
suojsuamja 



FORTH 
IS NOW 
VERXFAST! 
.Sieve 1.3slpass 
.Compile 300 screenslminute  
.Drop 1.82 us  
.Concurrent I/O @ 250K b a u d  

DEVELOP YOUR 
APPLICATIONS IN 
A TOTAL FORTH 
ENVIRONMENT. 

MICROPROGRAMMED BIT SLICE 
FORTH ENGINE 
.Microcoded forth kernel 
.Microcoded forth primitives 
.Multi-level task switching architecture 
for real t ime applications 
.Optional writable control s tore  

H.FORTH OPERATING SYSTEM 
.Hierarchical file system 
.Monitor level for program d e b u g  
.Multi-user multi-tasking 
.Target compiler  
.I/O management  
.Forth 83 Compatible  

H4TH/OI OEM SINGLE BOARD 
.Floppy disk controller 
.2 channel  SIO to 38.2K b a u d  
.Calendar clock-4HR backup 

.44K Byte ram 200NS 

.32K Byte EPROM operat ing system 

. I  K X 32 microprogram memory 701-1s 

H4TH/IO DESKTOP 
.Dual 0 .8m Byte floppys 
.H4TH/Ol processor 
.Three user  slots 
.Two expansion slots 
.Power & cooling 

H4TH/20 DESKTOP 
.I0 m Byte Winchester 
.0.8 m Byte floppy 
.H4TH/OI processor 
.300K byte RAM expandable  2m byte 
.Three user  slots 
.One expansion slot 
.Power & cooling 

A forth-engine consisting of a state-of-the-art integrated hardware/software 
system giving unsurpassed performance for professionals and their applications 
from a company that is totally dedicated to the forth concept and its implementation 

HARTRONIX. Inc. 1201 North Stadem Drive Temx>e, Arizona 85281 602.%6.Z15 
FORTH Dimensions 2 .' '*: 4 



FORTH Dimensions 
Published by the 

Forth Interest Group 

Volume VI, Number 4 
November/ December 1984 

Editor 
Marlin Ouverson 

Production 
Jane A. McKean et al. 

Forth Dimensions solicits editorial ma- 
terial, comments and letters. No responsi- 
bility is assumed for accuracy of material 
submitted. Unless noted otherwise, mate- 
rial published by the Forth Interest Group 
is in the public domain. Such material 
may be reproduced with credit given to 
the author and the Forth Interest Group. 

Subscription to Forth Dimensions is 
free with membership in the Forth Inter- 
est Group at $15.00 per year ($27.00 for- 
eign air). For membership, change of 
address and/or  to submit material for 
publication, the address is: Forth Interest 
Group, P.O. Box 1105, San Carlos, Cali- 
fornia 94070. 

Symbol Table 

Simple; introductory tu- 
torials and simple appli- 
cations of Forth. 

Intermediate; articles 
and code for more com- 
plex applications, and 
tutorials on generally dif- 
ficult topics. 

Advanced; requiring stu- 
dy and a thorough under- 
standing of Forth. 

i 
I 

Code and examples con- 
form to Forth-83 stand- 
ard. 

Code and examples con- 
form to Forth-79 stand- 
ard 

Code and examples con- 
form to fig-FORTH. 

Deals with new propos- 
als and modifications 
to standard Forth sys- 
tems. 

Dimensions 
FEATURES 

9 Forth P-Code Interpreter 
by A.J. Monroe 
In 1978, BYTE published the “Tiny” Pascal Language Series by Kin-Man 
Chung and Herbert Yuen. In the present article, that p-code interpreter has 
been rewritten in Forth. Here is an excellent chance to compare the same 
program in Pascal and Forth. You not only get a useful piece of software- 
you will gain an insight into the similarities and differences between two 
popular modern languages. 

i!i 

i 
I 
I 
J 

19 Recursion 
by Michael Ham 
Recursion, as difficult to grasp as it is to explain, often leads to elegant 
expression of an algorithm. This article, complete with examples and home- 
work, aims to make the subject less slippery. 

23 Forth Semaphores 
by Jens Zander 
In task-controlled or truly concurrent systems, correctly managing the sys- 
tem states can be a complex task. Passing data and sharing I /  0 devices pose 
related problems. The author presents a Forth implementation of Dijkstra’s 
“semaphore” solution. 

28 Forth-83 Program to Run Forth-79 Code 
by Robert Berkey 
The author explains that, because Forth-83 is primarily a superset of Forth- 
79, this translator program works well in most instances. Words that are 
difficult to translate automatically are discussed. This code will run Forth-79 
programs, as well as aid in their conversion. 

33 ANDIF and ANDWHILE 
by Wendall C. Gates 
Readers who enjoyed “Parnas’ it ... ti Structure” by Luoto will find this a 
useful follow-up piece. For simpler applications, this solution to multiple- 
input branching just may be the route your program will use. 

35 Volume V Index 
by Julie Anton 
This reference tool was prepared at FIG’S request as a service to members. 
Looking for an article by subject, author or title? Here’s the place to find it! 

DEPARTMENTS 
5 Letters 
6 Editorial: Points of Departure 
37 

40 
42 FIG Chapters 

Techniques Tutorial: Mixing CODE With High-Level Forth 
by Henry Laxen 
Chapter News by John D. Hall 

I 
FORTH Dimensions 3 Volume VI, No 4 



F O R T H  C O M P U T E R  
Build the TDSSOO into your products, 

program it with a VDU and your forecasts 
become fact. 

*Single board 
computer. 12K RAM and 
8K ROM (expandable) *All C-MOS for low power * Fig-FORTH high level language. Compiled and 
fast. On-board screen-editor, oompikr and debug facilities. 
*Easy connection with serial and pmdlel channels, 
N D ,  D/A converters, triacs, printers, keyboards and displays. 

Triangle Digital SarriDa W e d  
1OOa WoodSt., W-yI.rrlmE:T. f5gland 

Telephone: 01-520 0442. Tehrr t l k i  -5 1 

Stynetic Systems Inc. 

fe'ephone: (516) 862-7670 
F owerfield, Building 1, St. J m ) I b Y u k  11780 

- -SA France, Switzerland, Net- S A+- Adstratla 

Volume VI. No. 4 4 =:I=-- :wszrs 



Grounded in Data Transfer, and 
CREATE for Jupiter 

Dear Mr. Ouverson: 

I would like to comment on “Simple 
Data Transfer Protocol” by Ericson and 
Feucht (Forth Dimensions VI/2). Fig- 
ure one showed pin 1 as ground. RS232 
designates pin 1 as the chassis ground, 
while pin 7 is the signal ground. In some 
computer systems these two grounds 
may be electrically connected, but in 
others they are not. Therefore, it is good 
practice to use pin 7 instead of pin 1 as 
ground for communications cabling. Fig- 
ure two showed a loop connection of the 
control signals on pins 4, 5 and 8. This 
will work for many systems, but should 
not be considered universal. The control 
signals required vary from system to sys- 
tem. Some need pin 6 (data set ready) 
asserted to enable receiving. Others need 
no control signals at all. 

When working with RS232 ports on 
various computer systems, I have found 
it very useful to use a cable matcher. This 
is a small box with RS232 connectors on 
both ends and jumpers between the con- 
nectors. A cable matcher enables me to 
test the RS232 port with different con- 
trol signal loops, as well as with pins 2 
and 3 crossed or uncrossed (with or 
without null modem). I have found that I 
can get two RS232 ports communicating 
by trial and error faster than I can by 
trying to decipher any documentation 
for the ports. 

Also, I am the owner of a Jupiter Ace 
computer and would like to share some 
code with other Jupiter programmers. I 
am disappointed by the Jupiter’s DEFIN- 
ER DOES> pair, which takes the place of 
CREATE DOES>. For simple defining 
words, they work fine. However, con- 
structing a defining word that constructs 
defining words, as presented in Henry 
Laxen’s fine articles (Forth Dimensions 
IV/2,3), is beyond the capabilities of 
DEFINER DOES>. Redefining DOES> as in 
figure one will allow CREATE DOES> to be 
used as by the Forth-79 Standard. I used 
Glen Haydon’s book, All About Forth, 
as a reference to aid in the development 
of the definitions. 

This demonstrates that, although the 
Jupiter does not contain a complete 
Forth-79 implementation, alterations to 
the system to make it more closely con- 
form are quite easy. Ease of system alter- 
ation is one of the outstanding character- 
istics of Forth. 

Sincerely, 

Ed Schmauch 
Conoco, Inc. 
P.O. Box 1267 
Ponca City, Oklahoma 74603 

Coding for Dollars, and 
Wanted: Slow Editors 

Dear FIG: 

Your recent articles on “PL/I Data 
Structures”(Forth Dimensions V/ 6) and 

16 BASE C! 

FFO CONSTANT DODOES 

: COMPILE R> DUP @ , 2+ >R ; 

: <;CODE> R> CURRENT@ @ I +  ! ; 

: D O E 9  COMPILE<;CODE> CD C, DODOES , ; IMMEDIATE 

DECIMAL 

Figure One 

“Procedural Arguments” (VI/2) are the 
wave of the future-at least of Forth’s 
future. If Forth is to be more than a 
process control language, it must live up 
to Moore’s claim (in these pages) that 
Forth can do anything any other lan- 
guage can do, only more elegantly. 

To that end, I would like to suggest a 
competition organized by FIG, to be 
held in these pages, in which 1) the major 
features of all major languages are de- 
fined by an expert committee, and 2) 
annual prizes are given for those pub- 
lished articles which best describe how 
these features can be implemented in 
Forth. 

Prizes should be awarded for 1) the 
most complete implementation, 2) the 
most intelligible implementation, 3) the 
simplest implementation, 4) the most 
elegant (i.e. combination of all the above) 
implementation. 

Prizes should consist of a free year’s 
membership in FIG. Furthermore, as 
each of the major languages (I nominate 
COBOL, RPG-11, P L /  I ,  Pascal,  
Modula-11, Ada, C, Fortran, APL, Lisp 
and Prolog) is completed, articles rele- 
vant to it should be collected into mono- 
graph form and authors of those articles 
should be given a copy of that mono- 
graph. 

The real winner in this competition 
would be the computing community, 
which would gain the ability to use the 
best of each language in a way uniquely 
suited to the purpose at hand. If this 
suggestion is taken as seriously as I hope 
it will be, I would like as my reward for 
suggesting it a standing invitation to 
have the pleasure of the company of 
Henry Laxen and Bill Ragsdale for 
lunch or dinner, which I shall gladly buy. 
The opportunity to  be surrounded by 
their kind of brilliance (their columns are 
worth the entire price of admission) 
could be the prize for the year’s best 
article. 

Finally, an editorial suggestion. You 
need someone as slow to learn as I on 
your editorial board. The standing joke 
in our local FIG chapter meetings is my 

Volume VI. No 4 5 FORTH Dimensions 



As we put this issue together, the 
FORML tour group is in the midst of 
last-minute preparations for its trip to  
Taiwan, Hong Kong and China. All are 
looking forward to  the technical inter- 
action with FIG members, computer 
professionals and academicians in those 
countries, although I’ve heard rumor 
that at least one traveler will forego one 
of the conferences for the sake of cultu- 
ral exchange (could it be shopping?). 
Barring terminal jet lag, you’ll read 
about the conferences-and maybe even 
the shopping-in an upcoming issue. 

If you are one of those who plans to 
stay in terra cognita this year, I hope 
you at least treat yourself to the Forth 
convention and to the FORML confer- 
ence, both in November. The programs 
for both events promise to  deliver dou- 
ble doses of both conventional and 

innovative Forth wisdom. Although it 
will be no substitute for being there, as 
with the journey to  the East, we will 
report as many of the items of interest 
as these pages will allow. 

Meanwhile, back to the issue at hand. 
We are happy to present you with an 
index to  the last volume of Forth 
Dimensions. Write to let us know if you 
find it useful and would like to see other 
volumes indexed in the same way. 

The feature which stands out the 
most, perhaps, is A1 Monroe’s p-code 
interpreter written in Forth. As he 
explains, it is intended to  be both useful 
and educational. We feel it is particu- 
larly appropriate for Pascal program- 
mers to  use as a point of departure into 
the world of Forth. As a note of expla- 
nation to  you style purists, it is inten- 
tionally written in a way to show how 

Pascal code can be mapped onto Forth. 
As an interesting exercise, it coincides 
with a reader’s request in this issue’s 
“Letters to the Editor.” 

We continue looking for simple appli- 
cations to publish in these pages. There 
are few better ways to  appreciate Forth 
than by study of a clear example of 
working code alongside a lucid expla- 
nation with just the right amount of 
detail. We have received some promis- 
ing contributions and look forward to 
receiving many more. It’s always good 
to hear from the FIG membership, so 
keep those letters and articles coming! 

--Marlin Ouverson 
Editor 

ratings of your articles: each receives a 
number equal to the number of times I 
had to read it before I understood it. The 
PL/ I  article, which I give a 10 of 10 for 
insight, also got a 10 for the number of 
times I read it before I understood what 
was going on. I’m at 4 for the equally 
insightful procedural arguments article, 
and counting. 

Sincerely yours, 

Henry J. Fay 
4020 East Road 
Cazenovia, New York 13035 

Mixed INTEGER Review; 
Consistency Constituent 

Dear Sir: 

I read with interest “The Integer Solu- 
tion” by Marc Perkel (Forth Dimensions 
VI/2).  Since it was tagged with a 
FORML label, I felt a discussion of the 
ideas presented was in order. First, his 

idea for two code fields is interesting and 
possibly useful in areas other than INTE- 
GERS. However, his examples and the 
idea of an INTEGER touch directly at the 
core philosophy behind Forth. 

Forth uses postfix notation for most 
of its syntax, with the exception of ’, 
FIND and defining words. Assigning a 
value to an INTEGER is done using prefix 
notation and would be used extensively. 
This would be confusing. Is Forth to be a 
consistent language, or are we to have 
conflicting rules? Do we want to have 
another English (i before e except in 
receipt and a few other places)? 

Mr. Perkel says that he eliminates @ 
and !. He does not. He eliminates @ and 
replaces ! with ->. The gain in brevity is 
only half his claim. Thus, I feel INTEGER 
is not a useful addition to the Forth 
standard because the loss in consistency 
is not offset by the slight gain in source 
code brevity. 

Another complaint I have is that Mr. 
Perkel’s examples are not a comparison 

between INTEGER and VARIABLE but be- 
tween using variables for storage and 
using the stack for storage. The example 
definition for BOX could be written using 
variable storage, and to me would be just 
as readable, even with the addition of the 
@ after the variable name. The definition 
of BOX using the stack will be harder to 
read and understand, as will most any 
other word defined to use the stack for 
data storage. The advantage of using the 
stack is not in having readable code, but 
in having “reentrant” code. Unless a 
solution uses recursion, reentrant code is 
not  needed for  most appl icat ion 
programs. 

The code in Marc’s first figure is not 
an application but a system operation. In 
it, he assumes a system variable (BLK) has 
been redefined as an INTEGER. This is a 
very, very bad idea. Systems words must 
be reentrant if Forth is to be used in a 
multi-tasking or multi-user environment. 
While Mr. Perkel’s system may be single 
user, and he may have no plans to do 
multi-tasking, any Forth system has the 

FORTH Dimensions 6 Volume VI. No 4 



potential for multi-tasking. I sincerely 
believe that this is a strength of the origi- 
nal design of fig-FORTH and is not 
something that should be left out of 
future language definitions. 

The standard definition of BLK is as a 
USER variable. It contains another level 
of indirection via the UP (user pointer) 
that makes it possible for each task or 
user to have a complete set of system 
variables. This is done by the operating 
system when switching tasks and is trans- 
parent to the user. With Mr. Perkel's 
INTEGER BLK, separate users trying to 
access the disk at the same time would 
end up getting the same data, that con- 
tained in the second user's BLK. His defi- 
nition for MORE is easier to read and 
understand, Ijust think the standard BLK 
(with associated @) should be used 
instead. 

A question that I have for the stand- 
ards committee concerns defining words. 
Are they consistent with postfix nota- 
tion? At first glance, it appears they are 
not consistent. However, :, VARIABLE, 
etc. do not get the name from the data 
stack but rather from the input stream. 
This was one of the conceptual problems 
I encountered when learning Forth sev- 
eral years ago. Now the order : newname 
seems natural to me, but should the lan- 
guage definition be changed to eliminate 
an inconsistency in the syntax? This 
could easily be done with a change to 
INTERPRET incorporating a check for a 
defining word after determining a token 
is not in the dictionary and is not a 
number. This solution does not allow for 
defining 5 as a constant with the name 5, 
however, and so has problems of its own. 
I am for keeping the syntax of Forth 
constant with postfix notation but I am 
not clear in my own mind that the defin- 
ing words really constitute a problem. 
What do other people (and especially 
newcomers to Forth) think? 

Sincerely, 

Dr. Ken Butterfield 
2020 - 23rd Street, Apt. C 
Los Alamos, New Mexico 87544 

Editor S note: Your observation that 
Forth5 defining words do not appear 

consistent with postfix notation is a cor- 
rect one. However, no proposed change 
has recevied the required accolades: de- 
tailed discussion will fetch up problems 
of state-smartness, string stacks, bit 
switches and other sleeping dogs, to say 
nothing of the functionality and inertia 
of the present syntax. 

Search for Model 111 Source 

Dear FIG: 

I'm looking for a fig-FORTH or 79- 
Standard system on disk for my TRS-80 
Model 111. Not the C P /  M version, but 
public-domain software with source 
code. I'm operating under MMS- 
FORTH but much of the kernel is not 
with source code and I can't sell the 
system with my own programs. 

I am a FIG member who needs direc- 
tion. Thank you. 

Arthur Wendover 
Box 263 
Isafjordur, Iceland 

P.S. Your Volume VI, Number 1 issue is 
very useful and interesting, especially 
the list handling article. 

r 

PolyF0RTH"II 
the powerful multitasking/ 

multi-user operating system 
is now available for most 

micro-computers running- 

Offers CP/M users: 
0 An ability to run multiple 

0 Unlimited control tasks 
0 Concurrent printer 

These advanced features combine 
with FORTH, Inc.'s powerful ver- 
sion of the FORTH programming 
language to offer CPIM users the 
ideal environment for all interactive 
and real-time applications. 
Featuring speed of operation, shor- 
tened development time, ease of 
implementation and overall cost- 
effective performance, this system 
is fully supported by FORTH, Inc.'s: 
0 Extensive on-line documen- 

0 Complete set of manuals 
0 Programming courses 
0 The FORTH, Inc. hot line 
0 Expert contract programming 

and consulting services 

From FORTH, Inc., the inventors 
of FORTH, serving professional 
programmers for over a decade. 

Also available for other popular 
mini and micro computers. 

For more information contact: 

terminals 

operation 

tation 

FORTH, Inc. 
2309 Pacific Coast Hwy. 
Herrnosa Beach, 
CA 90254 

RCA TELEX: 2751 
€astern Sales Offi 
1300 N .  17th St. 
Arlinoton. VA 22 

2131372-0493 

7031<25-7770 
'CP IM is a registered trademark of Dlgltal Research 

Volume VI, NO. 4 7 FORTH Dimensions 



SUPER FORTH 64" 
By Elliot B Schneider 

TOTAL CONTROL OVER YOUR COMMODORE-64'" 

MAKING PROGRAMMING FAST, FUN AND EASY! 
USING ONLY WORDS 

MORE THAN JUST A LANGUAGE.. . 
A com pie te, f u I I  y-i n tegra ted program development system. 
Home Use, Fast Games, Graphics, Data Acquisition, Business, Music 

Real Time Process Control, Communications, Robotics, Scientific, Artificial Intelligence 

A Powerful Superset of MVPFORTH/FORTH 79 + Ext. for the beginner or professional 

Access all C-64 peripherals including 4040 

0 Single disk drive backup utility 
0 Disk & Cassette based. Disk included 
0 Full disk usage-680 Sectors 
0 Supports all Commodore file types and 

0 Access to 20K RAM underneath ROM 

0 Vectored kernal words 
0 TRACE facility 

DECOMPILER facility 
0 Full String Handling 
0 ASCII error messages 

FLOATING POINT MATH SIN/C05 & SQRT 
0 Conversational user defined Commands 
0 Tutorial examples provided, in extensive 

0 INTERRUPT routines provide easy control 
of hardware timers, &rms and devKes 
USER Support 

0 20 to 600 x faster than Basic SPRITE-EDITOR 
0 1/4 x the programming time 
0 Easy full control of all sound, hi res. drive and EPROM Programmer. 

graphics, color, sprite, plotting line & 
circle 

0 Controllable SPLIT-SCREEN Display 
0 Includes interactive interpreter & compiler 
0 Forth virtual memory 
0 Full cursor Screen Editor 
0 Provision for application program 

distribution without licensing 
0 FORTH equivalent Kernal Routines 
0 Conditional Macro Assembler 
0 Meets all Forth 79 standards+ 

Source screens provided 
0 Compatible with the book "Starting Forth" 

0 Access to all 1/0 ports RS232, IEEE, 

0 ROMABLE code generator 

Forth Virtual disk 

areas 

by Leo Brodie 

including memory 8 interrupts manual 

~ 0 MUSIC-EDITOR 

I 
I J Y  

Q) 
0, m 
3 
0, 

-I 
' a  c 

SUPERFORTH64 

LISP 
LOGO 
C 
PASCAL 

B a C  
FORTRAN 

ASSEMBLER 

SUPER FORTH 6 4 ' c o m p i l e d  code 
becomes more compact than even assembly code! 

1/ 
Proaram Functionality ., 

Ordering Information: Check, Money Order 
(payable to MOUNTAIN VIEW PRESS, INC.), 
VISA, Mastercard, American Express. COD'S 
55.00 extra, No billing or unpaid PO'S. Coli- 
fornia residents add sales tax. Shipping costs 
in US included in price. Foreign orders, pay 
in US funds on US bank, include far handling 
and shipping 510. 

CALL: 
A SUPERIOR PRODUCT (415) 961-4103 
in every way!  At a low 

price of only 
'IEW PRESS IN'* 

P.0. BOX 4656, MT. VIEW, CA 94040 
Dealer for 

Drawer 1776, Fremont, CA 94538 
PARSEC RESEARCH 

AUTHOR INQUIRIES INVITED 

$96 
Free Shipping in U.S.A. 

@ PARSEC RESEARCH (Ertoblirhed 1976) Commodore 64 8 VIC-20 TM of Commodore 

FORTH Dimensions 8 Volume VI, No. 4 



A.J. Monroe 
Los Angeles, California 

In a series of three articles in BYTE 
magazine (September, October, No- 
vember 1978), Kin-Man Chung and 
Herbert Yuen published a “Tiny” Pascal 
compiler (written in North Star BASIC), 
a p-code-to-8080 translator (in the same 
language) and a p-code interpreter writ- 
ten in “Tiny” Pascal. 

The p-code generated by the compiler 
is relocatable and completely transport- 
able, whereas the output of the transla- 
tor is unique to the Intel 8080 microproc- 
essor instruction set (or Intel 8085 or 
Zilog 2-80). Further, since the pub- 
lished interpreter is written in “Tiny” 
Pascal, it can only be utilized with the 
published translator on an 8080-compat- 
ible computer. 

It recently occurred to this writer that 
a p-code interpreter could be easily writ- 
ten in Forth. This would serve two 
purposes. 

First, Forth is currently available on a 
u ide selection of microprocessor types 
at a very reasonable price, through the 
good offices of the Forth Interest Group, 
among others. Such an interpreter 
would, of course, execute considerably 
slower than the translated p-code, but 
this is offset by the fact that this ap- 
proach effectively circumvents the lack 
of an appropriate translator. 

Second, if the interpreter were to be 
written closely following the Chung/ 
Yuen interpreter, it could serve as a 
unique way of introducing those already 
familiar with Pascal to the Forth lan- 
guage. Personally, I have always found 
it easier to learn a language from the 
study of examples: one example in a 
language with which I am already famil- 
iar and another example being the same 
program in the new language. 

I do not mean to imply that the reader 
will find this article to be a tutorial on 
Forth. Anyone who is totally unfamiliar 
with the language will have to do con- 
siderable boning up to fully understand 
the Forth listing; but some explanation 
will be given as we go along, and as a 
result the reader should hope to gain 

some appreciation of the similarities 
and differences between Forth and Pas- 
cal-and incidentally gain a program of 
interim usefulness. In particular, for 
those who already understand Pascal, I 
will wager that the Forth version of the 
interpreter will be surprisingly under- 
standable. 

The caveat “interim usefulness” de- 
serves some elaboration. The only strong 
arguments that this writer has ever heard 
against interpreters are that they are 
“slow compared to compiled code” and 
that they tend to be “memory hogs” in 
the sense that the interpreter and the 
program to be interpreted must reside in 
memory simultaneously-to the detri- 
ment of available programming space. 
Interpreters are not small programs, e.g. 
the Forth interpreter is 5800+ bytes and, 
including this writer’s version of Forth, 
requires very nearly 16K of memory. 

In the present instance, the first objec- 
tion is perhaps the more serious one. 
Consider the Pascal listing in figure one. 
This program writes and reads to abso- 
lute memory the ASCII characters from 
A to the left bracket symbol and outputs 
them to the console. The program gener- 
ates thirty-one p-codes (a total of 124 
bytes). When interpreted, the program 
requires the execution of 555 instruc- 
tions because of the FOR loop con- 
struct. If the program is translated to 
8080 object code (again 124 bytes) and 
executed, it will complete execution in 

somewhat under one second. If the p- 
code is interpreted by the object code 
version of the Chung/ Yuen interpreter, 
execution will be completed in about 
five seconds, i.e. five times slower than 
the execution time of the translated pro- 
gram. If this same p-code is interpreted 
by the interpreter written in Forth, exe- 
cution will require about twenty-three 
seconds, another factor of five in in- 
creased execution time. 

This last execution time is not a 
serious objection if the Forth interpreter 
is being used for debugging purposes, 
but clearly it is not likely to be accepta- 
ble after debugging is completed, espe- 
cially when you know that you can get 
twenty-three times faster execution from 
the object code! As noted above, the 
program is intended primarily as a cross- 
programming example, an aid to  under- 
standing Forth given that the reader is 
already familiar with Pascal. 

Forth and Pascal: 
Some Comparisons 

Figure two lists the Chung/ Yuen inter- 
preter written in Pascal. Figure three 
lists a Forth version which, in terms of 
structure, emulates closely the listing in 
figure two. The chief difference is one of 
syntax and mnemonics. But the casual 
reader who is already familiar with Pas- 
cal should see many points of similarity 
between the two listings. 

VHR I : INTEGER; 
NN : H R R H ’ I ’ C ~ ~ ~  OF INTEGER; 
BEG I N  

I:=@ ?XI 26 DCI 
BEGIN rime I 3 : =I +ca; rwc I 3 : =r i~ r i c  I 3 ; 

WRITEI~Mt4E I 1  3 
END ; 

WRITFi1: 18.. 13:) 
END. 

Figure One 
“Tiny” Pascal program that reads and writes to absolute memory 
locations 



This congruence is not entirely an 
artifice designed by the writer. There 
are, it is true, many significant differen- 
ces in mnemonics and syntax between 
the two languages, but consider the 
similarities: 

Both languages require that variables 
and constants be declared before use. In 
Pascal this is done right up front; in 
Forth any old place in the program will 
suffice, so long as it’s before first usage. 
Both languages are highly structured 
and use similar constructs, such as 
I F  ... THEN ... ELSE ... and BEGIN ... 
END. The use of G O T 0  is impossible in 
Forth and, although not forbidden in 
Pascal, it is frowned upon by the purist 
and is not supported in “Tiny” Pascal in 
any event. 

Rudimentary Forth does not support 
a CASE statement, nor does it have 
ARRAY. But Forth is inherently extensi- 
ble (as opposed to Pascal and most 
other languages) and such constructs 
may, therefore, be added quite easily. 
This is illustrated in the listing of figure 
three in screens 54, 55 and 56. 

Pascal supports “procedures” and “func- 
tions.” Entirely analogous to the Pascal 
procedure, in Forth we have the “word” 
(colon) construct. In fact, everything in 
Forth is a procedure, including the main 
program, which is simply one more 
procedure which invokes all the others 
as needed and is itself just one more 
word in the language. Pascal is very sim- 
ilar in this respect. 

On the other hand, Forth uses postfix 
(reverse Polish) notation, whereas Pas- 
cal and most other languages utilize 
infix notation. This is usually the biggest 
stumbling block to understanding en- 
countered by the newcomer to the lan- 
guage-unless, of course, he cut his 
teeth on an H P  calculator. 

Invoking the name of a variable in 
Forth ordinarily puts the address of that 
variable on the stack, whereas in Pascal 
the current value of the variable is 
placed on the stack. But, if we wish, we 
can alter (extend) Forth to do the same 
as Pascal via the TO-VARIABLE construct 
shown in screen 57. 

Both languages are stack-oriented 
(zero address) languages. 

Figure Two 
P-code interpreter written in “Tiny” Pascal 

On the other hand, there are pro- 
found differences between the two lan- 
guages. A Pascal program must first be 
compiled to be executed. To the con- 
trary, the Forth listing in figure three is 

ters, and also a “compile” mode. Pascal 
is usually compiled, and this writer is 
unaware of any implementation which 
permits an immediate mode of execu- 
tion. 

executable as soon as it has been typed 
into Forth, simply by invoking the proce- 
dure MAIN of screen 67 by typing its 
name. 

Forth supports a native code assem- 
bler so that “code” words can be gener- 
ated and used as simply and naturally as 
words defined by the colon construct. 

Forth supports an “immediate” mode 
of execution as is usual with interpre- 

Three crucial examples of this feature 
are shown in screen 56. Such linkage is 

FORTH Dimensions 10 Volume VI, No. 4 



c -  3C.H # 54 
B c DH. EAKEWS CHSE C:CINSTRCICT MITH A SLIGHT rlocj1~1rH~1nt.4 3 
1 1: SEE FORTH DIMENSIONS VCIL 2 NO. 3 PG 37-40 ) 
2 : CHSE 7C:UMP CSP !C:SP 4 ; IMMEDIHTE 
3 : (OF> OUEH = IF DROP 1 ELSE 8 ENDIF ; 
4 : OF 4 wms C ~ ~ I L E  COF;~ COMPILE BBHHNC:H 

6 : ENDOF 5 w H I w  C:OMPILE BRANCH HERE r3 .- SWHP 2 

Y : ENDCHSE 4 ?PHIUS C ~ ~ I L E  DROP BEGIN SPQ CSP :: B = 

HERE 0 , 5 ; IMMEDIHTE c -8 

CCOMPILEI ENDIF 4 ; IMPlEDIHTE -. 
9 WHILE 2 [COMPILE] ENDIF REPEAT CSP ! ; IMI.1EDIATE 

l r 3  
1 1  : 1- 1 - ; 
12 .-.. 
1 3  
14 
15, --.. 

SCR # 55 
B < <OF, >OF.. HNLr RNb-UF EXTENSIONS TO DR. EAKER.'S CASE ':I 
1 : @:<OF> OVER >. IF  DROP 1 ELSE 0 ENDIF ; 
2 :  <OF 4 :'PHI RS c : O w  I LE 1: <:OF > c c w  I LE @BRANCH 
3 HERE 8 , 5 2 IMMEUIHTE 
4 : <>OF> UlJER c: I F  URCIF 1 ELSE 0 ENOIF ; 
5 : ::.OF 4 wms ~ O ~ I L E  I.: >OF>  PILE 0m:Htm 
6. HERE B , 5 ; IMMEDIATE 
7 : RFINGE >R CIUEF: DUP R:. i +  .: I F  S w r  I -  ::. I F  DROP 1 EL.C;E Ei 
8 ENDIF ELSE DROP UROP 0 ENDIF ; 
9 : HNG-OF 4 WHIRS c : c i r iP IL~  wit.m  PILE OBRH~.KH HERE Q .% 5 ; 
18 IMMEDIHTE 
11 
12 
1 :5 
14 
15 --:> 

Figure Three 
Forth p-code interpreter 

non-existent in Pascal and the majority 
of other high-level languages. The SHR, 
SHL and CALL reserved words of 
"Tiny" Pascal had to be built into the 
compiler, a non-trivial task at best. They 
are simply and directly mechanized as 
code words in Forth, as is illustrated in 
screen 56. 

But it is not the differences between 
Pascal and Forth that were of signifi- 
cance in developing the listing shown in 

figure three. Rather, it is the fact that 
both languages are sufficiently similar in 
construction that the listing in figure 
two could be translated with almost 
one-to-one correspondence into Forth 
constructs, and almost as rapidly as it 
was possible to type! The writer must 
confess that this high degree of corres- 
pondence was not at all self evident at 
the outset. In retrospect, this appears to 
have been largely due to the superficial 
differences in mnemonics. 

The Forth Interpreter 

The Pascal p-code interpreter makes 
extensive use of PROC, CASE and 
ARRAY. PQOC, short for "procedure," 
presents no problems in direct transla- 
tion to Forth. As noted earlier, Forth's 
colon construct is completely analogous 
to the Pascal PROC. However, rudi- 
mentary Forth does not support CASE 
or ARRAY, and they must be added to 
the language if a direct emulation of the 
interpreter is to be achieved. 

A CASE construct is shown in screen 
54 and 55. This particular construct was 
developed by Dr. Eaker and is explained 
in detail in Forth Dimensions (11/3). 
The reader should refer to that excellent 
article for details. Screen 55 is this writ- 
er's augmentation of Dr. Eaker's CASE 
construct. The <OF tests for "less than," 
>OF tests for "greater than" and RNG-OF 
tests for inclusion in the range between 
two integers. These three additions 
should be easy to understand from the 
explanations given in Dr. Eaker's article 
on the earlier CASE constructs. 

There are several ways in which an 
ARRAY construct may be implemented in 
Forth. Screen 59 illustrates one such 
definition. The word ARRAY is used as 
follows: 

size ARRAY array-name 

During compile time, size reserves 
that number of sixteen-bit words with 
index addresses 0 through size-I. At 
execution time, invoking array-name 
will cause the top number on the data 
stack to be interpreted as the index 
address of the word (array element) to 
be accessed in the array. This number is 
first checked to see that it is within the 
valid index address range. If not, an 
error message is output to the console 
and program execution is terminated. 
Otherwise, the absolute memory address 
of the desired array element replaces the 
index address on the top of the data 
stack. To store an item, one types: 

value-to-be-stored index-address array- 
name ! 

To retrieve an element from the array, 
one types: 

4olume VI, No. 4 11 FORTH Dimensions 



Multiuser/Multitasking 
for 8080,280,8066 

Industrial 
Strength 
FORTH 1 1 

TaskFORTH,. 
The First 

Professional Quality 
Full Feature FORTH 

System at a micro price* 

LOADS OF TIME SAVING 
PROFESSIONAL FEATURES: 

Sr Unlimited number of tasks 
Q Multiple thread dictionary, 

fr Novice Programmer 

Sr Diagnostic tools, quick and 

superfast compilation 

Protection PackageTM 

simple debugging 

FORTH-83 compatible 
Sr Screen and serial editor, 

easy program generation 
Sr Hierarchical file system with 

data base management 

0 Sti,Xlng FOPTt-i, WATH-79, 

Staner packaoe $250 FuY packaoe 5395 Smgle 
user and cornrnerclel lrenses available 

If you are an experienced 
FORTH programmer, this is the 
one you have been waiting for! 
If you are a beginning FORTH 
programmer, this will get you 
started right, and quickly too! 

Available on 8 inch disk 
under CPlM 2.2 or greater 

also 
various 5%" formats 

and other operating systems 

FULLY WARRANTIED, 
DOCUMENTED AND 

SUPPORTED 

DEALER 
, INQUIRES VIU' 

. . IHVlTED 1' 

Shaw Laboratories, Ltd. 
24301 Southland Drive, #216 

Hayward, California 94545 
(415) 276-5953 

c;r:v 1) x.7 

8 C CODE WORD RSHFT, SHR, FIND TO-UHF? > 
2 L H NCNJ RHR H L MOlJ H PUSH NEXT JMP 
I CODE RSHFT H Pcir H :wi H H MO~J RHR fi H iw.! 

4 : SHR 0 DO RSHFT LOUP ; 
5 
i. C DEFINITION C F  BHRTHOLDI'S TO-WHR > 
7 C SEE FORTH OIMENSIONS l.lOL 1 NO. 4 PG 38-40 :j 
9 8 UHKIHBLE :*;TO : TO 1 :.;TO ! J 
9 
18 : TO-IIHR .:BUILDS HERE 2 HLLOT ! 
1 1  DOES> :<TO 3% I F  ! 8 :*:TO ! ELSE 1% ENDIF ; 
12 
13 
14 
1 5  --> 

- 

SCR # 58 
8 C CODE WORD C:HLL > 
1 CODE CFLL C HBSOLUTE MEMrJR?.Y CALL TO 0B.J C:ODE ROCITINE :) 
2 C SHIJE THE FORTH INSTR. PNTR I N  THE DICTIONHRY :j 
3 I '  L MOV I H NOlJ HERE 6 + SHLD 
4 HERE 5 + .JMP 1: JUMP OVER THE STORE LOCATION > 
5 0 H WI c THI s IS STORE LCICATION SHVED PA' I>cirtriv INSTR. 
i. H rw < GET THE HDDRESS TO BE CHLLED > 
7 HERE 4 + SHLD 8: PUT HDDR INTO CHLL IN5TR. > 
8 B CHLL I: DUMMV CHLL FILLED BV HBOI.!E :) 
9 < CIBJ LNG RTN WILL RETURN HERE > 
18 < NOW RSTR FORTH INSTR. PNTR :j 
1 1  HERE 9 - LHLD H PUSH I POP 
12 NEXT JMP I RETLIRN TO FCIRTH > 
13 
1 4  
15 --> 

SCR # 5% 
8 8: DEFINITION OF HRRHV :I 
1 : ERRFI . " WRH'U' INDEX EHROR " . C:R 1.8 1 - 8 
2 . I' HRRHY 1N.IDE:I RHNGE = " . . " " . ICR QUIT ; 

4 2 h 1: # OF B'T'lES TO HLLOT :j 
3 : ARRHV .:BUILDS DUP .. 1: Ijur SIZE *$: ~HI..!E I t.4 mmri FIELD > 
5 HERE I CIJRRENT DP 1) 
6 2DUP + 2+ 1: UPPER L I M I T  OF DO LOOP 
7 s u w  DO 8 I ! 2 +xior t: C:LEHR THE HRRHIV :) 
3 HLLOT 1; HESERIJE D I t:T I UNHRV SPAC:E :j 
9 DOES:, 2DUP @ .: C TEST FOR LIPPER HRRAV L I M I T  ':, 

18 IF S w w  DUP -1 ;: 1: TEST FOR LOWER LIMIT :j 
1 1  I F  2 h + 2+ C SET HRRHV HD[R lClt.4 C.THIX 1 
12 ELSE ERRH ENUlF ELSE SlrlHP EHHH EIKSIF ; 
, -. 1 .3 

14 
15 --:; 

18 76 B MN ! 
11 92 5 MN ! 
12 84 18 MN 
13 73 15 MN 

15 83 25 MN 
14 SEI 20 rw 

FORTH Dimensions 12 Volume VI, No. 4 



SCR # 61 
8 C TERMINHL INPUT FOR PASCHL INTEEPRETER :.) 

2 : M)CHH BEGIN 35 PQ 2 HND UNTIL 34 Pi% 127 FIND ; 
3 : &!C:HR BEGIN 35 PQ! 1 HND UNTIL 34  P! ; 
4 : RDDEC 0 DUP DUP TO EXIT TO SGN BEG I N  RDCHR D I P  IJRC:HR S I P  
5 CHSE 13 OF 1 TO EXIT ENDOF 
6 4 8  57 RNG-OF 48  - SbW' 16 :* + ENDOF 

1 : ERRD CH . " SWTAX ERROR " CR DROP ; i3 TO-IJAF SEN 

45 OF SGN i3 = I F  TO SGN ELSE ERRD ENDIF - 
8 ENDCIF ERRD ENUC:HSE EXIT IJNTIL D R w  CR 
9 SGN B > IF riwus ENDIF ; 
18 : RDHEX 0 MIP TO EXIT BEGIN RDCHR DIJP IAIRC:HF( DIJP 
11 CHSE 13 OF 1 TO EXIT EHDOF 
12 48  57 RNG-OF 4% - SlilFiP 16 * + ENDOF 
13 65 78 RNG-OF 55 - SldAP 16 * + ENDOF 
14 ERRD 
15 ENDCHSE EXIT IJNTIL DROP CR --> 

SCR # 62 
8 8: SBHSE AND I N I T  FOR PHSCHL INTEPPPElEP 1 

1 : SBHSE B TO B1 BEGIN LEU WHILE 81 5 1s TO B1 
2 LEI..! 1- TO LEV 
3 REPEAT 
4 B1 TO BHSER ; 
5 : I N I T  0 TO T 8 TO P 1 TO B 6 TO STClP B 1 5 ' B 2 5 
6 -1 3 S ! 0 TO Pi3 U TO TP 1.3 TO K I-! i3 

8 
9 : <= I +  < ; : >= 1- >. ; : q:::. = I F  B ELSE 1 Et4[+IF ; 

DO -1 I TRHCE ! LOOP ; - 
18 : T-1 T 1- TO T ; : T+1 T I+ TO T ; 
1 1  : NOT 8= I F  1 ELSE 8 ENDIF ; 
12 
13 
14 --> 

I "E 7 &GINt4ING OF EXEC FOR PHSCHL INTERPRETER 1) 
1 : S<T> T S B : : SCT+l> T I +  S 18 : 
2 : SCT>= T S ! ; 
3 : EXEC P 2 SHL Z + TO X X 3 + C:Q 8 SHL 

I 4  X 2+ Cd + TO H TP 1+ TU TP TP !..I 1- >, I F  8 TO TP ENDTF 
5 
6 

8 
9 
10 
1 1  
12 
13 
14 
15 

- r TP TRHCE ! P I+ DUP TO P TO PB K I +  TO F: 
X CQ! TO F F 8 <= I F  # TO 1U:I ELSE 1 TO I D X  F 16 - TO F 
ENDIF F 

CRSE 8 OF T+1 H Sl:T>= ENDOF 
1 OF H 

CHSE 8 OF B 1- TO T T 2+ S I TO B 
T 3 + S 8% TO P ENDOF 

1 OF SIT> ST:,= ENDOF 
2 OF T-1 S(T> S I T + l >  + Si:T>= ENDOF 
3 CIF T-1 S<T> SCT+1> - SCT)= ENDCIF 
4 W T-1 SCT) S (T+ l>  :* SCT>= Et.IDOF -- >. 

SCR # 64 
8 8: EXEC 
1 
2 
3 
4 
5 
6 

8 
9 
18 
11  
12 
13 
14 
15 

- 

ENDOF 
ENC'OF 
ENC:OF 
ENDOF 
ENDOF 
ENDOF 
ENDOF 
ENDOF 
ENDOF 

ENDOF 

ENDOF 
EkICOF 
ENDOF 

.-'. 

index-address array-name @ 

In order to make the one-to-one cor- 
respondence between figures two and 
three more evident, we have defined the 
words S(T), S(T+l) and S(T)= on screen 63. 
S(T) retrieves the Tth array element of 
array S and places it upon the top of the 
data stack. Similarly, S(T+l) retrieves the 
T+lst  array element and S(T)= stores the 
data word from the top of the stack into 
the Tth element. For example, the code 
sequence 

sets the Tth element of array S to the 
sum of itself and the T+lst element. 

As mentioned earlier, Bartholdi's TO 
construct (screen 57) is used to  place the 
value of a variable on the stack when its 
name is invoked. To store a value into 
the variable, one types: 

value TO variable-name 

For example, A TO P puts the value of 
variable A on top of the stack and then 
stores it into variable P. 

In the Pascal listing in figure two, 
array MN is used to  store the mnemon- 
ics of the opcodes which are read from 
memory. In the Forth listing, these 
mnemonics are simply stored directly 
into the M N  array (screen 60). This 
could, of course, have been done in Pas- 
cal as well. 

The "Tiny" Pascal reserved words 
SHR, SHL and CALL are not normally 
a part of Forth syntax. They can be 
directly implemented using the Forth 
CODE words shown in screens 56 and 57. 

The READ and WRITE constructs 
of Pascal are emulated in figure three as 
RDCHR, WRCHR, RDDEC and RDHEX. 
RDCHR reads an ASCII character from 
the console and places it on the stack, 
and WRCHR takes an ASCII character 
off the stack and writes it to the console. 
These words are defined in screen 61. In 
the writer's system, the input/output 
flag port is 35. If bit one of this port is 
set, the port is ready to  accept an output. 
If bit two is set, the port has a character 
ready to be input. The data port is 34. 

Volume VI, No. 4 13 FORTH Dimensions 



e be k V i  n A\ n i ne c 
Combinatibr 

The 
EMS M68K 

and 
4xFORT H" 

Features 
5 o r  I 0  MHr 68000 CPU 

* 128K RAM and Disk Controller 
* 7 Level Vectored Interrupts 

2-RS232C Serial  Po r t s  
16 Bit Paral le l  1/0 Por t  

* 5-1 6 B i t  Counter/Timers 
* Peripheral Expansion Bus 

4xFORTH ROM based Operatin! 
System which includes 
'83 Standard Forth w i t h  
32 B i t  Variables and Stack 

8 68000 Assembler w i t h  
Opcode /Mode Er ro r  Checkinc 

8 Dynamically Changable Disk 
and RAM Disk 
Full Screen Editor 
Terminal Independence 
Networking Facil it ies 
Clock Queues 

9 4 9 5  Headered , 350 Header- 
less Definitions and 

8 Much y r e  including 
8 Speed 

The M68K and 4xFORTH r u n  thi 
Sieve o f  Eratosthanes * 1 0 in 
9.6 seconds (7.5 sec w i t h  the 
optional Forth Accelerator 9 

IEAW, Ilnc, 
P. 0 .  Box 16115 
lrvine CA 92713 
7 1 4 /854-8545 

and 

h e  Droqon Group 
148 Poca Fork Road 
Elkviev, V V  25071 

304 4965-551 7 

lxFORTH and For th Accelerator 
are Trademarks o f  

The Dragon Group, Inc. 

'39TH Dimensions 

SCH # 65 
8 C EEEC CONTINLIED > 
1 211 OF S<T> 1- SIT)=  
2 21 OF T + l  T 1- S 1% S*:T>= ENDOF 

4 ENVCHSE 1: OF A > ENDOF 

6 ELSE IDX I F  H S i T )  + TO H ENDIF T I+ ID).: - 

8 
9 3 OF X 1+ Cd DClP TO L 255 = I F  S*ZT> T 1- S 1% C !  T 2 - TO T 

ENDOF 

3 . 18 ILLEGHL om"  CR 1 TO STOP 

5 2 UF x I+ cc c w  TO L 255 = IF s~:T> CI SIT>= 

TO T L TO LEIS SBHSE RHSER H + 5 @ Sl:T>= - 
ENDIF ENDOF 

111 ELSE ID).: I F  T 1- 5 d H + TO H ENDIF 
11 L TO LEI.) ZiRHSE PRSER H + 5,T? 
12 ShlHP S ! T 1- IDX - TO T 
1 3  END I F  ENDOF 
14 4 OF X 1+ CQ DUP TO L 255 = I F  Sl:T> CHLL T-1 
15 ELSE L TO LElJ SBHSE BRSER T I +  S ! P T 2+ 5 ! --I> 

SCF! # el6 
11 8: EXEC CONTINUED > 
1 r T 3 + s ! T I +  TO B H TO r ENDIF ENDOF 
.-, 
L 

3 5 OF T SIZE1 H - > 
4 IF  . " STAGE OERFLOIJ " CR 1 TO STOP 
5 ELSE T H + TO T ENDIF ENDOF 

7 7 CIF X 1+ Cd SCT> = 
8 I F  H TO P ENDIF T-1 ENDOF 
9 8 OF H CHSE 

18 U OF T+1 RDC:HR Sl:T)= ENDOF 
11 1 OF S I T >  WRC:HR T-1 ENDOF 
12 2 OF T+1 RDDEC S(T:)= ENDOF 
13 3 OF S(T> WROHR T-1 ENDOF 
14 4 OF T+ l  RWEX Sr'T>= ENWF 
15 5 OF 5CT> .4H T-1 ENDOF -->. 

6 6 CIF H TO r ENDCIF 

SCR # 67 
11 3: EXEC: CONTINUED > 
1 8 OF T OCIP S I T )  - 
2 [)El I S I WRCHR LOOP T S<T> - 1- TO T ENDOF 
3 ." ILLEGHL C5P " CR 1 TO STOP 
4 ENDCHSE 1': OF H 1) ENDOF 
5 . " ILLEGHL OPCODE " Ci? 1 TO STOP 
6. ENDC:HSE 8: OF F d ENC' OF EXEC: 1) ; - 
8 
9 

18 
1 1 8 TO-UHF: I D  
12 .- 

14 Volume VI, No. 4 



SCF: # 70 
8 1: \..MAIN'. CCINTIHCIED > 
1 RDDEC: BP 1- BREAK ! CR ENDIF ENDOF 
2 ' C '  OF 8 TO BP CR ENVOF 
3 .'Y.' OF BP 8 >. I F  BP 8 DO . " " I BREHK d . CR L..OOP Et4DI F 
4 ENDOF 
5 . RDDEC VUP TO P8 TCi PC PC:ODE ENDOF 
6 'U' OF PB 0 > I F  PO 1- DUP TO P(3 TO PC PC:ODE ENDIF ENDOF 
7 'N' OF PO I+ Dur TO re TO r c  PCCIDE ENDOF 
8 .'Q' OF -1 TO r ENDOF - 
9 . " UNRECOGNIZED CUPWlHNU " C:R 

.'E/ OF . ) I  7, I8 

18 ENDCASE < OF C:MD> 

12 CR C: . ." INSTRUCTIONS EXECUTED " CR ; 
13 
14 
15 

1 1  r 8 < UNTIL 

RDDEC accepts a decimal number from 
the console as input to the stack, using 
RDCHR. Similarly, RDHEX accepts a hex- 
adecimal number. As in any language, 
these routines are hardware dependent 
and must be modified by the reader to 
suit his system. 

The procedure SBASE (screen 66) is 
used in lieu of the Pascal function 
BASE. The colon definitions INIT (screen 
62), EXEC (screens 63 through 67), PCODE 
(screen 68) and CKBP (screen 68) are 
direct translations of their Pascal coun- 
terparts. MAIN (screen 69 and 70) is the 
super-procedure in Forth which emu- 
lates the MAIN body of the Pascal list- 
ing. Finally, the names of the variables 
have been kept pretty much the same to 
facilitate comparison of the listings. 
They are declared in screen 60. 

Using the Forth P-Code Interpreter 

The Forth interpreter is self contained. 
Unlike the Pascal interpreter, it requires 
no explicit run-time support package, 
since it is completely embedded in, and 
supported by, Forth. Note, however, 

that one could reduce Forth to the min- 
imum kernel required to run this inter- 
preter. This residue would then be en- 
tirely analogous to the Pascal run-time 
support package. 

In this writer's system, Forth occupies 
memory from 2DOOH to 9000H and is 
supported by the North Star DOS lo- 
cated at 2000H up to 2AOOH. Since the 
p-code to be interpreted is totally relo- 
catable, it may be loaded anywhere 
below 2000H or above 9000H in the writ- 
er's system. Note that for a Pascal sys- 
tem which writes to  memory, as does 
that in figure one, precautions must be 
taken to avoid writing over the p-code 
itself or into the region of DOS or 
Forth. 

To invoke the interpreter once it has 
been typed into Forth, simply type MAIN. 
From there on, the interpreter behaves 
exactly like the Pascal version. Figure 
four is a partial example of its use on the 
p-code generated from the program in 
figure one. The reader should refer to 
the original BYTE,magazine articles for 
further details on use of the interpreter. 

MicroMotion 

MasterFORTH 
It's here- the nextgenera- 
tion of MicroMotion Forth. 

0 Meets all provisions, extensions and 
experimental proposals of the FORTE- 
83 International Standard. 
Uses the host operating system file 
structure(APPLE D O S  3.3 & CP/M 2.x). 

0 Built-in micrwssembler with numeric 
local labels. 

0 A full screen editor is provided which 
includes 16 x 64 format, can push & 
pop more than one line, user defim 
able controls, upper/iower case key- 
b a r d  entry, A COW utility moves 
screens within & between lines, line 
stack, redefinable control keys, and 
search & replace commands. 

includes all file primitives described 
in Kernigan and Plauger's Software 
Tools. 

0 Theeditor. assemblerandscreencopy 
utilities are provided as relocatabie 
object modules. They are brought 
into the dictionary on demand and 
may be released with a single com- 
mand. 

0 Many key nucleus commands are 
vectored. Emorhandling, numberpor- 
sing, keybard translation and so on 
can be redefined as needed by user 
programs. They are automatically re- 
turned to their previous definitions 
when the program is forgotten. 

0 The string-handling package is the 
finest and most complete available. 

0 A listing of the nucleus is provided as 
port of the documentatior 

0 The language implementation ex- 
actly matches the one described in 
MASTERING FORTH, by Anderson & 
Tracy. This 200 Page tutorial and re- 
ference manual is included with 
MasterFORTH. 

0 The input and output streams are 
fully redirectable. 

0 Floating Point & HiRES options avail- 
able. 

0 Available for APPLE li/ll+/iie & CP/M 
2.x users. 

0 MasterFORTH - $100.00. FP & HIRES- 
$40.00 each 

0 Publications 

- 

MASTERiNG FORTH - $20.00 
0 83 international Standard- $15.00 
0 FORTH-63 Source Listing 6502, 

2-60.8086 - $20.00 each. 

Volume VI, NO. 4 15 FORTH Dimensions 



Ilntroducing 
32 b i t  Single Board 

Super flicro 
w i t h  

4xFORTH" 

reat u re3 
I Mounts Direct ly on 5 1 /4"  

I 8 MHz 32 b i t  68008 mic ro  
I 1 28K on Board RAM 
I 2-8bi t  Paral le l  Po r t s  
I 2-RS-232 Ser ia l  Por ts  
I Floppy Disk Controller f o r  up 

t o f o u r 5  1 / 4 . 3  1 / 2 , 3  114, 
o r  3" Disk Dr ives 

t 4xFORTH ROM based Operatins 
System which includes 
rn 83 Standard For th  w i t h  
32 B i t  Variables and Stack 

rn Full Screen Editor 
rn Er ro r  Checking Assembler 

Terminal Independence 
rn Networking Facil it ies 
rn Dynamically Changeable Disk 

and RAM Disk 
rn Clock Queues 

4 9 5  Headered, 350 Header- 
less Definitions and 

rn Much, Much More 

Disk Dr i ve  

A Realtime Tool 
f o r  

Professional 
Programmers 

I€meraId 
Computers 
4 0 0 0  S.E. International Way 

Suite F203 
Milwaukie, Oregon 97222 

503 1654-9666 

and 

rhe Drclqon Group 
1 4 8  Poca Fork Road 

Elkview, West Virginia 25071 
304 /965-55 1 7 

4xFORTH is a Trademark o f  
I The Dragon Group,lnc. 

@ 1984, by TDG,Inc. 5 mi lil 
FORTH Dimensions 16 Volume VI, No 4 



1:BEGIN WHITECSCTl>;T:=T-l END: .OUT CHHR.,' 
2:BECiIN T:=T+l;REHUCSCTl#> END; *"IN NUMBER,' 
3: BEGIN WRITECSCTl#> ;T: =T-1 END; *XUT NUMBER,,' 
4:BEGIN T:=T+l:REHU(SCTl> END; **'IN HEX'  
5: BEGIN WRITECSCTl> :T: =7'-1 END: 4 U T  HEX,." 
8: BEGIN ."OUT STRING**' 

FUR IDX: =T-SCTl TO T-1 ljcl IdRITECSC I D X I > ;  
T:=T-SCTI-l END 

ELSE BEG I N WRI TEC .' I LLEGHL csr .' > ; CRLF : STUP : =: 1 E t m  
END KRSE OF H*' 

ELSE BEGIN WHITEC' ILLEGHL WC:UDE'>:CRLF;STrJP: -1 EtJD 
END *'CFiSE Cff F/  

END *'EXEC/; 
PROC CODEI:PC>; *'PRINT CODE,,' 

UW XINI IDX: INTEGER: 
BEGIN X:=PC SHL 2+P;N:=MEMCXl*3; 
IF  N<=24 THEN IDS:=' .'. 
ELSE BEGIN N: =N-48; IDX: ='X.' END: 
WRITEC " .', PC#, ' .' MNCNI , MNC N+ l I ,  MNC N+ZI.- IDX.. ." .' > 

NEM C X+ 1 1 # .' .' , ' , MEMC X+3 1 SHL. 8 tMEM C X+2 1 # > : CRLF 
END *'CODE**' ; 

PROC CKKP ; KHFCk.' HRFHK PI7 T t4T,*. 
W I : INTFtFW.: 
BEGIN I F  P(M THFN %TfiP:=l 

b ELSE BEGTN 
FUR I:=l Tri  RP Wl 

I F  BREHKC13=P THFN RFG'IN 
WRITE<.- RRFAK .') :I-:RT~FCP) : 

STrJP:=l FND FND 
END *'CKBP**': 

BEG 1 N 4 l H I  N**' 
FOR I:=@ TO 36 nn 

WRITE C .'HDDR?' ? ;REHD L: P > ;CRLF: 
INIT;CCKEL:P>;RP:=n: 
REPEHT WF!ITEI:'>") :HFRr>CCMD>; 

M" I 3 : =MEMC I + I  FR07 ; /'MNEMONI CS HRE I N  MEMrJRV-*' 

CFlSE CMD OF 
"R': BEGIN STOP: =@:RFPFRT EXET::T:ERP lMTJL STOP END; 
'S' : BEG 1 N EXEC ; CCOE C P > END ; 
' X' : BEG1 N 

WRITEC' r=.',P#.- .+ B=.',B#.. .* T=. .$TI, 
'' SC T I = ' ,  S I T  l# I .' 5 C T- 1 3=.' ., lir T-1 I # >  ;CRLF 

END ; 
'G.': BEGIN 1NIT;REPEHT EXEC:CKRP U N T I L  STOP END; 
'T':BEGIN WRITEC' *TRHC:En'> ,:r:RLF.: 

FOR I : =B TO U OrJ BEG1 N 
TP: =TP+1 ;IF TP>U THEN TP: =@; 
I F  TRHCECTPI>=Q THEN C:ODECTRRCECTPl> ENCI 

END: 
'K.' : BEG I N  REHDi: I # >  : 

FUR J:=I TO 1+6 DCI 

for the 

Commodore 64 
Now the best for less 

$69.95 

0 C64-F0RTH/7gTM integrated 
professional development 
environment. 

0 See our reviews in INFO 64, 
MIDNIGHT, and NY CBMUG. C64- 
FORTH/79 is Commodore Approved. 
High performance 2D graphics 
extension including HRES multicolor 
line, circles, scaling, windowing, HRES 
character graphics, sprites, ram 
characters, 10 demo screens and 
more. 

0 Complete CBM compatible floating 
point package includes arithmetic, 
relational, SIN/COS, SQR, and more. 

0 Professional, 21 command, cursor 
screen editor with virtual memory, 
conditional macro assembler, and 
debug-decompiler facility. 
String extension for easy string 
processin?. , 

0 Compatib e with CBM peripherals, 
popular third party peripherals and 
C64 operating setup/memory 
configurations. 

0 Easy to use 167 age manual written 
for the serious Forth rogrammer with 
many examples, appfcation screens, 
detailed command glossaries and 
compatible with "Going Forth", or 
"Discover Forth." 

compiles bootable turnkey 
application programs for royality free 
distribution. 

0 "SAVE TURNKEY" automatically 

(Commodore 64and CBMare trademarkrof Commodore) 

TO ORDER 
- Check, money order, bank card. 

- Add $4.00 postage and handling in 

- Mass. orders add 5% sales tax. 
- Forei n orders add 20% shipping and 

- Dealer and Club Inquiries welcome. 

COD'S add $1.65. 

USA i? Canada. 

handang. 

PERFORMANCE 
M I C R O  

PRODUCTS 
P.O. Box 370 

Canton, M A  02120 
(617) 828-1209 

Volume VI. No. 4 17 FORTH Dimensions 



MFfIt-4 
P-OWE STHRT HUDRESS I N  HEX? 68r30 

Figure Four 
Example use of interpreter 

18 Volume VI, NO. 4 



Recursion 
Michael Hum 

Sunta Cruz, California 

A recursive definition uses in the defi- 
nition itself the idea being defined. For 
example, consider the definition of the 
mathematical operator ! (pronounced 
“factorial”); the definition is usually stat- 
ed by defining the general term n! (“n 
factorial”): 

n! = 1 i f n = 1  
= n * (n-I)! i f n > 1  

Although recursive definitions look 
circular, they are not, for the implied 
procedure does not lead to an infinite 
regression. Recursive definitions consist 
of two parts: in one part, theactual result 
is given for a specific value; in the other 
part-the recursive part-the idea being 
defined is used, but for a term smaller 
than the original term. This diminution 
of terms ultimately leads to the specific 
value defined in the first part. 

In the example above, each applica- 
tion of the procedure gives a factorial 
number smaller (by one) than the number 
before; this ultimately leads to I!, for 
which the definition provides the actual 
value. To see how the procedure works, 
use the definition to derive 4!: 

4! = 4 * 3! from the definition 
applying the defini- 
tion to 3! 
applying the defini- 
tion to 2! 
since I!= 1 

= 4 * 3 * 2! 

= 4 * 3 * 2 * I! 

4 * 3 * 2 * 1 
= 24 multiplying 

Recursive definitions are succinct and 
also imply an operational algorithm. 
Some computer languages (notably 
LISP) make extensive use of recursion. 
Forth can also use recursion, but first it 
must address the problem of a definition 
using itself. 

For an example, consider the problem 
of finding the greatest common divisor 
(gcd) of two positive integers-that is, 
the greatest integer that divides evenly 
into both of them, with no remainder. 

The gcd of 8 and 9 is 1; the gcd of 8 and 12 
is 4; and the gcd of 8 and 24 is 8. 

Euclid long ago discovered that the 
gcd of two numbers-call them a and 
b-is also the gcd of b and a mod b. This 
reduces the problem of finding the gcd of 
two numbers to one of finding the gcd of 
two smaller numbers. 

Moreover, the gcd of any positive 
integer and zero is the integer: for exam- 
ple, the largest integer that goes into 9 
and 0 is 9, since every integer divides 
evenly into zero. 

We thus can offer a recursive defini- 
tion of the greatest common divisor of 
two nonnegative integers, a and b: 

GCD (a,b)= a i f b = O  
= G C D ( b , a m o d b )  i f b > 0  

This definition is easily translated into 
a Forth definition: 

: GCD ( a b --- gcd)?DUP IF DUP ROT ROT 
UMOD GCD THEN ; 

The ?DUP checks to see whether b is 
already zero; if it is, then we are done: the 
greatest common divisor is a, and it is left 
alone on the stack when the IF eats the 
(unduplicated) zero (namely b) and con- 
trol passes over the IF THEN clause. 

If b is not zero, it is necessary only to 
execute UMOD, since we then shall have a 
mod b left on the stack. But we need to 
keep b around for the next step, and 
UMOD will use up the only copy, so it is 
first necessary to DUP b. After the DUP 
the stack is out of order, but ROT ROT 
straightens it up so that everything is 
ready for UMOD-and after UMOD exe- 
cutes, the stack contains only the two 
numbers b and a mod b, with the latter 
on top of the stack. 

Note in passing that SWAP OVER more 
efficiently accomplishes the same things 
as DUP ROT ROT; for this reason SWAP 
OVER is used in the definition below. 
Some Forths achieve the same results 
with a single (though nonstandard) word 
TUCK. 

The definition tells us that the gcd of b 
and a mod b will also be the gcd of the 
original pair (a and b). Since the two 

numbers on the top of the stack are 
exactly the two numbers we need and 
they are, moreover, in the right order, we 
need only to execute GCD again. 

Here, unfortunately, a problem arises. 
If we try to enter the above definition, 
the Forth compiler will stop, confounded, 
with a message something like “? GCD.” 
Since we are still in the middle of the 
definition, GCD is not found in the dic- 
tionary search. 

The compiler very properly doesn’t 
use the current definition: since Forth 
allows words to be redefined, the com- 
piler should look for a previous defini- 
tion for any word used in the current 
definition. Some mechanism must be 
used to ignore the current name in a 
dictionary search. In fig-FORTH, a bit 
(the “smudge” bit) is set in the header of 
the word currently being defined; this bit 
tells -FIND to ignore this word. The bit is 
toggled by ; when the definition is com- 
plete, and the word then can be found on 
subsequent dictionary searches. 

But here we do want the current 
word’s compilation address plugged into 
the definition sequence. Recall the struc- 
ture of a Forth definition, using GCD as 
an example and letting “ac” stand for 
“compilation address” (see figure one). 

Except for IF, which sets up a branch, 
the body of the definition consists of the 
compilation addresses of the words used. 
What we want to have in place at “x” is 
the compilation address of GCD itself, so 
that GCD will execute. Is there any way to 
get that address? 

Many Forths include the word LATEST, 
which puts on the stack the address of 
the name field of the most recent defini- 
tion. Some use the word LAST. LAST (or 
LATEST) can instead be a variable that 
contains the name field address of the 
most recent definition; in that case, you 
need the sequence LAST@ to get the name 
field address itself on the stack. 

The address of the name field must 
then be converted to the compilation 
address-for example, in fig-FORTH 
the sequence PFACFA will do thejob: PFA 
converts the address of the name field to 
the address of the parameter field, and 

Volume VI, No. 4 19 FORTH Dimensions 



CFA converts the address of the parame- 
ter field to the address of the code field, 
which in fig-FORTH is the compilation 
address. (There is no word to go directly 
from the name field address to the code 
field address.) Once the address of the 
code field is on the stack, one can use, to 
store it into the dictionary. The defini- 
tion we have arrived at is often named 
MYSELF, although the 83-Standard pro- 
vides the name RECURSE. In fig-FORTH, 
this definition, thus, is: 

: MYSELF LATEST 
PFA CFA , ; IMMEDIATE 

The sole remaining consideration is 
that MYSELF must be made immediate, as 
shown above. That is, we don’t want 
MYSELF‘S compilation address to be 
stored in GCD; instead, we want MYSELF- 
to execute during compilation of GCD so 
that MYSELF will pick up GCD’S name 
field address, convert it to GCD’S code 
field address, and put that address into 
the definition. And that is exactly what 
IMMEDIATE words do: they execute at 
once, even during compilation (when 
normal words are merely compiled for 
later execution). 

With MYSELF, we can rewrite the defi- 
nition of GCD: 

: GCD ( a b -- gcd ) ?DUP IF SWAP OVER 
UMOD MYSELF THEN ; 

Charles Moore has suggested a differ- 
ent approach, using a word he named 
RECURSIVE, which enables the current 
word to be found. In fig-FORTH, for 
example, RECURSIVE would simply clear 
the smudge bit. The definition can then 
use its own name to store its compilation 
address in the definition, as: 

: GCD RECURSIVE ?DUP IF SWAP OVER 
UMOD GCD THEN; 

Note that ; must now clear (rather than 
toggle) the smudge bit when the defini- 
tion is complete. If the bit was already 
cleared by RECURSIVE, clearing the cleared 
bit is simply a null operation, whereas a 
toggle would reset the bit and make the 
definition effectively vanish. 

Assignment for the Reader 

0. Figure out how to write a version of 
MYSELF in the Forth you use. (Check first 
to see if it already has MYSELF or RE- 
CURSE.) As indicated above, you want to 
obtain somehow the compilation address 
of the word being defined and during 
compilation store it into the dictionary at 
the appropriate spot. The compilation 
address is usually (though not always) 
the address of the code field. 

1 .  Use your version of MYSELF to write a 
recursive Forth definition of FACTORIAL 
which will replace the top of the stack 
with its factorial value. 

2. Use a BEGIN UNTIL structure to write a 
nonrecursive definition of GCD: that is, 
explicitly test the value of the remainder 
at each step. (Recursive definitions are 
often not the most efficient approach in 
terms of machine resources.) 

3. Write a nonrecursive definition of 
FACTORIAL. 

4. Is RECURSIVE immediate? Explain why 
or why not. 

Copyright @ 1984 by Michael Ham. 
All rights reserved. 

Figure One I 
FORTH Oimensions 20 Volume VI. No. 4 



SELECTED 
PUBLICATIONS 

The FORTH Interest Group Order Form (on the reverse side of this page) has 5 newly added publications 
selected by the FIG Publications Committee: 

Bibliography of Forth References, 2nd Edition 
Journal of Forth Applications and Research, V. 2, #1 

Mastering Forth 
1984 Rochester Proceedings 
1983 FORML Proceedings 

Here are brief descriptions of 2 of them: 

A Bibliograpiy of Forth References 
Second Edition, September 1984 

Thea Martin. editor 

The second edition of A Bibliography 
has over 1300 references to Forth 
related papers, books, and articles, 
from the US and abroad. Indexed by 
subject and author, A Bibliography 
also classifies references into relative 
levels - introductory, intermediate, 
or advanced. This year, complete 
publisher information has been 
added, and the subject index has 
been expanded 

A Bibliography of Forth References 
was compiled as a service to the 
Forth community by The Institute for 
Applied Forth Research. Forth users 
around the world have contributed 
references to work in many countries 
and languages, from the early 
astronomy papers to the latest 
Japanese Forth Computer project. 

William F. Ragsdale has called A 
Bibliography of Forth References "an 
invaluable aid", which "should be part 
of the library of any serious Forth 
user." 

MASTERING FORTH 
by Anderson and Tracy 

A step-by-step tutorial to the high 
level, stack oriented Forth computer 
language. Formerly entitled FORTH 
TOOLS, this unique guide introduces 
you to each of the commands required 
by the Forth 83 International Standard 
- the preferred dialect of the Forth 
Interest Group. This book also 
includes utilities and extensions that 
can be written within the standard. 

Because forth is an interactive 
language, this book is ideal for use 
while sitting at the computer. Inside 
you will find complete discussions on: 

stack manipulation 

0 variables 

loops 

strings 

0 compiling words 

0 defining words ... and more. 

Volume VI, No. 4 21 FORTH Dimensions 



MAIL ORDER FORM 
NAME 
COMPANY 
STREET 
CITY STATE1 PROV ZIP 

COUNTRY TELEPHONE ( ) 
PRICES 

USlFORElGN AIR 
Membership in the FORTH Interest Group & 

Volume 1 FORTH Dimensions 
Volume 2 FORTH Dimensions 
Volume 3 FORTH Dimensions 

Volume 6 of FORTH Dimensions 

Volume 4 FORTH Dimensions 
Volume 5 FORTH Dimensions 

BOOKS ABOUT FORTH 
All About FORTH 
Beginning FORTH 
FORTH Encyclopedia 
FORTH Fundamentals, V. 1 
FORTH Fundamentals, V. 2 
Starting FORTH (Soft Cover) 
Starting FORTH (Hard Cover) 
Thinking FORTH (Soft Cover) 
Thinking FORTH (Hard Cover) 
Threaded Interpretive Languages 
Understanding FORTH 

REFERENCE 
FORTH 83 Standard 
FORTH 79 Standard 

CONFERENCE PROCEEDINGS 
FORML Proceedings 1980 
FORML Proceedings 1981 (2 V.) 
FORML Proceedings 1982 
Rochester Proceedings 1981 
Rochester Proceedings 1982 
Rochester Proceedings 1983 

JOURNAL OF FORTH 
APPLICATIONS AND RESERACH 
Journal of FORTH Research V. 1 #1 
Journal of FORTH Research V. 1 #2 

REPRINTS 
Byte Reprints 

# 

$15127 ~ 

15/18 ~ 

15/,18 - 
15118 - 
15/18 ___. 

15/18 - 

$2935 - 
17/21 - 
25/35 - 
16/20 - 
13/16 - 
18122 ~ 

23/28 - 
16120 - 
23128 - 
23128 - 
315 - 

$15118 - 
15/18 - 

$25135 - 
40155 - 
25/35 - 
25/35 ~ 

25135 - 
25135 ~ 

$15118 - 
15118 - 

$3,5015 - 

Popular Computing 9/83 
Dr. Dobb's 9/81 
Dr. Dobb's 9/82 
Dr. Dobb's 9/83 
Dr. Dobb's 9/84 

PRICES 
USIFOREIGN AIR 

$3.5015 - 
3.5015 - 
3.5015 ~ 

3.5015 ~ 

3.5015 -.-- 

HISTORICAL DOCUMENTS 
Kitt Peak Primer $25135 ~ 

fig-FORTH Intallation Manual 15/18 - 
ASSEMBLY LANGUAGE SOURCE LISTINGS 
1802 
6502 
6800 
6809 
68000 
8080 
8086188 
9900 
ALPHA MICRO 
Apple II 
ECLIPSE 
IBMIPC 
NOVA 
PACE 

VAX 
Z80 

T-shirt Size: 
Poster (BYTE Cover) 
Handy Reference Card 

PDP-11 

$15118 
15/18 
15/18 
15/18 
15/18 
15118 
15/18 
15/18 
15/18 
15/18 
15/18 
15/18 
15/18 
15/18 
15/18 
15/18 
15/18 

$10112 ~ 

315 ~ 

FREE ___ 

SUBTOTAL 
CA Residents Add 6'/z0/0 Sales Tax 

TOTAL 

0 VISA 0 Mastercard # Expiration Date 
$15 Minimum On VlSAlMastercard Orders. 
All Prices Include Shipping. 

Make Check or money order payable in US funds drawn on a US Bank to: FIG. 
PAYMENT MUST ACCOMPANY ALL ORDERS (Including Purchase Orders). 

OFFICE USE ONLY 

BY Date MO -TO - PU - Auth No 

Shipped By Date Weight UPS -USPS - 
Hold Date Weight UPS -USPS - 

ORDER PHONE: (408) 277-0668 
FORTH INTEREST GROUP P.O. BOX 8231 SAN JOSE, CA 95155 

I 
I 

i 
i 

FORTH Dimensions 22 Volume VI. No. 4 



Jens Zander 
Linkoping, Sweden 

Using parallel or concurrent processes 
or tasks is very often a natural solution 
to a programmer’s problem. Although 
convenient, these solutions may result in 
quite complex systems. Even if each task 
is of low complexity, the total number of 
possible states our systems can be in 
grows very fast with the number of tasks 
(in fact, exponentially). Very quickly we 
lose control of the system as a whole. In 
these cases it is of vital importance that 
we can isolate the tasks from each other 
to avoid unwanted interference. 

Multi-tasking systems are essentially 
of two kinds, tzpk-controlled systems or 
“true” concurrent (time-shared) systems. 
In the task-controlled systems, task switch- 
ing is entirely up to  the tasks themselves. 
Each task has to decide when it would be 
better to let some other task take control 
of the system. In a “true”c0ncurrent sys- 
tem, however, task switching is per- 
formed by the system itself. From the 

user’s point of view, this system is easy to 
use. Programs to be executed by these 
machines are written in the same way as 
for single-user systems. The only differ- 
ence is that each task will execute slower. 
The concurrent solution is, of course, the 
only possible one in a multi-user system. 
Forth lends itself very nicely to the 
implementation of both these schemes. 

Isolating the different tasks makes 
them easy to handle since they do not 
interfere. Nevertheless, after having gone 
through all the trouble of making the 
tasks act as independent entities, we will 
be forced to consider the problem of 
making them cooperate. Consider the 
following example: 

: ADD -COUNTER 
COUNTER @ 
1+ COUNTER ! 

Several processes may simultaneously 
use this word to modify the common 
variable COUNTER. In a task-driven sys- 

SEMPHORE CCCC ( - - - )  
cccc : 

WAIT 

SIGNAL 

( --- addr) 

Creates the semaphore CCCC with initial Content of one. CCCC 
will return the address of the semaphore. 

( --- addr) C 

Checks the contents of the semaphore at addr. If the contents of 
the semaphore is non-zero it is decremented by one. If the 
semaphore is zero, execution is suspended until the semaphore 
contents become non-zero. Non-sharable word. 

( addr --- ) 

Increments the content of the semaphore at addr by one. Non- 
sharable word. 

Figure One 

tern this will cause no problems. Each 
task will increment COUNTER by one each 
time ADD-COUNTER is executed and will 
not follow any other task to interfere 
before finishing. In a “true” concurrent 
system, however, the different processes 
will not be aware of each other. Of 
course, most of these systems are not 
truly concurrent. What is important, 
however, is that every activity may be 
interrupted in favour of another at virtu- 
ally any instant. In our example two proc- 
esses may simultaneously read the con- 
tents of COUNTER. After adding one and 
simultaneously writing the result, we end 
up with an increment of one instead of 
two. Other examples where problems of 
this kind will arise are the sharing of I /  0 
devices and data transfer between proc- 
esses. The bottom line in all of these 
situations is that the processes need to 
become aware of each other in these 
situations. We need some kind of mutual 
e x c l u s i o n  a n d  s y n c h r o n i z a t i o n  
mechanism. 

Semaphores 

Various methods of solving problems 
of this kind have been invented. In the 
late sixties, Dijkstra proposed an elegant 
solution by introducing the concept of 
semaphores 5,692. We will introduce a 
Forth version of the semaphores and the 
two primitives WAIT and SIGNAL used to 
manipulate them. WAIT and SIGNAL are 
modifications of Dijkstra’s functions P 
and V. (Please see figure one.) 

A semaphore is an ordinary memory 
cell or variable, accessible to all involved 
processes. SEMAPHORE is used to create a 
variable of this kind. The semaphore will 
be initialized to contain a one. WAIT will 
take a semaphore address as an argu- 
ment and will check the contents of the 
semaphore cell. If the content is non- 
zero, WAIT will decrement it by one. If the 
content is found to be zero, execution 
will be suspended until the contents 
becomes non-zero again. SIGNAL will just 
increment the semaphore, regardless of 
its value. The critical feature of these 
words is that they are exclusive or non- 
sharable. This means that they in some 

i‘olurne VI. No. 4 23 FORTH Dimensions 



way cannot be interrupted by the system 
scheduler, and thus cannot be simul- 
taneously executed by two processes. 
Due to this, we may avoid the problem 
encountered in the ADD-COUNTER exam- 
ple above. With the primitives WAIT and 
SIGNAL we make whole sequences of 
words exclusive. Figure two is a modi- 
fied version of ADD-COUNTER including 
semaphores. This version will now work 
properly without unwanted interference 
between tasks. We note that the initial 
value of the semaphore (one is the default 
value) will determine the number of 
tasks that will be allowed to enter the 
exclusive section. Any additional tasks 
will be suspended by WAIT until some of 
the involved processes exit the section 
and execute the SIGNAL operation. Proc- 
esses WAlTing will form a semaphore 
queue. This way they will not steal time 
from active procwses. 

Besides the excluding function, sema- 
phores may be used for handshaking 
during data transfer between tasks. Hand- 
shaking is basically a matter of syn- 
chronization. Figure three is an example 
of this kind. Here, characters are passed 
between two processes using the words 
SENDER and RECEIVER. The initial value of 
the semaphore RX.READY will tell the 
transmitting process how many charac- 
ters he will accept before he has to start 
processing them with RECEIVE-CHARAC- 
TER. On the other hand, the semaphore 
TX.READY will reflect the number of char- 

acters transmitted but not yet received. 
In situations like this we have to watch 
out carefully for the ever present menace 
of deadlock. Deadlocks occur mainly 
when communicating tasks get out of 
phase. The reader may try to figure out 
what will happen if the communication 
link is initialized with both RX.READY and 
TX.READY equal to zero. 

Implementing Semaphores 

Since WAIT and SIGNAL are to be exclu- 
sive words, their implementation will 
heavily depend on how multi-tasking is 
achieved. In general we have to lower to 
the level where the task switching is per- 
formed, in order to be able to implement 
an excluding function. In hardware multi- 
tasking functions with multiple physical 
processors, this will call for some hard- 
ware solution. The most common multi- 
tasking implementations, however, are 
those implemented in some host machine 
using the native code of the machine. 
The multi-tasking Forth kernel will pro- 
vide the user with several virtual Forth 
machines. A machine code kernel and 
scheduler handles the task switching and 
will thus also be able to handle the sema- 
phores. The simplest way to achieve an 
exclusive function is probably to disable 
the timer interrupt controlling the task 
switching. This may, however, not be 
100% effective in all cases. In the follow- 
ing we will give an example of sema- 

SEMAPHORE COUNTER.SEM 

: ADD COUNTER - 
COUNTER.SEM WAIT 

COUNTER 1+ COUNTER ! ( P r o t e c t e d  sec t ion)  

COUNTER.SEM SIGNAL 

¶ 

Figure Two 

SEMAPHORE TX. READY 

SEMAPHORE RX.READY 

0 TX.READY ! 

SENDER 

BEGIN 

RX.READY WAIT 

SEND - CHARACTER 

TX. READY SIGNAL 

AGAIN 

RECEIVER 

BEGIN 

TX.READY WAIT 

RECEIVE CHARACTER 

RX.READY SIGNAL 

- 

AGAIN 

Figure Three 

T TIMER: 

Set flag 9 
Figure Four-a 

FORTH Dimensions 24 Volume VI, No. 4 



I NEXT 

Select new 
process 

V / 

- 

P4 B 

Figure Four-b 

7 WAIT: 

A B 

Figure Four-c 

phore and kernel implementions as found 
in MFORTH used at the University of 
Linkoping3. The kernel flowcharts are 
found in figure four. A host machine 
timer interrupt is used to initiate process 
switching. The interrupt does not force a 
process switch, it will only set a flag. This 
flag will tell the Forth virtual machine 
that it may change processes whenever 
ready to do  so. The flag is checked by the 
inner interpreter (NEXT). If the flag is set, 
the scheduler is activated to select a new 
task. This task is loaded, and execution 
will continue with this task during the 
next time slice.* Task switching occurs 
only between high-level Forth words. 
This means that code words (the “ma- 
chine”instructions of the Forth-machine 
**) are never interrupted. If we want to 
implement an exclusive instruction (e.g. 
WAIT) we simply use a code definition. In 
order to save time, WAIT will force a task 
switch each time a zero semaphore is 
encountered. This is a simple way to 
implement a semaphore queue. The proc- 
esses WAlTing are not really suspended, 
they will check the semaphore each time 
they are activated by the scheduler, and 
then “go to sleep” by issuing a SWITCH if 
the semaphore is still zero. 

High-Level Semaphores 

There may be situations when we 
would like to implement semaphores 
without lowering to the task switch level. 
An example of this is a hardware multi- 
processor system with no support hard- 
ware for semaphores. A typical case is 
processors transparently sharing mem- 
ory. To solve this problem we may use a 
neat trick from carrier sense random 

* At this point a Forth process switch is 
done very fast. Only the internal registers of 
the Forth machine (IP, RP, SP and UP) have to 
be saved and restored. The scheduling over- 
head is, therefore, quite low in a system like 
this. When loaded with five tasks of different 
priorities, a typical MFORTH system ( 1  
MHz 6809,20 ms time slices) will spend only 
1.5% of the total time scheduling. The sche- 
duler consists of less than 100 bytes of code. 

** In fact, using the flag is nothing other 
than implementing a Forth machine inter- 
rupt. As in ordinary microprocessors, the current 
machine instruction is finished before the 
interrupt is acknowledged. 

Volume VI. No. 4 25 FORTH Dimensions 



access communications as found in LANs 
(Ethernet) and packet radio systems. 

To implement a mutual exclusion de- 
vice, we will, instead of using one sema- 
phore cell, use a boolean vector with one 
cell for each of the processes involved. 
When a process has been granted exclu- 
sive execution, its vector cell will contain 
a true value. A process needing exclusive 
execution will first sense, or scan the vec- 
tor, for any true values. If a true value is 
found in the vector, the process has to 
wait until the vector is all false. If the 
vector is found all false the processor will 
raise its own flag, i.e. make it true. This 
is, however, not sufficient to exclude all 
other processes. Figure five explains 
why. During the time interval between 
sensing the vector to be empty or false 
and setting the flag, some other task may 
have started its exclusion sequence. To 
make the exclusion safe, we have to 
check the vector again after some time 
interval td. Figure five shows the worst 
case. We can see that td has to be at least 
as large as the longest sense-to-set inter- 
val in all processes. After this delay, we 
sense again. If a collision occurs, i.e. two 
tasks are simultaneously requesting exclu- 
sive rights, we choose one of them by 
some arbitrary non-ambiguous rule. In 
the Forth implementation shown in fig- 
ure six we will choose the one with the 
lowest index TASK-ID. The word SENSE 
will leave either the index of the lowest 
true flag in the STATE-VECTOR or a zero if 
no true flag is found. PROTECT and UNPRO- 
TECT form the framework of an exclusive 
program section. Note the use of SWITCH 

which is used to force a process switch 
(cf. PAUSE in ref. 1) to save time. PROTECT 
and UNPROTECT are used to implement 
WAIT and SIGNAL. We may, however, use 
them directly to produce some exclusive 
section. One should note that, in this 
case, no other exclusive program section 
may be executed in the system. 

The high-level semaphores offer a very 
useful system-dependent task synchron- 
ization mechanism. Their major draw- 
back is an elaborate procedure with 
quite slow execution, especially if many 
tasks are involved. 

References 

1. Laxen, H., “Multi-Tasking, Part 1 ,”Forth 
Dimensions V/  4. 

2. Brinch-Hansen, P., Operating System Prin- 
ciples, Prentice-Hall, 1973. 

3. Zander, J., “Multi-Tasking FORTH Imple- 
mentation for the 6809, Users Manual,” 
Internal Report LiTH-ISY-1-0577, Dec. 
1982. 

4. Tsichritzis, D.C., Bernstein, P.A., Operat- 
ing Systems, Academic Press, New York, 
1974. 

5 .  Dijkstra, E. W., “Cooperating Sequential 
Processes” in Programming Languages 
(F. Genuys ed.) Academic Press, New 
York, 1968. 

SENSE start Set flag SENSE start 

TASK T t  A td 

SENSE start Set flag 

TASK At B 

Figure Five 

FORTH Dimensions 26 Volume VI. No. 4 



00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 

00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 

00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 

( High Level Semaphores JZ 22Feb84 Forth-79 

10 CONSTANT R A S K S  56 USER TASK-ID 

CREATE (SV) #TASKS ALLOT 

: STATE-VECTOR 1- (SV) + ; 

: CLEAR STATES #TASKS 1+ 1 DO 

: SENSE ( --- n 
0 I STATE-VECTOR C !  LOOP ; 

0 #TASKS 1+ 1 DO 
I STATE-VECTOR C@ 
I F  DROP I LEAVE THEN 

LOOP ; 
- -> 

( High Level Semaphores JZ 22Feb84 Fo 

: SET-STATE 1 TASK-ID e STATE-VECTOR c 
: CLEAR-STATE 0 TASK-ID @ STATE-VECTOR 

,( System dependent Delay word 1 
: DELAY 40 0 DO LOOP ; 

th-79 

C !  ; 
Y 

: PROTECT B E G I N  SENSE NOT 
I F  SET-STATE DELAY SENSE 

TASK-ID @ = I F  .EXIT THEN 
THEN 

AGAIN ; 
CLEAR-STATE SWITCH 

: UNPROTECT CLEAR-STATE ; 
--> 

( High Level Semaphores JZ 22Feb84 Forth-79 

: SIGNAL PROTECT 1 SWAP +! UNPROTECT ; 

: WAIT BEGIN PROTECT D U P @  O= 
WHILE UNPROTECT SWITCH 
REPEAT 
-1 SWAP +! UNPROTECT ; 

EXIT 

Figure Six 

iolume VI, No. 4 27 

Freepower! I 

JOneDollar 
SALE 5~ 

S1.M 
h.dw.rr bun 
0rdn.No 159 
Th. S.mnd Book o i  OHIO 
lntrdunion to 0s-650 spcralin9 w t a n  
--No 150 S l M  

Inm nralrnl0" Not- 
Reprint of Intel Ihfcrature 18085.82551. 
c.da-No 163 S l M  

* GET ONE FORTH OR B W K  FREE WITH EVERY S 20.W ORDER I ~****.******* .******  ttttt tttt*****rtttt> 
L-,"-FORTH - a ubrt flr tb b. 
g m r n  
Lurn-FORTH f.Alwc Boo/BMXL ID& 

S19.81 
Or -.I 
O w . b . 7 O E 2  
L u m  FORTH* AWLE llc 
Odr-No 6163 s9.* 
FORTH on mr ATARI - L-rnm~ 



Forth183 Program 
to Run Forthm79 Code 

Robert Berkey 
Palo Alto, California 

As the Forth-83 Standard becomes 
more widely adopted, there is an increas- 
ing need to translate Forth-79 programs 
into Forth-83. This article contains a 
translator program that allows a Forth- 
79 program to run on a Forth-83 system; 
additionally, words that are difficult to 
translate automaticallv are discussed. 

Division and these are not available in the system, 
the code in figure three will suffice. If the application's divisions result in 

negative quotients and the remainders 
are not zero, the floored division in 
Forth-83 must be converted to the 
rounded-to-zero division used in Forth- 
79. See figure two. 

Forth-79 Editing Words 

DO-LOOPS 

Certain uses relating to do-loops do 
not translate directly between Forth-79 
and Forth-83. These include: 

Unusual do-loop parameters, especially 
for the n l  nl  DO ... LOOP case when 
used in Forth-79 to execute the loop 

The article focuses on the required word 
set of the Forth-79 Standard and pro- 

In the unlikely event that the 79- 
Standard program uses SCR and/ or LIST 

Once. 
LEAVE 

gram requirements of the Forth-83 
Standard. 

In most respects a Forth-83 system is a 
superset of a Forth-79 system. It is there- 
fore possible to run a Forth-79 program 
on a Forth-83 system by placing a trans- 
la tw between the program and the sys- 
tem. For most Forth-79 words the trans- 
lation is trivial. 

Such a translator offers several bene- 
fits, the main one being the ability to run 
Forth-79 programs in a Forth-83 envi- 
ronment. Although this is practical, there 
is a speed penalty for compute-bound 
programs. Most primitive words imple- 
mented in the translator run at about 
one-third the speed of their code equi- 
valents. The majority of Forth-79 words 
are unchanged in Forth-83 and run at 
full speed, so the overall speed penalty is 
roughly 50%. For many applications this 
is acceptable. In addition to the speed 
penalty, a program with the translator 
win, of course, require more memory 
than the program alone. 

The translator is also useful as a pro- 
grammer's tool for changing a Forth-79 
program into a Forth-83 program. The 
entire translator, including the loops and 
math, can be loaded onto a Forth-83 
system and the program to be converted 
loaded on top of that. Piece-by-piece the 
program can be upgraded and the cor- 
responding part of the translator 
removed. 
Simple Translations 

The first group of words, shown in 
figure one, are the simplest in translation. 

FORTH-83 DECIMAL FORTH DEFINITIONS 
: FORTH-83 ( - ) 1 ABORT" Not Forth-83" ; ( rep laceable ,  see below ) 
: FORTH ( - ) FORTH ; IMMEDIATE ( , see below ) 
: 79-STANDARD ( - ) ." Not f u l l y  Forth-79" ; ( " , see below ) 
: O< ( n - f l a g  ) O< NEGATE ; 
: O= ( w - f l a g  ) 01 NEGATE ; 
: O> ( n - f l a g  ) 0) NEGATE ; 
: < ( n l  n2 - f l a g )  <NEGATE; 
: p ( w l w 2  - f l a g )  =NEGATE; 
: > ( n l  n2 - f l a g  ) >NEGATE ; 
: D< ( d l  d2 - f l a g  ) 
: U< ( u l  u2 - f l a g  ) 
: NOT ( 16bl - 16b2 ) O= ; 
: PICK ( n - 16b ) 1- PICK ; 
: ROLL ( n - 16b ) 1- ROLL ; 
: ." ( <CCC> -- ) STATE @ IF  [COMPILE] e m  

D< NEGATE ; 
U< NEGATE ; 

ELSE 34 WORD COUNT TYPE THEN ; IMMEDIATE 
: ?  ( a d d r - 1  @ . ;  
: MOVE ( a d d r l  addr2 n -- ) 0 MAX DUP + >R OVER OVER - 1+ 

R> SWAP I F  CMOVE 
ELSE ?DUP I F  0 W OVER I + @ OVER I + ! 2 +LOOP 

THEN DROP DROP 
THW ; 

: CMOVE ( a d d r l  addr2 n - ) 0 MAX CMOVE ; 
( Note: Redefine after d e f i n i n g  MOVE 

: CONSTANT ( - 16b ) ( crea t ing :  16b - ) CREATE , 
DOES> @ ; ( This allom a CONSTANT t o  be t i c k e d  

: EXPECT ( addr n - ) 0 MAX OVER SWAP EXPECT 

: FILL ( addr  n 8b - ) SWAP 0 MAX SWAP FILL ; 
: FIND ( - addr  ) 32 WORD FIND 0- I F  DROP 0 THEN ; 

SPAN @ + 0 SWAP CI  ; 

. I  . ( - addr ) ' >BODY 
STATE @ I F  [COMPILE] LITERAL THEN ; lMfEDIATE 

: K E Y  ( - C )  KEY127AND; 
: LITERAL ( - 16b ) ( compiling: 16b - 

STATE @ I F  [COMPILE] LITERAL THEN ; IMHEDIATE 

( Note: Define after r e d e f i n i n g  EXPECT 
: QUERY ( - TIB 80 EXPECT SPAN @ #TIB ! ; 

: SPACES ( n - ) 0 MAX SPACES ; 
: TYPE ( addr n - ) O M A X  TYPE ; 

: U/MOD ( ud u l  - u2 u3 ) 
:u* ( u l u 2 - u d l )  uH*; 

UM/MOD ; 

Figure One 
Simple Translations 

FORmmensions  28 Volume VI, No. 4 



Problems with do-loop parameters 
are not frequent and the changes involved 
with LEAVE are more cleanly and simply 
done by rewriting the code into Forth- 
83. Still, a reasonably efficient Forth-79 
loop and leave can be written in Forth- 
83. LOOP executes six extra primitives 
per iteration, so an empty loop will run 
seven times slower. An application loop 
with six primitive words in the loop body 
will run at half speed. See figure four. 

Forth-83 Standard Programs 

Vocabulary considerations prevent this 
translator from being labeled a Forth-83 
Standard Program. A Forth-83 Stand- 
ard Program cannot redefine standard 
words in the vocabulary FORTH, but the 
basic form of this translator extensively 
redefines the standard words. The trans- 
lator is otherwise standard, meeting both 
the portability and documentation re- 
quirements of the standard. See Appen- 
dix A for the Forth-83 program docu- 
mentation. The vocabulary option in 

Appendix B avoids the redefinition prob- 
lem at the expense of portability. 

Automatic Translation Limitations 

The translator has given the code that 
translates directly from Forth-83 to 
Forth-79, but not all of the Forth-79 sys- 
tem requirements can be satisfied. For 
the remaining translation problems there 
may be no easy fixes. Words and usages 
difficult to translate automatically are: 

CURRENT This will be available if the 
Forth-83 system has the System Exten- 
sion Word Set. 

CONTEXT Even if the Forth-83 system 
has the System Extension Word Set, 
this might require some tinkering. This 
is a result of increased variety of 
vocabulary mechanisms in today’s 
systems. 

FORGET This now uses the compilation 
vocabulary, not the dictionary search 
order. 

FERS EMPTY-BUFFERS can be replaced 
EMPTY-BUFFERS The phrase SAVE-BUF- 

: ROUND-TO-ZERO 
SWAP IF DUP o< IF 1+ THKN THEN ; 

: MODQUO>RWQUO ( mod quol divisor - rem quo2 ) >R DUP O< 
IF OVER IF 1+ SWAP R@ - SWAP THEN THEN R) DROP ; 

( The above words are not in Forth-79 but are used to develop the ) 
( standard words. 
: */ ( nl n2 n3 - n4 ) */MOD ROUND-TO-ZERO ; 

: */MOD ( nl n2 n3 - n4 n5 ) DUP >R */MOD 

: / ( nl n2 - n3 /MOD ROUND-TO-ZERO ; 

: MOD ( nl n2 - n3 DUP >R /MOD o< IF 

( mod quol - quo2 

( Caution: Redefine */ before redefining */MOD ) 

R) MODQUO>RWQUO ; 

( Caution: Redefine / before redefining /MOD 

DUP IF R@ - TIDX THKN R) DROP ; 
( Caution: Redefine MOD before redefining /MOD 

: /MOD ( nl n2 - n3 n4 ) DUP >R /MOD 
R) MODQUO>RXMQUO ; 

Figure Two 
Division 

CREATE TYPE-BUFFER 64 W O T  
( The above word is not in Forth-79 but is used to develop the ) 
( standard words. 
VARIABLE SCR 
: LIST ( screen# - ) 16 0 DO CR DUP BLOCK I 64 * + 

TYPE-BUFFER 64 CnOvE TYPE-BUFFW 64 TYPE SPACE I . LOOP 
SCR I ; 

Figure Three 
Forth-79 Editing Words 

with FLUSH, but EMPTY-BUFFERS is no 
longer supported by the standard. Like 
SCR and LIST, EMPTY-BUFFERS tends to 
be around in a system and also tends 
not to be used by a program-it is 
really for programmers hacking at the 
keyboard. 

An uncommon usage, of the 
form COMPILE [ 0 , ] will not translate 
directly; alternate programming tech- 
niques or system-dependent surrogates 
may be needed for this case. 

WORD The delimiter stored at the end 
of the text is now always a space. A 
79-Standard program that uses a deli- 
miter other than a space will require 
special handling to get running. 

Multi-programming impact This was 
not fully specified in Forth-79. If a 
program does something such as typ- 
ing out of a block buffer, it will have to 
be modified to be portable; on a single- 
task system this nonstandard practice 
should continue to  work without 
problems. 

For additional information on modi- 
fying a Forth-79 program to run on a 
Forth-83 system see the preceding issue 
of Forth Dimensions, “Upgrading 
Forth-79 Programs To Forth-83”. 

COMPILE 

Appendix A: 
Forth-83 Program Documentation 
Requirements 

In most respects this translator pro- 
gram qualifies for being labeled a Forth- 
83 Standard program. However, it is 
non-standard because standard words 
are redefined in the FORTH vocabulary 
and the redefinitions do not comply with 
the Forth-83 Standard. It does meet the 
portability requirements of the standard 
and should work on any Forth-83 Stand- 
ard System. Additionally, with the fol- 
lowing documentation, the program sat- 
isfies the documentation requirements 
for a Forth-83 Standard Program. For 
additional information on documenta- 
tion requirements see the Forth-83 Stand- 
ard, p. 13. 

0 Dictionary space used: minimum re- 
quired, 88 bytes; typical indirect 
threaded system, 1440 bytes. 
Largest use of data stack for any one 
word: minimum required, 10 bytes. 

Jolume VI. No. 4 29 FORTH Dimensions 



MVPHlRTH 
Stable - Transportable - Public Domain - Tools 
You need two primary features in a software development package a 
stable operahng system and the ability to move programs easily and 
quickly to a variety of computers MVP-FORTH gives you both these 
features and many extras This public domain product includes an editor 
FORTH assembler tools utilities and the vocabulary for the best selling 
book Starting FORTH The Programmers Kit provides a Complete 
FORTH lor a number 01 computers Other MVP-FORTH products will 
simplify the development 01 your applications 
MVP Books - A Series 
- Volume 1, All about FORTH by Haydon MVP-FORTH 

glossary with cross references to fig-FORTH Starrmg FORTH 
and FORTH-79 Standard 2"d Ed $25 

L1 Volume 2, MVP FORTH Assembly Source Code Includes 
CP/Me IBM PC@ and APPLE@ listing lor kernel $20 
Volume 3, Floating Point Glossary by Springer $1 0 

$25 
Volume 5, File Management System with interrupt security by 
Moreton $25 

MVP-FORTH Software - A Transportable FORTH 
0 MVP-FORTH Programmer's Kit including disk, documentation 

Volumes 1 & 2 01 MVP-FORTH Series (A// About FORTH, 2nd 
Ed & Assembly Source Code), and Starting FORTH Specify 
0 Cp/M. 0 CPlM 86, 0 CP/M+, U APPLE, &* 0 IBM PCIXTIAT, 0 MSDOS, 0 Osborne 0 Kaypro 
0 H891Z89, 0 Z100. 0 TI-PC, 0 MtcroDecisions 
0 Northstar 0 Compupro, 0 Cromenco, 0 DEC Rainbow, 

0 Volume 4, Expert System with source code by Park 

d 0 NEC 8201 0 TRS-80/100 0 HP 110 0 HP 150 
& nqww $1 50 
0 MVP-FORTH Enhancement Package for IBM-PCIX r /AT 

Programmers Kit Includes full screen editor MS-DOS 
,&* file interlace disk display and assembler operators 
0 MVP-FORTH Cross Compiler for CP/M Rogrammer s Kit 

Generates headerless code lor ROM or target CPU 
3 MVP-FORTH Meta Compiler for CP/M Programmers kit 

Use for armlicatons on CP/M based computer Includes 
public domain source $1 50 

on board with disks docurnentation and enhanced virtual 
MVP- FORTH lor Apple II II+ and Ile $450 

Rogrammer s Kit Extremely useful tool for decompiling 

$1 10 

$300 

0 MVP-FORTH Fast Floating Point Includes 951 1 math chip 

0 MVP-FORTH Programming Aids for CP/M iBM or APPLE 

calllinding and translating $200 
0 MVP-FORTH PADS (Professional Application Development 

System) for IBM PClXTlAT or PCjr or Apple ii 11 + or ile An 
integrated system lor customizing your FORTH programs and 
applications The editor includes a bidirectional string search 
and is a word processor specially designed lor fast 
development PADS has almost triple the compile speed of 
most FORTH s and provides fast debugging techniques 
Minimum size target systems are easy with or without heads 
Virtual overlays can be compiled in object code PADS IS a 
true professional development system Specify 
Computer $500 

0 MVP-FORTH Floating Point & Matrix Math for IBM PCMTlAT 
with 8087 or Apple with Applesolt on Programmers 
Kit or PADS $85 

0 MVP-FORTH Graphics Extension lor IBM PCIXTIAT 
or Apple on Programmers Kit or PADS $65 

J MVP-FORTH MS-DOS file interlace lor IBM PC PADS $80 
0 MVP-FORTH Expert System lor development 01 knowledge 

$1 00 based programs lor Apple IBM or CP/M 

FORTH CROSS COMf'lLERS Allow extending modifying and compiling 
for speed and memory savings can also produce ROMable code 
Specify CP/M 8086 68000 IBM Z80 or Apple II II + 
Ord.rln0 lnformmth Check Money Order (payable lo MOUNTAIN VIEW PRESS 
INC ) VISA Mastercard American Express COD s $5 extra Minimum order $1 5 
No billing or unpaid Po s California residents add sales lax Shipping costs in US 
included in price Foreign orders pay in US funds on US bank include for handling 
and shipping by Air $5 lw each ilem under $25 $1 0 fw each ilem between 525 and 
$99 and 520 lor each item over 51 00 All pfices and products sutfecl to change or 
withdrawal wilhoul nolce Sinale svstem andlor sinole user license aoreement 

$300 

FORTH MSKS 
FORTH with editor, assembler, and manual 

$1 00 0 APPLE by MM, 83 
0 ATARlO valFORTH $60 0 8088188 by LM. 83 $100 
n CPlM bv MM. 83 $100 0 88000 by LM, 83 $250 

$100 0 280 by LM, 83 

-, -~ 
0 HP-85 by Lange $90 0 VIc FORTH by HES. 

$50 0 HP-75 by Cassady $1 50 v1c20 

El IBM-PC by LM, 83 $100 c64 by $40 64 cartridge 
825 0 NOVA by CCI 8" $175 0 Timex by HW 

Enhanced FORTH with: F-Floating Point, G-Graphics. T-Tutorial, 
S-Stand Alone, M-Math Chip Support, MT-Multi-Tasking, X-Olher 
Extras. 79-FORTH-79, 83-FORTH-83. 

0 Victor 9000 by DE.G.X $150 0 APPLE by MM, 

0 ATARl by PNS, F,G, & X. $90 
0 CPlM by MM, F & 83 $1 40 
0 Multi-Tasking FORTH 

0 TRS-8OlI or 111 by MMS 

0 Tlmex by FD, tape G,X. 

0 C64 by Parsec. MVP, F. 

0 fig-FORTH Programming Aids lor decompiling. callfinding; 

F, G. & 83 $18O 0 Extensions for LM Specify 
IBM. Z80. or 8086 

Software Floating 
Point $1 00 

by SL. CP/M. X 8 79 $395 O(lE-Lz&) $1 oo 
0 9511 Support 

0 Color Graphics 

0 Data Base 

F, X. & 79 S1 30 (280 or 8086) $1 00 

$1 00 

79,  G & X  $96 Management $200 

$45 (IBM-PC) & 79 

debugging and translating. CP/M. IBM-PC, Z80 
or Aoole. $200 

0 Thinking FORTH by Leo 0 1980 FORML Roc. $25 
&! Brodie, author of best Selling 0 1981 FORML 2 v0l $40 

"Starting_FORTH' $16 0 1982 FORML Roc. $25 ' f $ ~ , o ~ ~  :E:z by $25 0 1981 Rochester FORTH 
Roc. $25 

0 FORTH Encyclopadia by 1982 Rochester FORTH 
$25 Roc. $25 Derick & Baker 

0 The Complete FORTH by i! 1983 Rochester FORTH 
Winlield $16 Roc. $25 

FORTH MANUALS. GUIDES & DOCUMENTS 

.. 

0 Understanding FORTH by 

0 FORTH Fundamentals, 

FORTH Fundamentals, 

0 FORTH Tools, V01.l by $' ' METAFOATH by 

0 A BlblhraPhY Of FORTH 
$3 References, 1st Ed. $1 5 

$16 G Vol.1,No.l $1 5 
$1 5 

$30 

Reymann 

Vol I by McCabe 

Vol II by McCabe 

Anderson & Tracy $20 Cassadv 

The Journal of FORTH 
Application & Research 

Vd. 1. No. 2 

0 Beginning FORTH by 

0 FORTH Encyclopedia 

3 And FORTH by A 0 FORTH Notebook by 

0 Threaded interpretive 

0 Systems Guide to flg- 
Chiriian $1 7 Languages $23 

Pocket Guide $7 FORTH by Ting $25 

college level text $ 2 5 4  Tinq $25 
FORTH Programming by 0 Invitation to FORTH $20 

$17 0 PDP-11 User Man. $20 Scanlon 

$8 0 FORTH-79 Standard $15 Floegel 
C Starting FORTH by Brodie 

$1 0 
Best instructional manual 
available (soft cover) $19 Conversion 

0 Starting FORTH (hard $1 
cover) $23 0 NOVA fig-FORTH by CCI 

[3 WOO0 fig-Forth with Source Listing $25 
assembler $25 0 NOVA by CCI User's 

Manual $25 

$1 5 

Each $1 5 

u FORTH on the ATARl by 0 FORTH-83 Standard $1 5 

0 FORTH-79 Standard 

0 Installation Manual for fig-FORTH, 
Source Listings of fig-FORTH, lor specific CPU s and computers 
The Installation Manual is required for implementation 
0 1802 0 6502 0 6800 0 AlphaMicro 0 IBM 
I1 8080 0 8086/88 0 9900 0 APPLE II 
L I PACE 0 6809 0 NOVA 0 PDP-11 /LSI-lt 
0 68000 0 Eclipse 0 VAX 0 Z80 

FORTH Dimensions 30 Volume VI. No. 4 



( First a leave-flag stack is created. ) 
CREATE LEAVE-FLAGS HERE 22 + , 20 ALLOT 

( Allows roan for ten nested loops. ) 
( The item second from top on the leave stack will be true ) 
( if a negative going +LOOP should terminate. The item 
( on the top of the leave stack is true if a positive going ) 
( +LOOP or a LOOP should terminate. 

0 CONSTANT FALSE -1 CONSTANT TRUE 
: DON'T-LEAVE ( - ) -1 LEAVE-FLAGS +! 

: DO-LEAVE ( - -1 LEAVE-FLAGS +! 

: +LEAVE? ( - ? LEAVE-FLAGS @ C@ ; 
: -LEAVE? ( - ? LEAVE-FLAGS @ 1+ C@ ; 
:+-LEAVE? ( n - n ? )  

: BEGIN-LOOP ( nl n2 - nl n2 ) ( Set up initia leave ) 

FALSE LEAVE-FLAGS @ C! ; 

TRUE LEAVE-FLAGS @ C! ; 

DUP CK IF -LEAVE? ELSE +LEAVE? THEN ; 

( flags for this loop ) 

=; 

( The above words are not in Forth-79 but are used to develop ) 
( the standard words. ) 

: DO COMPILE BEGIN-LOOP 

: LOOP COMPILE +LEAVE? 

OVER OVER > 
IF DO-LEAVE DON'T-LEAVE ELSE DON'T-LEAVE DO-LEAVE 

: -LOOP ( - ) 2 LEAVE-FLAGS +! ; 

[COMPILE] DO ; IMMEDIATE 

[COMPILE] IF 
[COMPILE] LEAVE ( a Forth-83 LEAVE 
[COMPILE] THEN 
[COMPILE] MOP 
COMPILE END-LOOP ; IMMEDIATE 

[COMPILE] IF 
COMPILE DROP 
[COMPILE] LEAVE ( a Forth-83 LEAVE ) 
[COMPILE] THEN 

COMPILE END-LOOP ; IMMEDIATE 

: +LOOP COMPILE +-LEAVE? 

[COMPILE] +LOOP 

: LEAVE ( - ) 2 LEAVE-FLAGS +! DO-LEAVE DO-LEAVE ; 
( Caution: Redefine LEAVE after redefining LOOP and +LOOP ) 

Figure Four 
DO-LOO~S 

VOCABULARY FORTH-79 
: 79-STANDARD ( - FORTH-83 FORTH-79 DEFINITIONS 

.* Not fully Forth-79" ; 
79-smARD m c m  
: FORTH-83 ( - ) FORTH FORTH-83 ; 

: FORTH ( - ) FORTH-79 ; IMMEDIATE 
( preserve access t o  the 83 definitions 

Figure Five 

0 Largest use of return stack for any one 
word: minimum required, 2 bytes; typ- 
ical indirect threaded system, 8 bytes. 

0 Mass storage blocks: seven screens of 
Forth source-no specific block ranges 
required. 

0 Operator's terminal facilities: no spe- 
cial requirements. 

Appendix B 
Preserving the Forth-83 System Words 

It may be preferred to keep the Forth- 
83 definitions available. This can conve- 
niently be done if the Forth-83 system 
being used can have more than two 
vocabularies in the search order. (Most 
can and in fact do.) The code in figure 
five would replace the definitions in fig- 
ure one for FORTH-83, FORTH, and 79- 
STANDARD, and puts subsequent defini- 
tions in a vocabulary called FORTH-79. 
These definitions will not work as in- 
tended on some standard systems and 
therefore do not meet the portability 
requirements of the standard. 

Volume VI, No. 4 31 FORTH Dimensions 



Introducing 3 New 
68000 FORTH Systems 

68000 FORTH Systems also available on HP Series 200 and Motorola V M E I O  
For more information contact 

CREOTIVE 30LUTlONS 
4701 Randolph Rd. Ste.12 Rockville, Maryland 20852 

(301 )984-0262 

UNlX is a registered trademark of AT&T CP/M is a registered trademark of D ig i ta l  Research 

-1 Dimensions 32 Volume VI, No. 4 



ANDIF and ANDWHILE 

0 

Wendall C. Gates, PE 
Santa Cruz, California 

Anyone who works in real-time, con- 
trol-oriented programming frequently en- 
counters the need to implement deci- 
sions based on several input conditions. 
Forth implements single-condition 
branching as IF ELSE THEN and BEGIN 
WHILE REPEAT statements, but multiple- 
condition branching is absent in most 
Forth implementations. 

One extremely simple approach, which 
solves both the multiple IF and multiple 
WHILE applications, is presented on 
screens 78 and 79 (fig-FORTH). ANDIF is 
used in the form: 

... IF ... ANDIF ... ANDIF ... ANDIF ... ELSE ... THEN 

where ELSE is optional and the number 
of ANDlFs is not constrained. The com- 
pile-time action of ANDIF is to compile 

first DUP and OBRANCH. Then the second 
entry on the computation stack (the 
address of the word following the 
OBRANCH compiled by IF) is copied over 
the first entry (the compiler security 
digit) and is decremented by two, becom- 
ing the address of the first OBRANCH. This 
address is then compiled. The final action 
is to compile DROP. In other words, each 
ANDIF compiles a OBRANCH which points 
back to the OBRANCH compiled by IF; 
thus, only one forward branch needs to 
be compiled, and it is handled by ELSE or 
THEN as usual. 

At run time, the flag being tested is 
duplicated. If the duplicate copy of the 
flag is true, the original flag is dropped 
and execution continues inline. If the 
flag is false (zero), ANDIF’s OBRANCH 
branches back to IF’s OBRANCH; the origi- 
nal flag then directs IF’s OBRANCH to skip 
forward to ELSE or THEN. 

SCR 
0 
1 
2 

4 

4 
7 

9 
18 
1 1  
12 
13 
14 
15 

-7 

c 

a 

SCH 
8 
1 
2 
3 
4 

4 
7 
8 
9 

10 
11 
12 
13 
14 
15 

c 

# 7a 
\ ANDIF M u l t i p l e  IF Statement wco 7-7-84 
: ANDIF 
?COMP DUP 2 ?PAIRS \ Compiler s e c u r i t y  
COMPILE DUP COMPILE BBRCINCH \ d u p l i c a t e  f l a g ,  Mbranch back 

\ t o  IF, then ou t  t o  ELSE or  THEN 
OVER 2- I \ address o f  f i r s t  BRHANCH i s  second s tack  

\ en t r y ,  under compi ler  s e c u r i t y ,  m i n u s  2 
COMPILE DROP i \ i f  f l a g  t r u e ,  drop d u p l l c a t e  
IMMEDIATE --::I- 

------ 
BBHANCH (add r )  .<:next t e s t ,  l eave  flag::. DUP BBRANCH (addr)  DROP 

T h i s  code d i r e c t s  t h e  f a l s e  e r i t ( s i )  back through t h e  f i r s t  
OBRANCH (compiled by IF); t h e r e f o r e .  t h e  ELSE.. .THEN p a r t  Of 

t h e  c o n d i t i o n a l  branching s t i l l  work as usual. 

# 74 

: ANDWHILE 
\ ANDWHILE M u l t i p l e  WHILE Statement WCQ 7-7-84 

7COMP DUP 4 ?PAIRS \ Compiler s e c u r i t y  
COMPILE DUP COMPILE BBRANCH \ d u p l i c a t e  f l a g ,  @branch back 

\ t o  WHILE, t hen  ou t  pas t  REPEAT 
OVER 2- , \ address o f  f i r s t  @BRANCH i 5  second s tack  

\ en t r y ,  under compi ler  s e c u r i t y ,  m i n u s  2 
COMPILE DROP i \ i f  f l a g  t rue ,  drop d u p l i c a t e  
IMMEDIATE i s  

________________________________________-----_--- 
@BRANCH (addr)  <:next t e s t ,  l eave  flag:, DUP @BRANCH (addr)  DROP 

T h i s  code d i r e c t s  t h e  f a l s e  e e i t ( s )  back through t h e  f i r s t  
BBRANCH (compiled by WHILE); t h e r e f o r e .  t h e  REPEAT p a r t  of t h e  
c o n d i t i o n a l  branch s t r u c t u r e  s t i l l  works as usual .  

ANDWHILE is similarly constructed 
(screen 79); in fact, the only difference is 
the compiler security digit. Usage is iden- 
tical to ANDIF; no matching closeout 
words (ENDWHILE in Ref. 1) are needed to 
resolve the branching. 

ANDIF and ANDWHILE also permit build- 
ing complex control structures in a sim- 
ple, straightforward fashion. Here, for 
example, is a multi-condition, multi-step 
structure using ANDIF: 

test 1 
IF taskl test2 
ANDIF task2 test3 
ANDIF ... 
ELSE.. . 
THEN 

In this sequence, each test leaves a 
flag. The sequence of tasks will be exe- 
cuted until a test leaves a false flag, at 
which point execution will jump to the 
code following ELSE (if used) or follow- 
ing THEN. Note that the code following 
ELSE will not be executed at all if all 
conditions test true, but will be executed 
if any condition tests false. Tasks must 
leave the stacks unaltered. 

A multi-conditional, multi-step loop 
can be programmed as: 

BEGIN 
test 1 
WHILE taskl test2 
ANDWHILE task2 test3 
ANDWHILE ... 
REPEAT 

This code will loop through the sequence 
of tasks until a test leaves a false flag; 
execution then jumps immediately out of 
the loop to the code fol!owing REPEAT. 

This technique of directing all unsuc- 
cessful exits out through the original 
OBRANCH imposes both a speed penalty 
and a code-size penalty over methods 
which compute and store back the exit 
address. The extra words are all primi- 
tives, so the speed penalty is small. The 

Volume VI, No 4 33 FORTH Dimensions 



1985 
Rochester 

Forth 
Conference 

June 12 - 15,1985 
University of Rochester 
Rochester, New York 

The fifth Rochester Forth Con- 
ference will be held at the 
University of Rochester, and 
sponsored by the Institute for 
Applied Forth Research, Inc. 
The focus of the Conference 
will be on Software Engineer- 
ing and Software Management. 

Call for Papers 

There is  a call for papers on 
the following topics: 

.Software Engineering, and Soft- 
ware Management Practices 

.Forth Applications, including, 
but not limited to: real-time, 
business, medical, space- 
based, laboratory and personal 
systems; and Forth microchip 
applications. 

.Forth Technology, including 
finite state machines, meta- 
compilers, Forth implementa- 
tions, control structures, and 
hybrid hardware/software sys- 
tems. 

Papers may be presented in  either plat- 
form or poster sessions. Please submit 
a 200 word abstract by March 30th, 
1985. Papers must be received by April 
30th, 1985, and are limited to a maxi- 
mum of four single spaced, camera- 
ready pages. Longer papers may be 
presented at the Conference bu t  
slould be submitted to the refereed 
jou rna l  of Forth Appl icat ion and 
Research. 

Abstracts and papers should be sent t o  
the conference chairman: Lawrence P. 
Forsley, Laboratory for Laser Energet- 
ics, 250 East River Road, Rochester, 
New York 14623. For more information, 
call or write Ms. Maria Cress, Institute 
for Applied Forth Research, 70 Elmwood 
Avenue, Rochester, NY 14611 
(716) 235-0168. 

size penalty is four bytes per branch, bal- 
anced by savings in the code needed to 
implement ANDIF and ANDWHILE versus a 
heavier-duty solution (for example, the 
IT ENDIT code presented by Luoto in Ref. 
3)- 

References 

1. Hayden, Julian. “Multiple WHILE Solu- 
tion,” Forth Dimensions 1111 3, p. 72. 

2. Harris, Kim. “Transportable Control Struc- 
tures,” 198 1 Forth Standards Conference, 
pp. 97-107. 

3. Luoto, Kurt. “Parnas’ it...ti Structure,” 
Forth Dimensions VI/ I ,  pp. 26-3 1. 

Volume VI, No. 4 34 

1 

~ 

I 
I 

i 
I 
I 

I 

I 

i 
I 



FORTH Dimensions 

Index to Volume Five 
This reference guide to Volume V wasprepared as a service for  our readers andfor all members of the Forth Interest Group. 

Items are referenced by issue and page number. The first entry, for  example, refers to an article on 3 - 0  Animation which 
appeared in Volume V, Issue 1, page 11. 

3-D Animation I /  11 
6502 and 6809 Absolute Branches 2/27 

Ackerman, R.D. 4/ 19 
Add a Break Point Tool 1/19 
Animation 

3-D I /  11  
Forth in the Arts 113 

CORDIC 3/24 
Algorithms 

.Apple Forth a la Modem 4/ 19 

.Applications 
Conference 213 I 
Manufacturing Cost Program 419 

COUNT6/6 
.Ask the Doctor 

Baden, Wil 3/ 11; 4/ 16 
Bieman, L. H. 116 
Blakeslee, Tom 2/30 
Bowling, John 4/ 10 
Branches 

Brodie, Leo 1/19 

CORDIC Algorithm Revisited 3/24 
Co-Processors, Stack-Oriented 3/20 
Code and Colon Compatibility 3/23 
Compilers 

Condon, Paul E. 5/24 

6502 and 6809 Absolute 2/27 

Extending 1/20 

Data Acquisition 

Data Bases 1/27 
Data Structures 

PL/I 6/8 
Debugging 

Add a Break Point Tool I /  19 
From a Full-Screen Editor 2/30 
Tracer for Colon Definitions 2/ 17 

Introduction 515 

Dictionary Searches 6/ 14 
DO ... WHEN ... LOOP Construct 6/27 
Double-Precision Math Words I /  16 
Doyle, Lindsay 1/27 
Dumse, Randy 2/25 
Duncan, Ray 2/20 

Easy Directory System 3/ 1 1 
Eliminating Forth Screens 5/24 

Extending the Forth Compiler 1/20 

Faster Dictionary Searches 6/ 14 
FIG Chapters 1/40; 2/35; 4/31; 5/38; 

fig-FORTH Vocabulary Structure 315 
Fixed-Point Logarithms 5 /  11 
FORML 1983:Review 5/33 
Forth in the Arts 115 
Forth:Cheaper than Hardware 2/ 13 

6/32; 6/42 

FORTH-83 
Loop Structure 4/22 
A Minority View 3/27 

Forth Froth 4/ 16 
Freese, Dave 3/24 

Gaukel, George 2/27 
Gotsche, Bob 1/3 
Graphics 

Interactive 1/3 
Space Problem I /  14 

Gray, R. W. 6/27 
Grossman, Nathaniel 5 /  1 1; 6/28 
Gwilliam, Michael 5/28 

Hall, John D. 2/25; 3/34; 4/31; 5/38; 

Ham, Michael 4/5;5/ 19 
Harralson, David W. 6/ 14 
Harris, Kim 2/31 
Held, David 3/23 
Hills, Norman L. 6/ 16 
Huang, Timothy 2/26; 3/ 19 

6/42 

In-Word Parameter Passing 3/ 19 
Interactive Computer Graphics 113 
Interviews 

Charles Moore 2/5 
William Ragsdale 6/20 

Introduction to Data Acquisition 515 
Irwin, John 3/ 14 

Joosten, Rieks 2/ 17 

Lagergren, Peter J. 2/ 13 
Laxen, Henry 2/23; 3/31; 4/26; 5/37; 

Logarithms 
6/35 

Fixed-Point Vocabulary 5 /  1 1 

Loops 
Forth-83 Loop Structure 4/22 

Lutus, Paul 1 / 11 

Macro Expansion in Forth 519 
Mahr, Christian 1/37 
Manufacturing Cost Program 419 
Math, Floating Point 

Double-Precision Math Words 
1/16 

McKibbin, David 417 
Menu-Driven Software 4/ 10 
Meta Compiling 2/23; 3/31 
More General ONLY 5/24 
Moore, Charles 215 
More on Data Bases 1/27 
Multi-Tasking 

Techniques Tutorial 4/26 
Simple FORTH Environment 2/22 
Simple Multi-Tasker 2/20 

Nemeth, Gary 513 1 

Overlays 1/37 

Paradigm for Data Input 5 /  19 
Parameters 

Perkel, Marc 419; 5/24 
Perry, Michael 5 / 5  
Petri, Martin B. 2/22 
PL/I Data Structures in Forth 6/8 
Product Announcements 113 1; 3/36; 

In-Word Parameter Passing 3/ 19 

4/30; 6/40 

Quick Sort in Forth 5/29 

R65F11 Forth Chip 2/25 
Ragsdale, William F. 5/6; 6/20; 6/6 
RAMdisk for 8086/8088 fig-FORTH 

3/ 14 
Recursion 

and Vectored Execution 4/ 17 
of a Forth Kind 5/28 
Recursive Decompiler 6/ 16 
Recursive Sort on the Stack 2/ 16 

Reddington, Dana 3/20 
Reviews 

FORML 1983 5/33 
R65F11 Forth Chip 2/25 

FORTH Dimensions 'Jolurne VI, NO. 4 35 



Revisited: Recursive Decompiler 6/ 16 
Rosen, Evan3/5; 4/14 

Screens, Eliminating 5/20 
Seeto, Luke 1/20 
Self-Defining Words 6/35 
Simple Multi-Tasker 2/20 
Simple Forth Multi-Tasking 

Environment 2/22 
Simple Overlay System 1/37 
So Many Variables 415 
Sommers, Roy W. 4/ 17 
Soreff, Jeffrey 519 
Sorts 

Quick Sort 5/29 
Recursive Sort on the Stack 2/ 16 

Space Graphics Problem l /  11 
Stack-Oriented Co-Processors and 

Stoddart, Bill 4/22 

Techniques Tutorials 

Forth 3/20 

Meta Compiling 2/23; 3/31 
Multi-Tasking 4/26; 5/37 
Self-Defining Words 6/35 

Technotes 1/34 
Telecommunications 

Tenney, Glenn 3/27 
Thompson, Phil l /  11 
Timekeeping in Forth 516 
Toward Eliminating Forth Screens 5/24 
Tracer for Colon Definitions 2/ I7 
Turpin, Dr. Richard 2/ 16 

Yet Another Number Utility 4/7 

Zammit, Ronald 5/28 Apple Forth a la Modem 4/ 19 

Utilities 417 

Variables 4/ 5 
Vectored Execution and Recursion 4/ 17 
Vendors of Forth Products 1/42 Victor 

9000 2/26 
Vocabulary 

fig-FORTH Vocabulary 

Vocabulary Tutorial 4/ 14 
Structure 315 

Voice of Victor 9000 2/26 

Wagner, Robert 5/20 
Walker, Bruce W. 618 

Use your IBM PC (or compatible) to mul- 
tiply two 128 by 128 matrices at the rate 
of 33 thousand floating-point operations 
per second (kflops)! Calculate the 
mean and standard deviation of 16,384 
points of single precision (4 byte) float- 
ing-point data in 1.4 seconds (35 
kflops). Perform the fast Fourier trans- 
form on 1024 points of real data in 6.5 
seconds. Near PDP-11/70 performance 
when running the compute intensive 
Owen benchmark. 

WL FORTH-79 
FORTH-79 by WL Computer Systems is 
a powerful and comprehensive pro- 
gramming system which runs on the 
IBM PC (and some compatibles). If your 
computer has the 8087 numeric data 
processing chip (NDP) installed, then 
this version of FORTH-79 will unleash 
the awesome floating-point processing 
power which is present in your system. 
If you haven't gotten around to installing 
the 8087 NDP coprocessor in your com- 
puter, you can still use WL FORTH to 
write applications using standard 
FORTH-79. 

33 KFLOPS 
8087 support and other features 
WL FORTH features extremely fast float- 
ing point calculations because it uses 
the 8087 hardware stack to store inter- 
mediate results and achieve 16 to 18 
digits precision. The system includes a 
large set of transcendental functions, 
such as SIN, COS, TAN, ASIN, ACOS, 
ATAN, Yz, LN, LOG, SQRT. FORTRAN 
like conversion specification words 
allow the user to specify output field 
width, places beyond the decimal point 
and fixed or scientific notation. 

The FORTH assembler allows the user 
to code time critical words in 808718088 
assembly language and includes struc- 
tured branch ana looping constructs. 
The entire 1 Mb address space is avail- 
able for array storage. Definitions can 
include SWITCH to different screen 
files, thereby allowing dynamic switch- 
ing of screen files. SAVE allows current 
system to be saved as a .COM file and 
ZAP prevents your applications from 
being decompiled. The system in- 
cludes interrupt driven exception hand- 
lers for both the 8087 and 8088, and the 
programmer can select the desired 
number of screen buffers. 

But can I get the source? 
Unlike most other products, the com- 
pletesource is available at a very 
affordable price. 

Package 1 includes FORTH-79 ver- 
sions with and without 8087 support. 
Included are screen utilities, 8087 and 
8088 FORTH assemblers. $1 00 

Package 2 includes package 1 plus the 
assembly language source for the WL 
FORTH-79 nucleus. $150 

Package 3 includes package 2 plus the 
WL FORTH-79 source screens used to 
add the 8087 features to the vocab- 
ulary. $200 

Starting FORTH book. $22 

WL Computer Systems 
191 0 Newman Road 

W. Lafayette, IN 47906 
(31 7) 743-8484 

Visa and Master Card accepted. 

IBM is a trademark of International Business Ma- 
chines 

FORTH Dimensions 36 Volume VI, No. 4 



Mixing CODE With HighlLevel Forth 
Henry Laxen 

Berkeley, California 

One of Forth’s nicest features is the 
ability to easily integrate high-level, 
machine-independent Forth code with 
low-level, machine-dependent assembly 
code. This fact has many implications, 
the most significant of which is that the 
issue of run-time efficiency can usually 
be deferred until much of the application 
has been completed. Once a system 
reaches a certain critical mass, it is no 
longer intuitively obvious which routines 
to recode in order to improve perfor- 
mance; and much programmer time is 
generally wasted by trying to optimize 
procedures early in the game, before 
meaningful performance measurements 
can be gathered. Thus, performance im- 
provement should be deferred as long as 
possible, until after the system is running 
and is no longer subject to massive 
change. The nice thing about Forth is 
that there is usually little or no penalty 
for this waiting period and, in fact, fre- 
quently no fine tuning is necessary. How- 
ever, if that were always the case, this 
would be a very short and dull essay. The 
purpose of this paper is to examine some 
programming techniques that will sim- 
plify performance enhancement. 

The problem that I propose to address 
is how to easily and conveniently mix 
high-level code with low-level code. In 
one direction, this problem is more or 
less solved by the use of CODE words. 
CODE is a Forth defining word which 
allows the user to use the assembly lan- 
guage of his machine to define a new 
word in Forth. Thus, on an 8080 the lines 
presented in figure one are functionally 
identical, even though the code version is 
about ten times faster. 

Frequently, when it comes to speed 
optimization, there are a few critical 
functions which can be rewritten as CODE 
words and integrated into the system. 
This is usually all that is required. A 
different problem, which in reality doesn’t 
occur very often, involves writing inline 

: 2 *  2 8  ; 

CODE 2* AX POP AX AX ADD AX PUSH NEXT END-CODE 

Figure One 

Heoder (DOUBLE 1 
runt Ire(NEST) 
cfo(2) Heoder (2 

runt 1 re(C0NSTANT) 
uo I ue (2) 

cfo(*) 

c f o(UNNEST 

Heoder ( * 
Here+2 for code word 
flr,r,erb I y I onguoge code 

Heoder ( .) 
runt i re(HEST) 
cfor, of words colled by . 
Heoder (UNNEST 1 
Here+2 for  code word 
A88erb I y I onguoge code 

Figure Two 

: tc ( -- 
HERE 2+ , HERE 2* , ASSEHBLER [COHPILEI ; 
I HHED I ATE 

: CI ( -- ) 
[ ASSEHBLER ] HERE 6 + 8 IP  HOU NEXT FORTH I ; 

: DOUBLE ( n -- 
[C AX POP AX AX ADD AX PUSH C l  . ; 

Figure Three 

I I 
/odme VI, No 4 37 FORTH Dimensions 



LABEL H I  LEUEL 

: c :  ( - - )  

CODE (;C) ( -- 

RP DEC RP DEC IP  0 [RP] NOU I P  POP NEXT 

HILEUEL *) CALL FORTH 1 ; 

IP  PUSH 0 [RP] IP NOU RP IHC RP IHC RET END-CODE 

[ ASSENBLER I CONPILE (;C) ASSENBLER 
[CONPILEI [ ; INNEDIATE 

: ;c ( -- 1 

CODE EXMPLE ( -- ) 
5 AX NOU AX PUSH C: ,’ High Leuel’ W P  . ;C 
AX POP HEXT END-CODE 

1 Figure Four 

assembly language code within a high- 
level definition. While you could always 
make a separate CODE word out of the 
inline assembly language and then simply 
reference the word, I think it would be an 
interesting intellectual exercise to see just 
how we could accomplish this inline if we 
wish. 

The idea is that while we are executing 
high-level code, we all of a sudden want 
to  run some inline assembly language 
code and then return to high level when 
we are done. A high-level word has a 
parameter field that contains pointers to 
code fields. The code fields themselves 
contain pointers to code. See figure two 
for an illustration of this. 

We know that when we are running in 
a high-level definition, the IP (interpre- 
tive pointer) is inside the parameter field 
of the current word being executed. It is 
pointing at a word which contains the 
code field address of the next component 
word to be executed. This code field 
points to machine-executable code. In 
general, the CFA of CODE words points 
two bytes beyond itself, which is where 
the actual code begins. Thus, to create 
inline code, we must duplicate this struc- 
ture. This is accomplished with the code 
presented in figure three. 

Notice that we must do the HERE 2+ , 
twice. The first one is a pointer to a code 
field; the second is the code field that 
points to code, which is inline. Next we 
go into the ASSEMBLER vocabulary, and 
stop compilation with [. This word must 

be immediate so that it is executed while 
we are compiling. The only mysterious 
thing about the definition of C] is the 
magic number six. Well, on an 8080, six 
is the number of bytes occupied by the # 
MOV and NEXT #) instructions, so it is 
what we must set the I P  to in order to 
continue interpreting high-level code af- 
ter the low-level inline code. We then 
reenter compilation by calling 1. Finally, 
DOUBLE is an example of how we would 
use [C and c]. We go immediately from 
high level to low level, double the number 
on the stack, and return to high level, 
where we print it out with. (dot). 

I don’t think writing inline assembly 
language code in your high-level defini- 
tions is very useful, and I don’t recom- 
mend it; but I included it for your 
amusement and edification. The other 
direction, however, can be extremely 
useful, namely calling high-level defini- 
tions from assembly language and return- 
ing. One application of this comes to 
mind immediately: fetching or storing 
characters in an I /  0 buffer. If the buffer 
holds, say, 1K of characters, then only 
after calling it a thousand times do you 
actually need to perform I/  0. The actual 
I /O operation is thus rather rare and 
usually involves executing a lot of code. 
Wouldn’t it be nice if you could write a 
code word that usually fetches a charac- 
ter out of the buffer but, when the buffer 
is empty, calls a high-level word such as 
BLOCK to perform the necessary I / o .  
You could do this by factoring the 
character-by-character I /  0 into two pie- 

ces and passing flags back and forth, but 
this is inefficient and ugly. The inline 
high-level code solution is much cleaner. 
The code that implements this is shown 
in figure four. 

Let’s see if we can figure out how this 
works. The word C: assembles a CALL 
instruction and starts up the Forth com- 
piler with 1. The CALL instruction pushes 
the address of the next word onto the 
stack, and then executes the code at the 
label HILEVEL. This code saves the cur- 
rent value of the IP on the return stack 
and sets the IP to the value that is cur- 
rently on the parameter stack, which was 
left there by the CALL instruction. That is 
really all there is to it. We are now exe- 
cuting high-level Forth code inline. When 
we are through executing Forth code 
and want to return to the assembly lan- 
guage word we were called by, we end the 
high-level code with ;C. This compiles (;C) 
inline and leaves the compiler to return 
to the assembler. At run time, (;C) pushes 
the current value of the I P  and restores 
the old value of the IP from the return 
stack. Since NEXT has already incre- 
mented the IP to point to the next word, 
a simple RET instruction brings us back 
to the assembly language code that fol- 
lows the ;c. An example of how this is 
used is shown in the word EXAMPLE. We 
first load a 5 into the AX register and 
push it onto the stack. We then enter 
high-level code and print out the string 
“High Level”fol1owed by the number on 
the parameter stack. We then return to 
the code word we were in, pop the stack 
and jump to NEXT. While the example 
does not perform a terrible useful func- 
tion, it does illustrate the transition 
between low- and high-level code. 

Although the code presented here is 
only for an 8080, if you understand the 
principles involved it will not be difficult 
for you to translate it for your processor 
if you want to use it. Once this kind of 
tool is available to you, I am sure you 
will find many applications for it. Imple- 
menting fast character-by-character I /  0 
buffering is just one common applica- 
tion. It is also handy for displaying error 
messages during low-level hardware diag- 
nostic code. Use your imagination! Any- 
way, that is all for now and, until next 
time, may the Forth be with you. 

Copyright @ 1984 by Henry Laxen. 
All rights reserved. 

Volume VI. No. 4 38 FORTH Dimensions 



FORTH: FOR Z-8CP, 8086,68000, and IBM@ PC 
Complies with the New 83Standard 

GRAPHICS 0 GAMES 0 COMMUNICATIONSO ROBOTICS 
DATA ACQUISITION 0 PROCESS CONTROL 

0 FORTH programs are instantly 
portable across the four most popular 
microprocessors. 
0 FORTH is interactive and conver- 
sational, but 20 times faster than 
BASIC. 
0 FORTH programs are highly struc- 
tured, modular, easy to maintain. 
0 FORTH affords direct control over 
all interrupts, memory locations, and 
i/o ports. 
0 FORTH allows full access to DOS 
files and functions. 
0 FORTH application programs can 
be compiled into turnkey COM files 
and distributed with no license fee. 
0 FORTH Cross Compilers are 
available for ROM'ed or disk based ap- 
plications on most microprocessors. 
Trademarks IBM. International Business Machines 
Corp, CP/M. Digital Research Inc , PClForth + and 
PCIGEN. Laboratory Microsysterns. Inc 

FORTH Application Development Systems 
include interpreter /compiler with virtual memory 
management and multi tasking assembler full 
screen editor decompiler utilities and 200 page 
manual Standard random access files used for 
screen storage extensions provided for access to 
all operating system functions 
2-60 FORTH for CPIM' 2 2 or MP/M /I $100 00 
8080 FORTH for CPiM 2 2 or MPiM I /  $100 00 
8086 FORTH for CPlM 86 or MS DOS $100 00 
PClFORTH for PC DOS CPlM 86 or CCPM 
$100 00 68000 FORTH for CPlM 68K $250 00 

FORTH + Systems are 32 bit implementations 
that allow creation of programs as large as 1 
megabyte The entire memory address space of 
the 68000 or 8086188 IS supported directly 

PC FORTH + $250 00 
8086 FORTH +for CPlM 86 or MS DOS $250 00 
68000 FORTH + for CPlM 68K $400 00 

Extension Packages available include soft 
ware floating point cross compilers INTEL 
8087 support AMD 951 1 support advanced col 
or graphics custom character sets symbolic 
debugger telecommunications cross reference 
utilitv B tree file manaaer Write for brochure 

Laboratory Microsystems Incorporated 
Post Office Box 10430, Marina del Rey, CA90295 

Phone credit card orders to (213) 306-7412 

GGM-FORTH for 280" CP/M"  
GGM-FORTH, a complete sof tware system for 
rea l - t ime measurement and contro l ,  runs on any 
280 computer  under  CP/M using an extended 
f ig - F 0 R T H voca bu lary . 

GGM-FORTH uses direct-access FORTH 
"screens" files, and  also sequential text  files, 
a n d  a l l o w s  f o u r  or m o r e  f i les  to b e  
simulaneously active for  input /output .  

All CP/M input /output  devices, inc lud ing 
pr inter,  reader, punch,  etc.. are accessable to 
GGM-FORTH rout ines th ru  BDOS calls, 
making i t  t ru ly  hardware- independent.  

In addi t ion,  G G M - F O R T H  inc ludes a n  on- 
l ine HELP faci l i ty .  w h i c h  c a n  look up any  word  
in the d ic t ionary a n d  display its def in i t ion 
a n d / o r  o t h e r  i n f o r m a t i o n .  T h e  H E L P  
dict ionary is easily extendable to a d d  the 

G G M  SYSTEMS, INC.  
135 Summer Ave., 

280 i s  a trademark of Zilog, Inc. 

user's o w n  def in i t ions HELP may be invoked 
at a n y  t ime wi thout  d is turb ing the stack 
contents  or screen dlsplay (in the case of the 
f uI  I-screen e d  i tor). 

GGM-FORTH features: 

0 Open mu l t i p le  CP/'M files, in any co!?bin 
at ion o f  d irect-access and sequ entia I -access, 
fully compat ib le  with all CP/M ut i l i t ies  

0 Char. in/out uses CP/M console, lister, f i le, o r  
port 

0 On-l ine H E L P  provides instant access to def i -  
nitions in the  run - t ime  G G M - F O R T H  dic t ionary 

0 H E L P  f i le  i s  easily extended to include user 
def in i t ions using H E L P  ut i l i ty 

0 H E L P  i s  available dur ing full-screen edi t ing 

Complete system and manuals $195. 

(6 1 7 )  662-0550 
Reading, MA 01 867 

CP/M i s  a trademark of Digital Research, Inc 

Volume VI. No. 4 39 FORTH Dimensions 



BRrrE 
FORTH 

INTEL 
8031 
MICRO- 

CONTROLLEF 

FEATURES 
-FORTH-79 Standard Sub-Set 
-Access to 8031 features 
-Supports FORTH and machine 

code interrupt handlers 
-System timekeeping maintains 

time and date with leap 
year correction 

-Supports ROM-based self- 
starting applications 

corn 
130 page manual -$ 30.00 
8K EPROM with manual-$1100.00 

Postage paid in North America 
Inquire for license or quantity pricing 

Bryte Computers, Inc. 
P.O. Box 46, Augusta, ME 04330 

(207) 547-32 18 

John D. Hall 
Oakland, California 

I still haven’t heard! 

Would you like to talk to other people 
who use Forth? Would you like to hear 
how other people use Forth? Would you 
like to interest other people in the proj- 
ects you are working on? Would you like 
to know more about Forth? If any of the 
answers were yes and you live near one of 
the missing cities (see sidebar), then why 
don’t you get together with the others in 
your area and get a FIG chapter started? 
Each of these cities has more than enough 
FIG members to have a chapter, but 
where is it? 

There are even more people than these 
FIG members. For each FIG member in 
your city (listed to the right of the city in 
the accompanying figure) there seem to 
be five other people who use Forth but 
who have not yet joined the Forth Inter- 
est Group. Two of those five probably 
are experts in Forth! Get them to join! 
Get them to help you! 

I can’t start the chapter for you. You 
will have to make the effort. How to do 
it? Try this for starters: 

1)  Write or call and tell me you are inter- 
ested in trying.(I will send you a chapter 
kit and the names of the FIG members in 
your area.) Write to: 

Forth Interest Group 
Att’n: John D. Hall 
P.O. Box 8231 
San Jose, California 95 155 
or call the FIG Hotline: 415-962-8653 

2) Decide on a temporary meeting time 
and place. Choose it at your conven- 
ience, since you are the one making the 
effort to get the chapter started. 

3) Contact the other FIG members in 
your area by telephone, letter or a notice 
in your local computer newspaper. 
(Spend a little money on this one-you 
will get it back later.) 

4) Call the first meeting! Discuss inter- 
ests, then decide on a second meeting 
and format. 

5) At the second meeting, a) elect officers 
and a program chairman (distribute the 
responsibilities, it makes life easier that 
way), b) collect dues for the chapter 
(repay yourself for the original out-of- 
pocket expenses), and c) estalish a list of 
speakers for the following meetings. 

6 )  Have five FIG members sign the 
Chapter Certification Form and return it 
to me. 

We have four new chapters, and one 
special interest group has changed to a 
chapter with meetings. That makes a 
total of sixty-five chapters! 

Atlanta FIG Chapter 
Atlanta, Georgia 

New Orleans FIG Chapter 
New Orleans. Louisiana 

Detroit FIG Chapter 
Detroit, Michigan 

Austin FIG Chapter 
Austin, Texas 

East Tennessee FIG Chapter 
Oak Ridge, Tennessee 

Atlanta FIG Chapter 

July 10: Our meeting was well at- 
tended; thanks to Computone for allow- 
ing us to use their excellent facilities. 
Alan Sandercock described an elegant 
Forth conversion of a BYTE magazine 
article about benchmarking of array 
multiplication. We are always interested 
in making comparisons with other lan- 
guages. Alan, thanks for sharing your 
expertise with us. Talking about com- 
parisons, as many of you know, Ada is 
now the standard for Department of 
Defense mission-critical software. Look- 
ing at many of the “unique” features of 

40 Volume VI. NO. 4 



Ada, such as “packages”of code that can 
be individually compiled and reused, one 
is reminded of how much of Forth we 
accept as normal that many in the soft- 
ware world are just beginning to appre- 
ciate. The future and strength of Ada is 
in the automated environment for life- 
cycle support. I sense that this is the key 
for future quality, productivity and cost 
reduction, and I worry that the Forth 
community may be missing the boat. As 
usual, some other topics surfaced and 
created a lively debate. This time we were 
concerned about the meaning of “real 
time” and the significance of interrupt 
handling. In my mind, real time means 
the ability to complete a process on 
behalf of an external system in such a 
way as to influence the external system. 
Real time normally, but not necessarily, 
means fast! An interrupt is more simply 
defined as a means to suspend a process 
in response to an external event in such a 
way that the process can be resumed. 

-Ron Skelton 

Detroit FIG Chapter 

July 26: The July meeting was held at 
the Ford Diversified Products Technical 
Center. The first part of what is to be an 
ongoing discussion of the basics of Forth 
was started. The first topic was a short 
discussion of what the Forth languages is 
and isn’t. Some of the most simple Forth 
words-e.g., + .  DUP DROP SWAP *SPACE 

STANT .” “-were discussed and demon- 
trated. The “visible stack” feature of the 
Bay Area Atari Forth (public domain) 
was helpful while demonstrating data 
stack operation, although bugs in this 
version prevented us from using it 
throughout the meeting and APX Forth 
was later used. Basic concepts of the dic- 
tionary and the data stack were dis- 
cussed. Colon definitions and sample 
Forth coding sheets were distributed. 
The “Large Letter F” program from 
Starting Forth was discussed and dem- 
onstrated. The tutorial was planned to 
continue through the August meeting 
with chapter two of Starting Forth. 

-Thomas Chrapkiewicz 

SPACES CR KEY EMIT @ ! ; VARIABLE CON- 

East Tennessee FIG Chapter 

June 12: The East Tennessee Forth 
Interest Group (ET-FIG) was formed at 
its first meeting, with over twenty people 
in attendance. The meeting, which was 
held in Oak Ridge, featured three pre- 
sentations by local FIG members. Dr. 
Ray Adams gave a very enjoyable and 
informative paper titled, “Why Forth, 
and What Forth is Good For Amidst 
Computer Languages.” This was fol- 
lowed by brief presentations by Norman 
Smith and Richard Secrist reviewing 
available Forth literature and “Imple- 
menting fig-FORTH on the VAX-11 in 
PDP-11 Compatibility Mode.” 

-Richard Secrist 

Kansas City FIG Chapter 

June 26: Fourteen people attended the 
meeting. We discussed the pros and cons 
of the Forth-83 Standard. The 83-Stand- 
ard is definitely an improvement, but 
some questioned the wisdom of chang- 
ing a standard, especially at this time. 
Some also felt the standard does not 
encompass enough. 

July 24: Twelve people attended. Terry 
Rayburn shared his experience of meta- 
compiling into ROM. Bill Jellison is in 
the process of procuring equipment for 
the network. It will probably be at least 
three months before he is ready. Whether 
or not you feel there is a place for 
floating-point math in Forth, and 
whether or not you even have support 
for floating point, you will do a lot of 
calculations in Forth using fixed point. 
Terry Rayburn has recommended Com- 
puter Approximations by Hart to help 
you write those complicated algorithms 
in fixed point. -Linus Orth 

Missing Cities! 

Huntsville, Alabama (5) 
Anchorage, Alaska (5) 
Fairbanks, Alaska (5) 

(Kodiak has a chapter!) 
Escondido, California (26) 
Santa Barbara, California (25) 

Gainesville, Florida (9) 
Orlando, Florida (1 1) 
Tampa, Florida (25) 
Honolulu, Hawaii (9) 
Chicago, Illinois (30) 
Evansville, Indiana (5) 
Lafayette, Indiana (6) 
Ames, Iowa (5) 
Rochester, Minnesota (6) 
Lincoln, Nebraska (5) 
Reno, Nevada (9) 
Newark, New Jersey (42) 
Las Cruces, New Mexico (5) 
Santa Fe, New Mexico (7) 
Buffalo, New York (8) 
Charlotte, North Carolina (8) 
Raleigh, North Caroline (9) 
Nashua, New Hampshire (19) 
Columbus, Ohio (7) 
Toledo, Ohio (7) 
Oklahoma City, Oklahoma (5) 
Corvallis, Oregon (1 2) 
Pittsburg, Pennsylvania ( 1  1) 
Memphis, Tennessee (7) 
El Paso, Texas (5) 
San Antonio, Texas (7) 
Salt Lake City, Utah (5) 
Seattle, Washington (54) 
Madison, Wisconsin (17) 
Milwaukee, Wisconsin ( 1  7) 

(Eight other California chapters!) 

Copenhagen, Denmark (7) 
Helsinki, Finland (8) 
Tokyo, Japan (21) 
Amsterdam, Netherlands (8) 
Wellington, New Zealand (5) 
Oslo, Norway (8) 
Barcelona, Spain (5) 
Stockholm, Sweden (5) 

FORTH Dimensions Volume VI, No. 4 41 



U.S. 

ALASKA 

Kodiak Area Chapter 
Call Norman C. McIntosh 
907/4864843 

ARIZONA 

Phoenix Chapter 
Call Dennis L. Wilson 
6021956-7678 

Tucson Chapter 
Twice Monthly, 2nd & 4th Sun., 2 p.m. 
Flexible Hybrid Systems 
2030 E. Broadway #206 
Call John C. Mead 
6021323-9763 

CALIFORNIA 

Berkeley Chapter 
Monthly, 2nd Sat., 1 p.m 
10 Evans Hall 
University of California 
Berkeley 
Call Mike Perry 
41 51 644-3421 

Los Angeles Chapter 
Monthly, 4th Sat., I I a.m. 
Allstate Savings 
8800 So. Sepulveda Boulevard 
1/2 mile North of LAX 
Los Angeles 
Call Phillip Wasson 
2 1 31 649-1428 

Monterey/Salina.s Chapter 
Call Bud Devins 
4081633-3253 

Orange County Chapter 
Monthly, 4th Wed., 7 p.m. 
Fullerton Savings 
Talbert & Brookhurst 
Fountain Valley 
Monthly, 1st Wed., 7 p.m. 
Mercury Savings 
Beach Blvd., & Eddington 
Huntington Beach 
Call Noshir Jesung 
7141 842-3032 

San Diego Chapter 
Weekly, Thurs., 12 noon. 
Call Guy Kelly 
619/268-3100 ext 4784 

Sacramento Chapter 
Monthly, 2nd Tues., 7 p.m. 
170B 59th St., Room C 
Call Tom Ghormley 
9161444-7775 

Silicon Valley Chapter 
Monthly, 4th Sat., 1 p.m. 
Dysan Auditorium 
5201 Patrick Henry Dr. 
Santa Clara 
Call Glenn Tenney 
4151574-3420 

Stockton Chapter 
Call Doug Dillon 
2091931-2448 

COLORADO 

Denver Chapter 
Monthly, 1st Mon., 7 p.m 
Call Steven Sarns 
3031477-5955 

CONNECTICUT 

Central Connecticut Chapter 
Monthly, 1st Thurs., 7 p.m. 
Meriden Public Library 
Call Charles Krajewski 
203/ 344-9996 

FLORIDA 

Southeast Florida Chapter 
Miami 
Call John Forsberg 
305/252-0108 

GEORGIA 

Atlanta Chapter 
Call Ron Skelton 
404/393-8764 

ILLINOIS 

Central Illinois Chapter 
Urbana 
Call Sidney Bowhill 
2171333-4150 

Fox Valley Chapter 
Call Samuel J.  Cook 
312/879-3242 

Rockwell Chicago Chapter 
Call Gerard Kusiolek 
312/885-8092 

INDIANA 

Central Indiana Chapter 
Monthly, 3rd Sat., 10 a.m. 
Call Richard Turpin 
3 17/923-1321 

Fort Wayne Chapter 
Call Blair MacDermid 
2191 749-2042 

IOWA 

Iowa City Chapter 
Monthly, 4th Tues. 
Engineering Bldg., Rm. 2128 
University of Iowa 
Call Robert Benedict 
3 191 337-7853 

KANSAS 

Wichita Chapter (FIGPAC) 
Monthly, 3rd Wed., 7 p.m. 
Wilbur E. Walker Co. 
532 S. Market 
Wichita, KS 
Call Arne Flones 
3 161 267-8852 

LOUISIANA 

New Orleans Chapter 
Call Darryl C. Olivier 
5041 899-8933 

MASSACHUSETTS 

Boston Chapter 
Monthly, 1st Wed. 
Mitre Corp. Cafeteria 
Bedford, MA 
Call Bob Demrow 
6171688-5661 after 7 p.m 

MICHIGAN 

Detroit Chapter 
Call Tom Chrapkiewicz 
313/ 562-8506 

MINNESOTA 

MNFIG Chapter 
Even month, 1st Mon., 7:30 p.m. 
Odd Month, 1st Sat., 9:30 a.m. 
Vincent Hall Univ. of MN 
Minneapolis, MN 
Call Fred Olson 
612/ 588-9532 

MISSOURI 

Kansas City Chapter 
Monthly, 4th Tues., 7 p.m. 
Midwest Research Inst. 
Mag Conference Center 
Call Linus Orth 
8 161 444-6655 

St. Louis Chapter 
Monthly, 3rd Tues., 7 p.m. 
Thornhill Branch of 
St. Louis County Library 
Call David Doudna 
3141 867-4482 

0 NEVADA 

Southern Nevada Chapter 
Suite 900 
101 Convention Center Drive 
Las Vegas, NV 
Call Gerald Hasty 
7021452-3368 

NEW MEXICO 

Albuquerque Chapter 
Call Rick Granfield 
5051 296-865 1 

rn NEW YORK 

FIG, New York 
Monthly, 2nd Wed., 8 p.m. 
Queens College 
Call Tom Jung 
2121432-1414 ext. 157 days 
2 121 26 1-32 13 eves. 

Rochester Chapter 
Bi-monthly, 4th Sat., 2 p.m. 
Hutchison Hall 
Univ. of Rochester 
Call Thea Martin 
7 16/ 235-0168 

Syracuse Chapter 
Monthly, 1st Tues., 7:30 p.m. 
Call C. Richard Corner 
3151456-7436 

OHIO 

Athens Chapter 
Call Isreal Urieli 
614/ 594-3731 

Cleveland Chapter 
Call Gary Bergstrom 
216/ 247-2492 

Cincinatti Chapter 
Call Douglas Bennett 
5 I3/ 83 1-0142 

Dayton Chapter 
Twice monthly, 2nd Tues., & 
4th Wed., 6:30 p.m. 
CFC I I W. Monument Ave. 
Suite 612 
Dayton, OH 
Call Gary M. Granger 
5 131 849-1483 

OREGON 

Greater Oregon Chapter 
Monthly, 2nd Sat., 1 p.m. 
Computer & Things 
3460 SW 185th, Aloha 
Call Timothy Huang 
503/ 289-91 35 

FORTH Dimensions 42 Volume VI, No. 4 



PENNSYLVANIA 
Philadelphia Chapter 
Monthly. 3rd Sat. 
LaSalle College. Science Bldg 
Call Lee Hustead 
2 15 IS39-7989 

. TENNESSEE 

East Tennessee Chapter 
Monthly, 2nd Tue.. 7:30 p.m. 
Sci. Appl. Int'l Corp, 8th FI. 
800 Oak Ridge Turnpike. Oak Ridge 
Call Richard Secrist 
6151482-903 I 

. TEXAS 

Austin Chapter 
Contact: Matt Lawernce 
P.O. Box 180409 
Austin, TX 78718 

Dallas/Ft. Worth 
Metroplex Chapter 
Monthly, 4th Thurs.. 7 p.m 
Software Automation, Inc. 
14333 Porton, Dallas 
Bill Drissel 
21 4,'264-9680 

Houston Chapter 
Call Dr. Joseph Baldwin 
7 131749-2120 

VERMONT 

Vermont Chapter 
Monthly, 3rd Mon 7 70 p m 
Vergennes Union High 5chool 
Rm 210, Monkton Rd 
Vergennes. VT 
Call Hal Cldrk 
802 ' 877-29 I I dd\ s 
802 452-4442 e\es 

VIRGINIA 

First Forth of Hampton Roads 
Call William Edmond, 
8041 898-4099 

Potomac Chapter 
Monthly, 1st Tues - p rn 
Lee Center 
Lee Highway at Lexington 5: 
Arlington, VA 
Call Joel Shprentz 
703 437-92 I 8  e\ e3 

Richmond Forth Group 
Monthly, 2nd b e d  - 2 T. 
Basement, Punear  H d  
Univ of Richmond 
Call Donald A Ful, 
804 739-3623 

FOREIGN 

AUSTRALIA 

Melbourne Chapter 
Monthly. 1st Fri.. 8 p.m 
Contact: Lance Collins 
65 Martin Road 
Glen Iris, Victoria 3146 
03 '29-2600 

Sydney Chapter 
Monthly, 2nd Fri.. 7 p.m. 
John Goodsell Bldg.. 
Rm. LG19 
Univ. of New South Wales 
Sydney 
Contact: Peter Tregeagle 
10 Binda Rd.. Yowie Bay 
021 524-7490 

BELGIUM 

Belgium Chapter 
Monthly, 4th Wed., 20:OOh 
Contact: Luk Van Loock 
Lariksdreff 20 
2120 Schoten 
03/658-6343 

Southern Belgium FIG Chapter 
Contact: Jean-Marc Bertinchamps 
Rue N. Monnom, 2 
8-6290 Nalinnes 
Belgium 
071 /213858 

CANADA 

Nova Scotia Chapter 
Contact: Howard Harawit7 
227 Ridge Valley Rd. 
Halifax, Nova Scotia B3P 2E5 
902 / 477-3665 

Southern Ontario Chapter 
Monthly, 1st Sat., 2 p.m. 
General Sciences Bldg. 
Rm. 312 
McMaster University 
Contact: Dr. N.  Solntseff 
Unit for Computer Science 
McMaster University 
Hamilton, Ontario L8S 4K I 
416/525-9140 ext. 2065 

Toronto FIG Chapter 
Contact: John Clark Smith 
P.O. Box 230, Station H 
Toronto. ON M4C 552 

. COLOMBIA 

Colombia Chapter 
Contact: Luis Javier Parra B 
Aptdo. Aereo 100394 
Bogota 
2 14-0345 

ENGLAND 
Forth Interest Group - U.K. 
Monthly. 1st Thurs.. 7 p.m.. Rm. 408 
Polytechnic of South Bank 
Borough Rd.. London 
Contact: Keith Goldie-Morrison 
Bradden Old Rectory 
Towchester. Northamptonshire 
"12 XED 

FRANCE 
French Language Chapter 
Contact: Jean-Daniel Dodin 
77 rue du Cagire 
3 I 100 Toulouse 
( 16-6 I) 44.03 

GERMANY 
Hamburg FIG Chapter 
Monthly. 4th Sat.. 1500 hrs. 
Contact: Horst-Gunter Lynsche 
Holstenstr. 191 
D-2000 Hamburg 50 

0 IRELAND 
Irish Chapter 
Contact: Hugh Doggs 
Newton School 
Waterlord 
05 I /75757 or 05 I / 74 I24 

ITALY 
FIG ltalia 
Contact: Marco Tausel 
Via Gerolarno Forni 48 
20161 Milano 
02/645-8688 

REPUBLIC OF CHINA 
R.O.C. 
Contact: Ching-Tang-Txeng 
P.O. Box 28 
Lung-Tan, Taiwan 325 

SWITZERLAND 
Swiss Chapter 
Contact: Max Hugelshofer 
E R N 1  & Co. Elektro-lndustrie 
Stationsstrasse 
8306 Bruttisellen 
011833-3333 

SPECIAL GROUPS 
Apple Corps Forth Users 
Chapter 
Twice Monthly, 1st & 
3rd Tues., 7:30 p.m. 
15 I S  Sloat Boulevard, #2 
San Francisco, CA 
Call Robert Dudley Ackerman 
4151626-6295 

Baton Rouge Atari Chapter 
Call Chris Zielewski 
5041 292- I9 10 

FIGGRAPH 
Call Howard Pearlmutter 
408 1425-8700 

Volume VI, No 4 4 3  FORTH Dimensions 



ANNOUNCING 

A Bibliography of Forth References contains 
over 1,300 references to articles, books, and 
papers on Forth. Listed by author and subject. 
2nd Edition. September 1984. 

ORDER FROM THE FORTH INTEREST GROUP 
COMPLETE ORDER FORM ON PAGE 22 

FORTH INTEREST GROUP 
PO. Box 1105 
San Carlos, CA 94070 

Address Correction Requested 

BULK RATE 
U.S. POSTAGE 

PA1 D 
Permit No. 3107 
San Jose, CA 


