An Open Notation for Memory Tests

Ad J. van de Goor, Aad Offerman, and Ivo Schanstra: Towards a Uniform Notation for Memory Tests (presented at the European Design & Test Conference and Exhibition 96)

Aad Offerman and Ad J. van de Goor: An Open Notation for Memory Tests (presented at the IEEE International Workshop on Memory Technology, Design and Testing, 1997)

There is a font issue here.  I have emailed Adrian Offerman to find out if he knows of a font that contains the symbols used here.  He sent me his xbm bitmaps, but they are in the Symbol and Wingdings fonts in Word.  The only remaining issue is how to make them display in HyperTerminal.

Memory Test Verification and Generation

A. Offerman, Automatic Verification and Generation of Memory Tests (Masters thesis, August 1995)

While it is certainly possible to program this piece, it would not be appropriate to put this into an embedded environment.  At best, this would be an off-line activity.

Simplified notation for terminals

Terminal font has single arrows

( up/down = 0x12 = ^R

( down = 0x19 = ^Y

( up = 0x18 = ^X

Standard test algorithms

S. Hamdioui, R. Wadsworth, J.D. Reyes, and A.J. van de Goor, Memory Fault Modeling Trends: A Case of Study (Journal of Elecronic Testing, Thoery and Application JETTA, Vol. 20, pp. 245-255, 2004)

Alexander Paalvast, Testing Single Inline Memory Modules (SIMMs) Theory and practice (Masters thesis, December 1999)

Trade off complexity with fault detection.  On-going maintenance of test notation parser determines what is possible.

Table 1. Examples of base tests (BTs).

No. BT name
Test length
Description

1 SCAN [1]
4n
{⇑ (w0);⇑ (r 0);⇑ (w1);⇑ (r1)}

2 MATS+ [16] 
5n 
{((w0);⇑ (r0,w1);⇓ (r1,w0)}

3 MATS++ [6] 
6n 
{( (w0);⇑ (r0,w1);⇓ (r1,w0, r0)}

4 March C− [14, 18] 
10n 
{( (w0);⇑ (r0,w1);⇑ (r1,w0);⇓ (r0,w1);⇓ (r1,w0); ( (r0)}

5 PMOVI [8] 
13n 
{⇓ (w0);⇑ (r0,w1, r 1);⇑ (r1,w0, r 0);



  ⇓ (r0,w1, r 1);⇓ (r1,w0, r0)}

6 March SR [9] 
14n 
{⇓ (w0);⇑ (r0,w1, r1,w0);⇑ (r0, r 0);



  ⇑ (w1);⇓ (r1,w0, r0,w1);⇓ (r1, r1)}

7 March SS [11] 
22n 
{( (w0);⇑ (r0, r0,w0, r0,w1);⇑ (r1, r1,w1, r1,w0);



⇓ (r0, r0,w0, r0,w1);⇓ (r1, r1,w1, r1,w0); ( (r0)}

8 March G [17] 
23n 
{( (w0);⇑ (r0,w1, r1,w0, r0,w1);⇑ (r1,w0,w1);



⇓ (r1,w0,w1,w0);⇓ (r0,w1,w0);⇑ (r0,w1, r 1);⇑ (r1,w0, r0)}

9 March RAW [10] 
26n 
{( (w0);⇑ (r0,w0, r0, r0,w1, r 1);⇑ (r1,w1, r1, r1,w0, r 0);



⇓ (r0,w0, r0, r0,w1, r 1);⇓ (r1,w1, r1, r1,w0, r 0); ( (r0)}

10 Hammer [19] 
49n 
{⇑ (w0);⇑ (r0, 10 ∗ w1, r 1);⇑ (r1, 10 ∗ w0, r 0);



  ⇓ (r0, 10 ∗ w1, r 1);⇓ (r1, 10 ∗ w0, r0)}

11 GalColumn 
6n+4nR 
{⇑ (w0);⇑b (w1b, col(r0, r1b),w0b);



  ⇑ (w1);⇑b (w0b, col(r1, r0b),w1b)}

12 GalRow 
6n+4nC 
{⇑ (w0);⇑b (w1b, row(r0, r1b),w0b);



  ⇑ (w1);⇑b (w0b, row(r1, r0b),w1b)}

13 WalkColumn 
8n+2nR 
{⇑ (w0);⇑b (w1b, col(r0), r1b,w0b);



  ⇑ (w1);⇑b (w0b, col(r1), r1b,w0b)}

14 WalkRow 
8n+2nC 
{⇑ (w0);⇑b (w1b, row(r0), r1b,w0b);



  ⇑ (w1);⇑b (w0b, row(r1), r1b,w0b)}
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Memory Test Language

Ignore white space

Tabs and spaces

Ignore comments

Prefixed with #

Increment line number

Newline

Initial

Begin test algorithm

ALLPORTS or allports or {

Port commands

Read port

r

Write port

w

Read/Write port

x

Don’t care port

-

Rest

.

Test Algorithm

Addressing order

DOWN or down or ((xC8->x19)

UP or up or ((xC9->x18)

UPDOWN or updown or ((xCA->x12)

SOUTH or south or ((xCB)

NORTH or north or ((xCC)

NORTHSOUTH or northsouth or ((xCD)

EAST or east or ((xCE)

WEST or west or ((xCF)

EASTWEST or eastwest or ((xD0)

Operators

+

-

Numbers

0-9

No operation

NOP or nop

End test algorithm

}

Rest

. or A-Z or a-z

