin variable elimination and Simplex method plus their variations.
Following another style of reasoning we have methods that adopt the DPLL style rea-
soning for deciding satisfiability of a set of inequalities.

In the case of Fourier-Motzkin [29, 93] variable elimination the method works as
follows. Given a system of linear inequalities we try to decide satisfiability of this sys-
tem by repetitive transformations of the system. Transformations are nothing else but
rewriting of the system in such a way that after each iteration a variable gets eliminated
and the set of solutions for both system are the same over the remaining variables. In
case all the variables are eliminated from the system of linear inequalities, then one ob-
tains a system of constant inequalities. As a consequence, elimination of all variables
can be used to detect whether a system of inequalities has solutions or not. That is, in
case the final system contains ⊥ then the initial system of inequalities is unsatisfiable.
Otherwise it is straight forward to construct a solution for the initial system of inequal-
ities. Note that by applying this algorithm we are assured termination and only a finite
number of new inequalities are generated while running. Another important issue that
a predefined ordering on the variables has to be set from the beginning. This is actually
not the case for bound propagation, where variable ordering is not fixed.

The Simplex [20] method is one of the oldest methods used in order to solve lin-
ear optimization problems, that is to solve a system of linear inequalities and mini-
mize/maximize an objective function. Besides this intended goal, variants of the sim-
plex algorithm can be used in order to solve also the decision problem for quantifier-
free fragment of linear arithmetic. The algorithm works iteratively and finds feasible
solutions satisfying the given constraints and greedily tries to minimize/maximize the
objective function. In the case of a the decision problem, the algorithm focuses on find-
ing a single feasible solution that satisfies all the constraints. A variant of the Simplex
algorithm, called dual Simplex works in a similar manner but is really effective in the
case when constraints are added in an incremental way.

The big step forward towards modern implementations of Simplex inside of SMT
solvers is considered to be the method introduced in [40] by Dutertre and de Moura.
They propose a new way of integrating Simplex in the context of DPLL(T). Where the
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major advantage would be that by using this method one can benefit of all the advantages
of the DPLL(T) framework.

Conflict resolution is a method recently introduced in [64] and its first implemen-
tation is evaluated in [65]. As per all the new style methods, the conflict resolution
method is an iterative and solution driven method. This method starts from a arbitrary
initial assignment for all the variables that are present in the system to solve and iter-
atively tries to refine these values. During the refinement process, either a solution for
the system is found, or a conflict arises. Conflicts are basically pairs of inequalities that
do not allow the refinement of current assignments to variables to satisfy the system
of inequalities. In this case the conflict is resolved by deriving a new inequality from
the two conflicting inequalities and it is added to the original system. The process of
refining the assignment continues until either the assignment is refined into a solution
or a trivial inequality is derived. In the latter case it is safe to conclude that the initial
system is unsatisfiable.

Now more to the second class of algorithms, McMillan proposes a new DPLL pro-
cedure in [80], called generalized DPLL method , shortly called GDPLL. The newly
introduced method exploits some ideas from DPLL to reason in the quantifier-free lin-
ear real arithmetic. This method tries to find an assignment satisfying a given system
of linear inequalities. For doing so, values to variables are assigned in an iterative pro-
cess. As in the case of DPLL reasoning in case a conflict is detected a new clause
is learned. After this new conflict clause is leaned it further used in order to resolve
conflicts. The theory reasoning part of GDPLL is essentially equivalent to the conflict
resolution method [64]. As in the case of conflict resolution, when computing and as-
signing values of variables an a priori fixed variable ordering is used. The efficiency of
conflict resolution crucially depends on the chosen ordering. The inability to change the
ordering during the proof search is probably the main weakness of the method.

Effects of variable ordering are also studied in the framework of algebraic com-
putation [21, 37]. Although the work presented in this framework addresses a different
problem than ours, it is still interesting since it shows potential improvement given good
variable orderings.

Compared to the previous methods, bound propagation algorithm has the big advan-
tage of incorporating different techniques from the SAT solving community. In the case
of bound propagation algorithm, bound propagation technique is incorporated and acts
like the unit propagation thinker from SAT community. Other features adapted from the
SAT solving community include dynamic variable ordering, technique that proves to be
essential in order to achieve good performance. Lemma learning and backjumping also
significantly improve performance of the bound propagation algorithm.

While dynamic selection of variables gives bound propagation algorithm its flexibil-
ity, uncontrolled variable selection coupled with bound propagation can easily yield to
a non-terminating algorithm. Therefore termination is a highly non-trivial issue. In [67]
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it is shown that under a natural restriction on bound propagation, the bound propagation
algorithm always terminates. Whereas if the variable ordering is changing termination
is not guaranteed anymore for the GDPLL or in the case of conflict resolution.

Dynamic variable selection is also used in [25], by combining theory reasoning with
a DPLL-style algorithm. The method implements the variable state independent decay-
ing sum (VSIDS) heuristic of [81] for variable ordering. Unlike BPA, completeness of
this method is guaranteed only under some restrictions, for example assuming that the
chain of resolving steps is finite. Another major difference to bound propagation algo-
rithm is the fact that bounds are not propagated, while bound propagation is one of the
key features of the BPA algorithm.

A somewhat similar approach to the one proposed by bound propagation algorithm
is described in [60] in the context of integer linear programming. The key difference
is that [60] does not use collapsing equalities. In general collapsing inequalities are
essential for turning a choice among an infinite number of values for a numeric variable
in a given interval into a non-deterministic don’t care selection of a value in this interval.

As evidenced by the above described approaches, reasoning about linear arithmetic
crucially depends on the underlying theory and heuristics for variable orderings and
clause learning. BPA has been introduced only recently in [67] and its practical effi-
ciency is yet unknown. In [39] we present the first ever implementation of the method.
Also the paper undertakes the first investigation into understanding the power and lim-
itations of BPA for linear real arithmetic. To this end, we implemented and studied
various heuristics for variable orderings, assigning values to variables and learning new
inequalities.

6.3 Reasoning with Theories
In the latest years the problem of reasoning with combination of theories has attracted
lots of attention. Following the advances in the SAT community the field of reasoning
with combinations of theories has advanced significantly. In the latter case tools like
Yice [40], CVC [10, 11] and Z3 [33] appeared.

Tools like the aforementioned ones are efficient when it comes to reasoning with
ground instances and with combination of theories. The architecture of such a tool is in
general an instantiation of the DPLL(T) architecture, more details about DPLL(T) for
SMT can be found in [34, 40]. In general in order to develop an efficient SMT solver
one has to integrate a performant SAT solver and to tightly couple theory reasoning with
SAT solving.

When it comes to program verification, in general it is desired to reason with both
combinations of theories and with quantifiers. For this problem the approach used in
SMT solvers is not so performant. First-order theorem provers are really efficient when
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it comes to reasoning with quantifiers, but they lack efficiency when it comes to reason-
ing with combination of theories.

In order to tackle this problem two major directions are presented in literature. One
direction is to start from the SMT community and extend SMT solvers in order to better
handle quantifier reasoning and to integrate a saturation engine inside them, see [34].
The other direction would be to start from a first-order theorem prover and try to inte-
grate different theory reasoning engines inside and tightly couple them with the satura-
tion engine that is already implemented, see [103].

In the direction from SMT solvers towards first-order theorem provers with inte-
grated theories we have the extension of the DPLL(T) and addition of a saturation en-
gine. DPLL(T) is extended as follows. First the notion of hypothesis that keeps track of
dependencies on case splits when the saturation applies inferences. In order to achieve
this goal, the deduction rules deployed by the saturation engine are lifted in order to
keep track of the hypothesis. By using the modified inference rules and the notion of
hypothesis one can tightly couple the saturation engine and the DPLL component of the
solver. One major advantage of using this technique is that it is refutationally complete,
for more details about how this technique works see [34].

On the other direction, when coming from an full first-order theorem prover towards
an SMT solver, we have the AVATAR architecture [103]. In a sense this architecture is
similar to the one presented in [34] but with a couple essential differences. AVATAR
architecture is flexible and easy to extend in order to integrate different engines that can
be tightly coupled with the saturation engine. In order to achieve this, the AVATAR
architecture makes use of so called assertions and one has to modify the inference rules
so that assertions are propagated when the search advances. Assertions have the role of
keeping track of the case splits that are done and are tightly coupled with the underlying
SAT solver. A couple of problems that have to be overcome when implementing a
solver using this architecture consists in keeping track of deleted clauses, since they can
be undeleted later. One can find more details about how the saturation algorithm and the
inferences have to be modified in order to integrate the AVATAR architecture in [103].
In AVATAR the SAT solver is used mainly for splitting a clause into components. Some
of the advantages of using such an architecture is that one can easily integrate different
back-end solvers, like SMT or quantified boolean solvers (QBF), instead of an SAT
solver for reasoning with different theories.

As per the case of an SMT solver, first-order theorem provers that implement the
AVATAR architecture rely on efficient background SAT solvers.

For the last couple of years SAT solvers have seen a great improvement in perfor-
mance. Good performance for satisfiability solvers started to become common after the
work of Stallman and Sussman [100] that introduced the notion of dependency-directed
backtracking. More recent improvements come from the use of learning and use of non-
chronological backtracking scheme, introduced in the mid 90’s by Marques-Silva and
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Sakallah and first presented in the context of GRASP [98].
Besides clause learning based on unit propagation, GRASP also proposed the unique

implication points, becoming another hallmark in the SAT solvig community. Using the
unique implication points, which are nothing else but dominators in the implication
graph, one can better exploit the structure of unit propagation.

With the introduction of Chaff [81] a new technique for handling clauses was pro-
posed, that is the watched literals scheme. Besides the watched literals, Chaff also
introduced the VSIDS branching heuristic and the first unique implication point back-
tracking scheme [107].

Besides these classical techniques some recent techniques were proposed for im-
proving performance of SAT solvers. For example simplification of the CNF formula
proves to significantly improve the overall performance of the solver, see [41]. Also
component caching and more complex clause learning schemes where proposed. De-
tails about latest improvement in best performing SAT solvers can be found in entrants
description for the SAT solving competition [13]. Another interesting optimization tech-
nique deals with restarts of a solver. It is empirically proven that by doing restarts at
different points in the search chances of finding a solution increase, also overall per-
formance of the solver increases. Other techniques including different preprocessing
steps plus efficient data structures tailored for the purpose of SAT solvers have proven
to make a big step forward for the SAT community.
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CHAPTER 7
Conclusion

Formal verification is crucial for ensuring that software systems have no errors, and
hence are correct. Automated methods are needed to analyze and formally verify com-
puter systems. One challenge in the verification of software comes with the automated
analysis of the logically complex part of code, such as loops or recursions. For such pro-
gram parts, additional information about the program is needed in the form of auxiliary
program properties. Typical program properties are loop invariants summarizing the
loop behavior and describing safety properties of the program. Automated verification
of programs with loops therefore crucially depends to which extend logically powerful
loop invariants can be automatically generated.

In this thesis, we address the problem of automated invariant generation for program
analysis and verification. Unlike existing approaches, in our work we propose the use
of an automated first-order theorem prover not only for proving, but also for generating
program properties. Our contribution are summarized below.

Invariant Generation. We use the recently introduced symbol elimination method in
first-order theorem proving and experimentally study the power of symbol elimination
for quantified invariant generation. To this end, our thesis provides an automated tool
support, called Lingva, for generating loop invariants of programs with arrays. Lingva
uses the award-winning first-order theorem prover Vampire and computes quantified
invariants, possibly with quantifier alternations. The invariants generated by Lingva are
obtained in a fully automated way, without any user guidance. We evaluated Lingva
on a large set of academic and open-source benchmarks. Our experiments show that
the invariants generated by Lingva capture the intended meaning of the program; in all
examples we tried, user-given program annotations could be proven using our invariants.

107



Theory Reasoning. For proving program properties with both quantifiers and theo-
ries, we study the use of various decision procedures within a first-order theorem prover.
In particular, we focus on linear arithmetic and provide an automated support for using
Vampire for solving a system of linear inequalities over the reals or rationals. To this
end, we integrate the bound propagation algorithm in Vampire. Our implementation
provides a large number of strategies for choosing variable orderings and variable val-
ues, allowing us to experiment with the best options for variable and value selection
within bound propagation. We evaluated our implementation on a large number of ex-
amples. Our experiments show that bound propagation in Vampire outperforms the best
SMT solvers on some hard linear optimization problems.

SAT Solving. In order to go towards better integration of various decision procedures
withing first-order theorem proving, we address the recently introduced AVATAR frame-
work for combining automatic theorem proving with SAT/SMT reasoning. We describe
the process of integrating different SAT solvers in the framework of Vampire using the
AVATAR architecture, and experimentally investigate how the use of SAT solvers within
Vampire improve overall performance of Vampire for proving first-order problems. To
this end, we focus on the best state-of-the-art SAT solver, Lingeling and its integration
and use within Vampire. We evaluated our implementation on the TPTP problem library
of automated first-order theorem provers. From our experiments we note that using SAT
solvers within Vampire allows us to prove problems that could not be proved so far.

Further Work. In the case of invariant generation an interesting topic for further re-
search consists in extending our method in order to handle nested loops. Alongside
with nested loops, we are also interested in finding ways of combining different theo-
ries, such as bitvector theory, datatypes, etc., that can be used for the purpose of invariant
generation of more complex programs.

Another interesting topic for further research when it comes to bound propagation
is improvement of the deployed strategies and thoroughly experiment with a large set of
benchmarks. For better results one can develop fine tuned strategies for different classes
of problems that are handled. Besides experimenting and strategy improvement we are
also interested in different ways of how to efficiently address the problem of propagating
bounds and how better collapsing inequalities can be generated.

When improving the use Vampire’s AVATAR architecture, besides the integration of
state-of-the-art SAT solver we are also interested in investigating whether further refine-
ments and fine tuning of the SAT solver part will produce better overall performance of
the theorem prover. We are also interested in investigating different ways of combining
the Vampire built-in SAT solver with the external SAT solver such that we do not restart
upon every newly added clause. Besides splitting, Vampire uses SAT solving also for
instance generation [69] and indexing. Hence, finding out whether the use of a state of
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the art SAT solver improves the performance of Vampire in general, constitutes another
interesting problem that should be further investigated.

We believe that further extending our approach in order to better integrate theory-
specific reasoning engines and better techniques for minimizing the set of invariants will
drastically improve the quality of generated invariants. Further improvements can also
be achieved by fine tuning the underlying SAT solver. Additionally, interleaving SAT
solving steps with steps in the bound propagation method is another interesting topic
worth studying.
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Timişoara, Romania

Duties included the implementation of different image processing algorithms. I have successfully
implemented different variations of segmentation algorithms to work on distributed systems.

Internship Bosch June 2013 - July 2013
Braga, Portugal

Duties included research and documentation regarding parking assistents for vehicles with trailers.
Main duties were related to geometrical modeling of the trajectory for this kind of systems.

COMPUTER SKILLS
Extensive knowledge of different operating systems.
Proficient programming skills in C, C++, MPI and scripting languages.
Intermediate proficiency in programming CUDA, Java, C# and openMP.



LIST OF PUBLICATIONS

P1. Ioan Dragan, Konstantin Korovin, Laura Kovács, Andrei Voronkov. Bound Propagation for
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