
$2.50

Dimensions

Procedural
Arguments

Sixth Annual

Forth National Convention
November 16-1 7,1984

Hyatt Palo Alto

4290 El Camino Real, Palo Alto, CA 94306 USA

/

learn about Forth and make your l i fe easier. The convention will show you how!

Exhibits Equipment Demonstrations
Speakers Discussion Groups
Tutorials Worldwide FIG Meeting
Vendor Meetings Banquets
Panel Discussions Awards

Forth i s for everyone. The Forth computer language i s used in video games, operating systems, real-time control,
word processing, spread sheet programs, business packages, DBMS, robotics, engineering and scientific calculations
and more.

Coverage of Forth applications, Forth-based instruments, Forth-based operating systems, and more.

Speak at the convention. Those wishing to participate and be speakers and/or panelists are urged to contact the
program coordinator immediately. (Telephone the FIG hotline 41 51962-8653.)

PROGRAM
FRIDAY, November 14 SATURDAY, November 17
EXHIBITS Noon - 6 pm EXHIBITS 9 am - 5 pm
11:30 am Registration

1 pm Forth Systems
2 pm Data Base Developments
3 pm Forth-Based Products
4 pm Forth-Based Products
5 pm 32 Bit Systems
6 pm Exhibits Close

10 am
11 am
Noon
1 Pm
2 Pm
3 Pm
4 Pm
5 Pm

Forth Resources
Education
Lunch
Forth Chips and Computers
Business Applications
Forth Chapters
Forth-83 Standard, FORML Preview
Exhibits Close

BANQUET

7 pm Saturday - Reservation and payment required - $30.00

Convention preregistration is $10.00; or $15.00 at the door. Special convention room rates are available at the
Hyatt Palo Alto. Telephone direct to Hyatt reservations by calling (800) 228-9000 and request the special Forth
Interest Group Convention rates for November 16th and 17th.
The Forth Convention is sponsored by the Forth Interest Group (FIG). The Forth Interest Group is a non-profit
organization of over 4800 members and 50 chapters worldwide, devoted to the dissemination of Forth-related
information. FIG membership of $15.00/year ($27.00 overseas) includes a one-year subscription to FORTH
Dimensions, the bimonthly publication of the group.

_____________________---_-----------------------
0 Yes! I will attend the Forth Convention.

0 Number of pre-registered admissions __ x $10.00 each

0 Number of Banquet Tickets __ x $30.00 each

0 Yes! I want to join FIG and receive FORTH Dimensions ($15.00 US, $27.00 foreign)

TOTAL CHECK TO FIG $

0 I want to exhibit; please send exhibitor information.

Name

Company
City State- Zip

Phone (1
Return to: Forth Interest Group, P.O. Box 1105, San Carlos, CA 94070 415/962-8653

Volume VI, No. 2 FORTH Dimensions 2

FORTH Dimensions
Published by the

Forth Interest Group
Volume VI, Number 2

Julyl August 1984

Editor
Marlin Ouverson

Production
Jane A. McKean, Et Al.

Forth Dimensions solicits editorial ma-
renal. comments and letters. No responsi-
biht! is assumed for accuracy of material
submitted. Unless noted otherwise, mate-
rial published by the Forth Interest Group
is in the public domain. Such material
ma! be reproduced with credit given to
the author and the Forth Interest Group.

Subscription to Forth Dimensions is
free with membership in the Forth Inter-
est Group at $15.00 per year ($27.00 for-
eign air). For membership, change of
address and/or to submit material for
publication, the address is: Forth Interest
Group, P.O. Box 1105, San Carlos, Cali-
fornia 94070.

Symbol Table

Simple; introductory tu-
torials and simple appli-
cations of Forth.

Intermediate; articles
and code for more com-
plex applications, and
tutorials on generally dif-
ficult topics.

Advanced; requiring stu-
dy and a thorough under-
standing of Forth.

I
0

Code and examples con-
form to Forth-83 stand-
ard.

Code and examples con-
form to Forth-79 stand-
ard.

Code and examples con-
form to fig-FORTH.

Deals with new propos-
als and modifications
to standard Forth sys-
tems.

FEATURES

5
20

0
I
0

28

32

Procedural Arguments
by Kurt Luoto
Taking the concept of factoring a step further, this discussion shows the
usefulness of procedural arguments in Forth programming

The Integer Solution
by Marc Perkel
The author calls his INTEGER a “self-fetching variable,” and claims the
resultant code is highly readable.

Forth Control Structures
by David W..Harralson
Forth control structures affect program flow via the low-level routines
explained here. Also defines Forth-83 words to branch on true as well as false
conditions.

Forth in Rehabilitation Applications
by David L. Jaffe
Devices to serve disabled individuals are one of the most important applica-
tions of computing power. This biomedical engineer uses Forth as one of his
primary tools.

A Simple Data Transfer Protocol
by Keith Ericson and Dennis Feucht
Get on-line with this simple protocol; short enough that the receive words
can be typed manually, it can be used regularly where error checking is not
needed, or as a bootstrap telecommunications program.

DEPARTMENTS

6 Letters
7 Editorial: Practical Forth
9
37
38
41 Products & Announcements
42 FIG Chapters

President’s Letter: Goals and Objectives by Robert R. Reiling
Ask the Doctor: Forth and the AIM-65 by William F. Ragsdale
Techniques Tutorial: Debugging Techniques, Part I by Henry Laxen

Volume VI. No. 2 3 FORTH Dimensions

1 SUPER FORTH 64"
By Elliot B Schneider

TOTAL CONTROL OVER YOUR COMMODORE-64'"
USING ONLY WORDS

MAKING PROGRAMMING FAST, FUN AND EASY!
MORE THAN JUST A LANGUAGE.. .

A complete, fully-integrated program development system.
Home Use, Fast Games, Graphics, Data Acquisition, Business, Music

Real Time Process Control, Communications, Robotics, Scientific, Artificial Intelligence

\

A Powerful Superset of MVPFORTH/FORTH 79 + Ext. for the beginner or professional
0 20 to 600 x faster than Basic
0 1/4 x the programming time
0 Easy full control of all sound, hi res.

graphics, color, sprite, plotting line 8
circle

0 Controllable SPLIT-SCREEN Display
0 Includes interactive interpreter & compiler
0 Forth virtual memory
0 Full cursor Screen Editor
0 Provision for application program

distribution without licensing
0 FORTH equivalent Kernal Routines

Conditional Macro Assembler
0 Meets all Forth 79 standards+
0 Source screens provided
0 Compatible with the book "Starting Forth"

0 Access to all 1/0 ports RS232, IEEE,

0 ROMABLE code generator

by Leo Brodie

including memory & interrupts

MUSIC-EDITOR

SUPER FORTH 64@ i s m o r e
p o w e r f u l t h a n most o t h e r c o m p u t e r l a n g u a g e s !

SUPERFORTH64

LISP
LOGO
C
PASCAL

m
a,
0, m
3
0,

-I
m c B&C

ASSEMBLER
FORTRAN

Power of Languages Constructs Program Functionality
CALL: Ordering Information: Check, Money Order

(payable to MOUNTAIN VIEW PRESS, INC.),
V15A. Mastercard, American Express. COD'S

. _._._. _ _ - _ _ - $5.00 extra. No billing or unpaid PO'S. Cali-
fornia residents add sales tax. Shipping costs
in US included in price. Foreign orders, pay

(415) 961-4103
A b f i D DhDTA D h D WlCW PRESS INC.

A SUPERIOR PRODUCT
in every way! At a low

price of only '
Dealer for

$96
0 PARSEC RESEARCH (Ertablished 1976) Commodore 64 8 VIC-20 TM of Commodore 1

h
:Tee Shipping in U.S.A.

SPRITE-EDITOR
Access all C-64 peripherals including 4040

Single disk drive backup utility
0 Disk 8 Cassette based. Disk included
0 Full disk usage-680 Sectors
0 Supports all Commodore file types and

0 Access to 20K RAM underneath ROM

0 Vectored kernal words
0 TRACE facility
0 DECOMPILER facility
0 Full String Handling
0 ASCII error messages

Conversational user defined Commands
0 Tutorial examples provided, in extensive

manual
INTERRUPT routines provide easy control
of hardware timers, alarms and devices
USER Support

SUPER FORTH 64@ compi led c o d e
b e c o m e s m o r e c o m p a c t t h a n e v e n assembly code!

drive and EPROM Programmer.

Forth Virtual disk

areas

0 FLOATING POINT MATH SIN/COS & SQRT

I

muun DMDDW v IS

P.O. BOX 4656, MT. VIEW, CA Y4U4U

in US funds'on US bank. include for handling
PARSEC RESEARCH and shipping $10. Drawer 1776, Fremont, CA 94538

AUTHOR INQUIRIES INVITED

FORTH Dimensions 4 Volume VI, No. 2

Sixth FORML Conference
Forth Modification Laboratory

November 23-25,1984

CALL FOR PAPERS
/

FORML is a technically advanced conference of Forth practitioners. The topics to be discussed will affect the future
evolution of Forth. All conference participants are encouraged to write a paper for oral or poster presentation.

Topics Suggested for Presentation

Forth in 64K and beyond
Forth expert systems

Forth on the Macintosh
Forth advanced applications

Forth on the 32 bit machine
Forth in the future
Forth for robot control
Forth programming style

Registration and Papers

Complete the registration form, selecting
accommodations desired, and send with
your payment to FORML. Include a 100 word
abstract of your proposed paper. Upon
acceptance by FORML, a complete author‘s
packet will be sent to you. Completed papers
are due September 30,1984.

About Asilomar
Asilomar is an ideal conference location. It is
situated on the tip of the Monterey Peninsula
overlooking the Pacific Ocean. Asilomar
occupies 105 secluded acres of forest and
dune. The secluded setting and clustered
meeting and accommodation areas make it
ideal for group meetings. Asilomar’s excel-
lent meals are complemented by Asilomar’s
homemade bread and pastries. Accommo-
dations are excellent and deluxe roonls have
been reserved for FORML attendees.
Sweeping ocean views are available from
decks or balconies. Asilomar is a Unit of the
California State Park System.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Registration Form
Complete and return with check made out to:
FORML, P.O. Box 51351, Palo Alto, CA 94303

Name

Company

Address

City State ZIP

Telephone (day) (evening)

I have been programming in Forth for: (years) __ (months) -

Accommodations Desired
Prices include coffee breaks, wine and cheese parties, use of Asilomar facilities,
rooms Friday and Saturday nights, and meals from lunch Friday through lunch
Sunday. Conference participants receive notebooks of papers presented.

Conference attendees, share a double room:

Attendees in single room (limited availability):

Non-conference guests:

number of people- x $250 = $

number of people ~ x $300 = $

number of people- x $200 = $

Total Enclosed $

Options: Vegetarian meals? -
Non-smoking roommate? -

FORML, P.O. Box 51351, Palo Alto, California 94303, U.S.A.

Volume VI. No. 2 5 FORTH Dilnmahmr

Kaypro User in Distress

Dear FIG:

I’ve read about you both in Micro
Cornucopia and in Rolling Stone. (When
d o y o u e x p e c t t o T a k e People
magazine?)

I have a Kaypro I1 and I’m interested
in obtaining a version of Forth. I need
advice to help me select from the differ-
ent versions available. I’ve read that one
version runs on C P / M and another is
standalone. I’ve read of fig-FORTH,
UNI-FORTH, Forth-79 and Forth-83.
Help! Is there somebody 1 could call
who can tell me the relative advantages
and disadvantages of the various avail-
able versions?

Sincerely,

Alan Barlow
Box 3634
Seattle, Washington 98124

To Stack or Not ...
Hello:

When we’re learning Forth, we’re told
that using the stack to hold our variables
is the efficient way to go. The impression
I got was that the claim was valid and
that there was no point of diminishing
returns.

What I’ve found is that it seems to be a
good idea to favor variables when you
are working with a program that needs
to access a lot of different variable
values.

The listing gives a n example of such a
program - the version using variables
runs about 2.7 times faster than the ver-
sion using only the stack (the variable
version sorts 800 bytes in about forty
seconds on a 1.79 MHz system, versus
one minute and fifty seconds with the
stack version.)

Aside from being a lot easier to code
for the original programmer, anyone
else who wants to figure out what it does
stands a better chance than the poor
soul who tries t o decipher the stack
version.

Variables vs. the Stack

S C R 4# 49
BYTE-SORT I LOI: # 1 2 f - b u t e s --- :I

1 SWFIP 1 - SWRP
2 DUP BEGIN 2 / DUP B WHILE
3 2DUP - 1 BEGIN BUP
4 BEGIN DUP 5 PICK +
5 7 PICK 3 PICK + C@ E PICK 3 PICK 4- c3
E
7

2DUP ? I F
’3 PICt(: 5 PICK + C ! 8 PICX 3 PICK -+ C !

e m o p 4 PIctC; - DUP e,
9 ELSE 2DROP DROP DUP 1 E N D I F

10 SWRP 1 ((3R UNTIL
11 DROP I + 2 D U P SWFIP) IJNTXL
12 DROP DROP REPERT DROP DROP DROP :
15
14 (1 T h i s 56rt w o r k s or^ arrays o f bytes. 1
15 It uses the She1 I -Metzncr a lgor i thm.

6 Volume VI. No. 2
FORTH Dimensions

Practical Forth
Sometimes we get so involved with

theoretical and research aspects of pro-
gramming that we forget the computing
sciences (and arts) ,should be helping
people. Not so David L. Jaffe, whose
work keeps him directly involved with
the humanitarian end of things daily.
Find herein his report on Forth in reha-
hiitation applications. We can imagine
3~7 more satisfying and productive use of
Jur technology, nor one more deserving

This issue also contains a contribu-
::on to help all of you who haven’t yet
experienced the joy of uploading a
.engthy program directly from a friend’s
computer instead of laboriously typing

si support.

it manually. It is simple enough for new-
comers to telecommunications to com-
prehend what it is doing (only three
screens of code). Enter this one by hand
and use it to upload a version of the
much lengthier XMODEM when you
are ready to graduate to error checking
and other features.

Finally, a note to prospective authors.
Forth Dimensions welcomes your con-
tributions to the field of Forth litera-
ture. Our reviewers are always happy to
see new material and new authors. Of
particular interest are tuforials and sim-
ple applications which exemplify some
feature of Forth for novices, accompan-
ied by a clearly written, reader-friendly

article. (Yes, I know that all good Forth
code is self-documenting.. . .)

Meanwhile, thanks to all of you who
have taken time to write a letter or short
note to tell us how we are doing. We
enjoy hearing from you!

--Marlin Ouverson
Editor

We here at SEFFIG (SouthEast Flor-
ida FIG) have come to the consensus
that the Forth stack is at its best when
used for operations like DUP, SWAP,
OVER and ROT which are very simple
operations on only the first three values
on the stack; I suggest that deep stacks
are often more trouble than they are
worth. We encourage anyone with obser-
\-ations, experiences or constructive crit-
icisms of this notion to drop us a line.

Good Day!

Rudy Smith
4601 SW 58th Avenue
Miami, Florida 33155

Minus a Plus

Dear Marlin:

1 was pleased to see the publication of
my decompiler in Forth Dimensions
(V/6). Unfortunately, in the process of
typesetting my text, an error was intro-
duced into the definition of ASCII on

page eighteen; The word 1 should be I+ .
Thanks for your continued interest.

Sincerely,

Norman L. Hills
Director of Data Processing
Servi-Share of Iowa
600 Fifth Avenue, Suite R
Des Moines, Iowa 50309

Reviews from Rochester

Dear FIG:

I am pleased to resume my subscrip-
tion to Forth Dimensions. Marlin Ouv-
erson and Roy Martens, together with
their respective editorial and production
staffs, have done a superb job with
Forth Dimensions. Volume 5 Number 6
just confirms my thoughts! 1 especially
enjoyed the interview with Bill Rags-
dale, and hope that you will have more
in the future. May I suggest that you
corner Hans Nieuwenhuyzen for his
thoughts? The “PL/ I Data Structures”
article was also good and should inspire

my students to further consider the
power of defining words. The montage-
style cover art alternates between being
confusing and illuminating, just like
Forth. Finally, congratulations to John
Hall for getting the chapters together
and enticing them to write up their min-
utes. I’ve been lax, but I’ll see that some
Rochester FIG minutes (hours?) make it
to Forth Dimensions.

Looking forward,

Lawrence P. Forsley
Laboratory for Laser Energetics
University of Rochester
Rochester, New York 14623

Getting HEXed

Dear FIG:

The number utility described by David
McKibbin (Forth Dimensions V/4) is
certainly an improvement over chang-
ing BASE for each number that requires
it, or modifying the Forth interpreter to
accept new number characteristics. I

Volume VI, No. 2 FORTH Dimensions 7

i
I

Linn Electronics, makers of
digital percussion synthesizers,

is looking for excellent programmers
to assist in the development of

new products in digital percussion
and other areas of computer music.
Experience is required in software

development of real-time
microprocessor-based systems.

Knowledge of 8086 assembly code,
FORTH, hardware design, and
music synthesis is preferred.

Send resume and salary history to:

lIjnn
Linn Electronics, Inc.

Research &- Development Division
18720 Oxnard Street

Tarzana, California 91356

Numeric Conversion

s c r e e n # 5 ?
0 \ Xes numeric t n n v e r s i ~ n
1 DECIMAL
2 (I I E X) (- - - nC:iterall) t hew convert chrrs z t HER.E I+
3 EASE @ '.R HEX
4 IIERE 1 + CONVERT D R O P i convert a 1 1 but 1 s t c h a r
5 iCOMPILEl L!TERAL \ N3TE' STATE-smart L!TERAL
0 R > BABE ,
7
8 i WIDTI-: ' !~ match o n 1st char an3 count'
9 ' CXXXX (HEX) , IMMEDIATE \ 4 digit number
A 6XYX (HEX) , IMMEDIATE \ 3 d i q i t n u m b e r
B 5XX (H E X) , IMMEDIATE ! 2 digit nuabcr
c ~x (m x) . II-IMEDIATE \ 1 d i q i t number
D 31 W I D T H '
E
F

screen# 58
0 \ ASCII character converters
1 DECIPIAL
2 I W I D T H
3
4 : "X < __ - ctliterall
5 HERE 2 + Ce rCOHPILE1 LITERAL , INMEDiATE
6
7 . ' Y . (--- cCliteral1)

8 HERE 2 + C 9 " 9 - \ get char, convert to c o n t r o !
9 DUP EL U(NOT 0 ?ERROR \ legal'
A CCOMPILEI LITERAL ; 1MMED:ATE
B
C 31 W I D T H 1

D
E
F

ok
5 7 LOAD o k

4100 256 o k
5 7 F F F . 3 2 7 6 7 o k

T E S T Aok

58 LOAD ok
" A 65 o k
'A 1 o k
5 A . 1 0 o k

TEST 5 4 1 EMIT ; ok

ok

: STARS 0 DO " * EMIT LOOF , o k
1 0 STAR9 * * * * * k * * * * o k

preferred $ to H' as a name for input hex
conversion, more in keeping with tradi-
tional symbolism. However, if you com-
bine this idea with the in-word parame-
ter passing as described by Timothy
Huang (Forth Dimensions V/3), you
can get that unchanged interpreter to
process numeric conversion symbols of
any type (as long as they are at the head
of the name field). Consider the code in

screens #57-58 and the sample usages. A
minor problem is that conversion failure
leaves you HEXed.

Sincerely yours,

Alden B. Long
23 Pleasant Avenue
South Hamilton, Massachusetts 01982

C3RTH Dimensions 8 Volume VI, NO. 2

-
Goals and Objectives

The elections are complete and work
has started on planning the services and
activities for members during the next
year. But first, a te of thanks to the

the Forth Interest Group. They made it
possible for almost any computer enthu-
siast to have an outstanding language,
Forth, running on his or her computer.
Listings and instructional material have
been available from the Forth Interest
Group since 1979. Instructional meet-
ings have been held throughout the
world to demonstrate the virtues of
Forth. The results of these activities are
that Forth is used for many industrial
groups, Forth systems are distributed by
several Forth vendors, universities use
Forth in course material, a Forth bul-
letin board system is in operation twenty-
four hours a day (dial 415-538-3580;
operation is currently at 300 baud), con-
ferences and conventions devoted spe-
cifically to Forth are held regularly, and
the Forth Interest Group has had a
membership growth to 4713 members.
This is a remarkable record for an
organization directed by volunteers.
Thank you Dave Boulton, Kim Harris,
John James, Dave Kilbridge and Bill
Ragsdale for making Forth and Forth
information available to everyone.

Now a new Board of Directors has set
about continuing the activities of the
Forth Interest Group; they are John
Hall, Kim Harris, Thea Martin, Robert
Reiling and Martin Tracy. They have
elected officers as follows: President,
Robert Reiling; Vice President, Martin
Tracy; Secretary, Kim Harris; and Trea-
surer, Dave Kilbridge. John Hall is the
Chapter Coordinator.

The first order of business of the new
Board of Directors was to set down the
purpose and goals of the Forth Interest
Group. Here is the list.

1. The Forth Interest Group is a non-
profit, member-supported organization,
which provides services to promote the
use of the Forth computer language.

founders and first P oard of Directors of

2. Services include education and com-
munications to members and the public.
3. The F0rt.h Interest Group desires that
every Forth user in the world join the
Forth Interest Group. To this end, the
Forth Interest Group will try to service
their needs.
4. The Forth Interest Group’s main
objective is to provide services to its
members; secondary objectives are 1) to
increase the membership base in order
to offer better services and 2) to promote
the use of the Forth computer language.

The above will be the guide followed
by the Board of Directors and officers in
the forthcoming operation of the Forth
Interest Group.

Here are some activities already
planned for this year. The FORML con-
ference and tour program, which will be
a group trip going to Taiwan, Hong
Kong and China, will attend a FORML
conference in Taiwan, an International
Forth Interest Group dinner meeting in
Hong Kong and meet with Chinese
Forth enthusiasts at the Chiao Tung
University in Shanghai. The group de-
parts September 25, 1984 and returns
October 14, 1984. Look in the last
FORTH Dimensions for details of the
trip. In the U.S.A., this year’s FORML
conference will be held at Asilomar,
California, November 23,1984 through
November 25, 1984. The annual Forth
Convention will be held November 16-
17, 1984 at the Hyatt Palo Alto in Palo
Alto, California. Look in this issue of
FORTH Dimensions for details of the
Convention and Asilomar FORML
Conference.

-Robert Reiling
President

Multiuser/Multitasking
for 8080,280, 808.6

Industrial @ \
Strength

TaskFORTH,.
The First

Professional Quality
Full Feature FORTH

System at a micro price*

LOADS OF TIME SAVING
PROFESSIONAL FEATURES:

* Unlimited number of tasks
* Multiple thread dictionary,

superfast compilation

a Novice Programmer
Protection PackageTM

* Diagnostic tools, quick and
simple debugging

* Starting FORTH, FORTH-79,
FORTH-83 compatible

* Screen and serial editor,
easy program generation

a Hierarchical file system with
data base management

* Starter package $250 Full package $395 Single
user and commercial licenses available

If you are an experienced
FORTH programmer, this is the
one you have been waiting for!
If you are a beginning FORTH
programmer, this will get you
started right, and quickly too!

Available on 8 inch disk
under CPlM 2.2 or greater

also
various 511’4’’ formats

and other operating systems

FULLY WARRANTIED,
DOCUMENTED AND

SUPPORTED
~~

1 INVITED

Shaw Laboratories, Ltd.
24301 Southland Drive, #216

Hayward, California 94545
(415) 276-5953

Volume VI, No. 2 9 FORTH Dimensions

Kurt Luoto
Redwood City, California

We are all familiar with@e concept
referred to as “factoring” by the Forth
community. It can be summarized as
eliminating duplication of effort. Con-
sider the code depicted in figure one. In
it, there are three different bodies of
code (A, B and C) that have some
sequence of words (X) that is the same in
each of them. The usual thing to do
when you notice such a situation is to
define a new word named X and to
replace the sequence in each larger code
portion with the word X. The benefits of
this factoring are: 1) the code takes up
less space, 2) the code is usually easier to
understand, 3) we only have to debug
the common code once and 4) modifica-
tions are made easier since functions are
centralized. The price we pay is a small
overhead for calling and returning from
the new word. Everyone is familiar with
this kind of factoring and examples can
be found everywhere.

However, there is another kind of fac-
toring that is often neglected. Consider
the code depicted in figure two. Here
there are three bodies of code that are
the same in all respects except for the
inner portion of each. It is a sort of dual
of the first kind of factoring. Again, the
thing to do here is to factor out the
common code, in this case the outer por-
tion of each, and to make it into a new
word called X. All the same benefits and
penalties apply as with the first kind of
factoring.

The extra step we must make in this
case is to somehow let the new word
know what code it is supposed to exe-
cute in the inner portion when it is
called. One way to do this is to have a
case structure in the middle and pass the
word an argument indicating which case
to execute. But this presumes that you
know beforehand all the cases that you
might want to have. It also fails to fully
separate, to fully factor the word. A
much nicer way is to pass not a value,
but the actual code we want executed in
the middle as an argument or parame-
ter. Such arguments are called procedu-

B

El
C

E
Figure One

X

r
I x X

E
I I

X

Figure Two

ral or functional arguments. I will refer
to structures that take procedural argu-
ments as forms, borrowing terminology
from Glass’ review’ of an article by
Backus (my apologies if this usage is not
precise). Let’s look at a few examples.

A Simple Example
A common function in many applica-

tions is sorting. Sorting may need to be
performed on a wide variety of data.
While no sorting algorithm is optimal in
all situations, it would still be nice to be
able to write a single sorting routine that
is applicable to any type of data. One
way to approach this is to notice that for

many sorting routines in the literature,
the only portions of the algorithm that
depend on the data are the comparison
function, which is the way you tell
whether one item is “less than” another,
and the way that the logical list of items
is represented.

We can write a generalized sorting
routine by generalizing these two depen-
dencies. We can generalize the latter by
agreeing that our data will consist of an
array of sixteen-bit words (cells) in
memory. Each sixteen-bit value may be
an integer, an address of some data item
in memory, the index of a record in a

FORTH Dimensions 10 Volume VI. No. 2

file; in short, anything we care to repre-
sent with sixteen bits. We will pass this
array to the sorting routine by giving its
address and length. We take care of the
first dependency by also passing the
comparison function to the sorting rou-
tine as a procedural argument, i.e. the
sorting routine will be a form.

Screen #182 defines a WOFBSORT that
takes three parameters on the data stack:
the address of an array, the length of the
array and the CFA of the comparison
function. This is perhaps the most
straightforward way of passing a proce-
dure in Forth. (This sorting routine,
which happens to be an insertion sort, is
not a very good sorting algorithm in
general. It is only efficient if there are no
more than about a dozen items to be
sorted, or when the array is already
sorted or “nearly sorted.” It is used here
only as an example, Those wishing more
information on sorting may look in any
number of reference$.)

Thus, if we had an array A of (signed)
integer values of length LEN, then the
sequence A LEN ‘ < PFA>CFA SORT
would sort the array in ascending order.
The sequence A LEN ‘ P F A X F A SORT
would sort the array in descending order.
If we wanted to treat the values as
unsigned integers, then we would use A
LEN ‘ U< PFA>CFA SORT Suppose that the
array of values is actually a list of
addresses of strings that we wish to sort
alphabetically. Then we would define a
word like $<that would take two string
addresses and return true if the first
string was “less than” (alphabetically
before) the second and false otherwise.
Again, we would use A LEN ‘ $< PFA
>CFA SORT to sort the list in alphabetical
order.

By now you can see how to sort
almost anything in this manner. We
could even use a different sorting algo-
rithm, as long as it took the same
parameters, and it would not require
any other changes in the code that used
the sort. Such are the advantages of
good factoring. Of course, faster sorts
can be obtained by tailoring them to
specific situations, but that is the price
we pay for generality.

Many kinds of forms can be described
by sentences such as, “On every x of a
given structure y, perform F,” where F is

a procedural argument. One example is,
“On every word x in a given vocabulary,
perform F,” where F might be, “Print
the name of x,” or “Print whether x is a
C O N S T A N T . ” A ~ ~ ~ ~ ~ ~ is, “On every leaf x
of a given binary tree, visited in pre-
order, perform F,” where F might be,
“Append the data associated with leaf x
to a list in memory.”This last one might
be implemented in a recursive fashion.
Sometimes we may want to create new
forms in terms of previously defined
ones. For example, the form “On every
file of type y on the disk, perform F”
might be combined with the form “On
every record x of a given file, perform F”
to make a new form, described as “On
every record x of every file of type y on
the disk, perform F.” Many more exam-
ples of these and other types of forms
can be found and these make good can-
didates for factoring.

Other Methods of Passing Procedural
Arguments

While passing procedural arguments
by putting their CFAs on the data stack
is straightforward and sufficient for some
forms, it can become quite messy when
many parameters must be manipulated
within the form or when several proced-
ural arguments must be passed. There-
fore, it is good to consider other methods
also.

In Laxen3 and Bilobran4, procedural
arguments are passed in variables. These
variables are referred to as “execution
vectors.” This method is especially ap-
propriate where modal behavior of a
word is needed, i.e. a word operates in a
certain way each time it is called until
some execution vector is changed. Exe-
cution vectors are rather limited in appli-
cation, though. We will not be looking
at these much more in this article.

In McKibbin5 and Laxen6, procedu-
ral arguments (CFAs) are placed in the
parameter portion of a word created
with a CREATE DOES> construct. In addi-
tion, Laxen discusses the idea of a stack
on which to pass procedural arguments.
This is a very useful idea, since some-
times just the two stacks (data and
return) are not enough to conveniently
handle all parameters. But while Lax-
en’s example is instructive, it also has its
limitations. So let’s take a look at a more

general approach to making and using
forms.

First, let’s list some of the properties
that we want in form handling.

1) We want the ability to combine
forms, that is, to create new forms that
call upon previously defined ones.
2) We want our forms to be re-entrant
and we want to be able to make them
recursive.
3) We want to be able to handle forms
that take a variable number of procedu-
ral arguments.

4) We want our defining words to do as
much of the bookkeeping as possible,
i.e. make the forms as simple as possible
to use.

In the accompanying screens are some
definitions that I think meet these crite-
ria. Let me show you how they are used
and see if you agree.

A form is defined with the word pair
FORM END-FORM. They are used in the
same way as : and ;, the format being
FORM <name of form> <body> END-
FORM where <body> is just like a colon
definition body. Within the body of a
form, a procedure that has been passed
as an argument can be executed by the
sequence <argument number> %EXEC
where <argument number> is zero for
the first argument passed, one for the
second, etc. The word I N A R G S places on
the data stack the number of (the count
of) arguments that have been passed to
the form.

A call to a form has the format <arg
O X a r g I X a r g 2> ... <arg n X n a m e
of form> where <arg x> is a construct
that pushes a procedural argument onto
a special stack called the procedure
stack. A form may be called with any
number of arguments, including none at
all. There are several formats for push-
ing a procedural argument on the stack,
including the following:

1) An argument may have the format
<CFA> %PUSH where <CFA> is the
CFA of a word (procedure) to be passed.
For example, you could use ’ <word
name> %PUSH to pass a particular word
as an argument.

2) Within aform, an argument may have
the format <argument number> %ARG

Volume VI. No. 2 11 FORTH Dimensions

where <argument number> is the num-
ber of an argument (procedure) that has
been passed to the form.
3) An argument may have the format 46:
<body> %; where <body> is any body
of code as would normally appear in a
colon definition, except for the defini-
tion name. A headerless piece of code is
generated in-line and is passed as an
argument.
4) An argument may have the format
%CODE <body> %END-CODE where
<body> is any body H code as would
normally appear in a CODE definition,
except for the definition name. A head-
erless piece of code is generated in-line
and is passed as an argument.

Recursion may also be used in forms.
In place of
<arg O><arg I><arg 2> ... <arg
n X n a m e of form>
you may use
<arg O X a r g 1 X a r g 2> ... <arg n>
MYSELF

where you wish to recursively call the
form that you are defining. The word
MYSELF is the (almost) standard Forth
word which compiles the CFA of the
word currently being defined. If, how-
ever, you are going to call a form recur-
sively with exactly the same list of pro-
cedural arguments that it was called
with, you may use %MYSELF which is
more efficient (it does not take up extra
space for the call and takes less time).
The word %MYSELF can only be used
within a form definition, i.e. between
FORM and END-FORM.

Given these words, defined in screens
#183-190, we can now use forms in a
fairly general manner. Let's look at a
few examples.

Screen #195 re-defines our sort in
terms of the new defining words. The
word ISORT which sorts an array of
integer values is defined using the new
form.

Screen # 197 defines a form called PER-
WORD that takes the address of a header
of a word, usually the first one in a
vocabulary, and passes it to the single
procedural argument that was passed to
it. After calling the procedural argu-
ment, it expects a flag on the data stack
indicating whether to continue or not. If

0 (HEILPJNC; WORDS Vl.FORTH K W L 01 ..IAN84)

1 FOR 7 H DEF I N I T I ON5 DE 11: I MAL
'2 (1HE WORtI ''C:OLi:iN" C'OMPII.ES THE RIJNTIMF C'OI!F FOR COLON LIEFNS.)

:3 (THIJ!; Yi:iCI SEE I T C'OMPILED I N A T VARICIIJ8 POINTS WHERE A CFA)

5 : SI'ILON C L.ATE
1.

4 (Ii: TO HF L I X A T)

1.FAXFR @ '1 I-ITEHAL I :

t THE CCiN$lANT INI IJCATE~: THE NIJMBER CIF MAC'HINE AtltlRESS)
(I.INIT!3 THAT MAKE IIINE 1X.L. [.E. ONE I & - B I T WORD I N 16-HIT)

MFNTATIONC; OF FOR7H. CIN A TYP1

ER, THI'; 1MPLEMENTRTII~IF.I I-l!?E!< W17
n N f W I L L BE TWO. SINC'C TWil FYTE

i l (FORM LIEFINING WOHrlS VLFORTH KWL 01JAN84)

1 F'OHTH IiEF I N I T I ClNS DEC:I MAL.
L

:3 VARIABLE %FRAME (FRAME POJNTER)
4 VARIABLE %BTAC:K 200 ALLOT (F IRST WORD OF STACK I S PUINTER)
5
b : %SlAT:h I (--) (RESFTS STAC:E ANTI FRAME POINTERS)

8
CI %!<TACIC 6

1 0
11 (NOTE: ZSTCICb: SHOULti RE C:OMPIL.ELl INTO ABORT CODE)
1 2
13 --:;.

7 %!;TACK r w NEXT-CELL !SWAP t w %FRAME I :

BLOCK: 185

0 (FORM DEFINING WORDS VLFORTH KWL OlJCIN84)

1
2 : (%PUSH) (N --) (PUSHES A VALLIE FROM THE DATA STACK)
3 (ONTO THE PROCEDURE STACK)

4 %STACK @ ! 1 CELLS %STACK + ! :
5
& :
7
E:
9
10 :
I 1
1 '2
13
14 :
15

(%Pop) (-- N) (POPS a VALLIE FROM THE PROCEDURE)
(STACK ONTO THE DATA STACK)

-1 CELLS XSTCICK +! %STACK @ @

%PUSH (CFA --)
(PUSHES A CFA AND THE CURRENT FRCIME VCILCIE ONTO THE STACK)

(%PUSH) %FRAME @ @ (%PUSH) :

%' (CELL FOLLOWING THIS HCIS CFA TO PUSH ONTO PREIC. STACK) --> R> DUP NEXT-CELL >R @ %PUSH :

FORTH Dimensions 12 volume VI. NO. 2

RLCICK: 1%

O (
1
2 :
3
4
5
h
7
8 :
9

1 0
l l
12 :
13
14
15 --

FORM DEFIN ING WORDS VLFORTH KWL O l J A N 8 4)

(% :) (--)
(THE CELL FOLLOWING T H I S HAS ADDRESS TO BRANCH TO.)

(THE CELL FOLLOWING THAT 13 THE CFA OF THE INLINE)
(PROC. AHG WHICH WILL BE PIJSHED ON THE PROC. STACK.)
R> DLlP NEXT-CELL SWCIP @ >R %PUSH i

%: (1NTRODCIC:EG AN INLINE PROC. ARG. COLON D E F I N I T I O N)
T O M P COMP1L.E (% : f HERE 0 , COLON 31 :
IMMECIIFITE

%: (CLOSES AN INLINE PROC. ARC<. COLON S E F I N I T I O N)
?C:OMP 31 ?PAIRS COMPILE E X I T HERE SWAP ! i
IMMEDIATE

.?

BLOCK: 187

O (
1
2 :
3
4
5
6.
7
8
9

10 -

\

FORM DEFINING WORDS VLFORTH KWL 01JCIN84 1

(FORM) (CELL FOLLOWING I S CFA OF FORM TO BE CALLED 1
0 (%PUSH) (TO INDICATE END OF ARGUMENT L I S T .)

%STACK C %FRAME '2 NEXT-CELL (%PUSH) %FRAME !
I?> EXECUTE (EXECUTE THE FRAME CODE)
(RESTORE FRAME POINTER AND POP FRCIME OFF OF STACK)
(%POP) DIJP %STACK ' -1 CELLS + ZFRAME ! i

PUSH NEW FRAME POINTER)

->

0 (
1 :

4 :

h
7 :

q
1 i:)
1 1
1%
1 3 -.

c

FORM DEF ININC; WORrlS VLFORTH KWL. O l J A N 8 4)
FORM (FORM D E F I N I N G WORD. ILl$iED I N PLACE OF :)

C COMP I LE 7 : C:I-IMP I L.E (FORM) CO1. ON '30 : I MME ti I ATE

ENlI-FORM (FCIRM D F F I N I O WORD. LISFI3 I N PI-ACE /IF :)
.., . . ? I) '~'PAIH'Ii CC:OMPILE3 7 IMMEDIATE

%NARCiR (-- N)

f F'l.11 S NILJMRER OF Ph'Cti:. ARGS. I N THE C:?IRRENT FRAME)
(ON THE DATA STACK)

0 7.F RGMF R C
HFOTN r w B WHILE

7 CF'I. 1 s + SWAP l+ SWAP REPEAT DROP : - .>

the flag is false, the form returns. If the
flag is true, the form gets the next word
from the LFA of the current word and
again passes it to the procedural argu-
ment, repeating until a false flag is left
on the stack. This word is dependent on
the structure of the header and vocabu-
lary in the system.

The word VLlST is defined using this
form. It lists the names of all the words
in a vocabulary (or vocabularies).Note
that PER-WORD keeps its copy of the
word address of the return stack while
calling its procedural argument. This is
to make it a little easier for procedural
arguments to use the data stack. For
example, WORD-STATS is defined to count
the number of words in the linked list,
calculate the sum of the lengths of their
names and print the average length. The
word FIND-CONSTANT searches the list
for a constant that has the given value
and returns its address and true if found,
false if not found. A high-level defini-
tion of FIND could also be written using
this form.

Screens #191-192 build a contrived
example of a binary tree, each node hav-
ing a word of text as its data. The word
.NODE prints the word (data) associated
with a node, given its address. Screen
#193 then defines forms that visit the
nodes of the tree in in-order and pre-
order fashion respectively. These are
examples of recursive forms.

Sometimes procedural arguments can
be used to solve the forward referencing
problem. For example, Sommers7 gives
an example of several routines that call
each other recursively. The problem is
that the definitions would normally re-
quire some forward referencing. Som-
mers shows how this can be solved using
execution vectors. His code is repro-
duced here in screens #199-200, modi-
fied slightly for this version of Forth.

With the form-handling words pre-
sented here, another approach is possi-
ble. Equivalent code using these words
is given in screen #201. (Here I have
eliminated unnecessary variables.) In
this implementation it should be noted
that within the definition of a form, any
occurrence of the phrase <argument
number> %EXEC will execute an argu-
ment to the form being defined, even if
this phrase is executed by another form.

iolume VI. No. 2 13
~ ~~

FORTH Dimensions

For example, suppose we have the
definitions

FORM B 0 %EXEC END-FORM
and
FORM A 0% 0 %EXEC %; B END-FORM

When A is called, it calls B with the indi-
cated in-line code argument. B in turn
calls the argument which executes the
phrase 0 %EXEC. Since the context of
this phrase was A, the first argument that
was passed to A, not B, is executed even
though the form currently executing is
8. That is, arguments “remember” their
context.This is somewhat similar to the
funarg problem in LISP. It may sound
odd when explained like this, but it is
very natural in use so you don’t usually
need to think about it.

Implementation Notes
The procedure stack is simply a user-

defined stack on which to store CFAs
and other information(see figure three).
In my implementation, the stack grows
upward towards high memory. There is
an additional variable called the frame
pointer that points to the current argu-
ment list (actually it points to a pointer
to the argument list).

In a typical call to a form, the various
procedural argument constructs push a
CFA onto the stack along with the value
of the frame pointer that was in effect
when that procedure was first pushed
onto the stack. This is so we can restore
the “context”of that routine when we go
to execute it.

A special run-time word, (FORM), is
used to actually call the body of the
form. It pushes a zero on the procedure
stack (to mark the end of the argument
list), then pushes the current value of the
frame pointer and sets the frame pointer
to the new frame. Next, the run-time
code of the form is called by (FORM).
When the form returns, (FORM) restores
the previous frame pointer and the entire
frame is popped off the procedure stack.

When a procedural argument is exe-
cuted, the current frame pointer is saved
on the procedure stack (the return stack
could be used instead if it has enough
room), the frame value associated with
the argument is stored in the frame poin-
ter and the procedure is executed. When

\

0 (FtWM [SEFINING WORDS VLFORTH KWL 01JANS4)

1
2 : %ARC; (N --) (PCISHES PROC:. ARC;. N ONTO THE PROC:. STACK;)
13 (ARC;) Dl,JP C (%PIJSH) NEXT-CELL C (%PCISH) !
4
5
h : %MYSELF (CALLS THE CI.IRRENT FORM RECIJRSIVELY, SAME ARGS.)
7 ‘TX” LATEST LFASPFA NEXT-CELL 3 : IMMEDIFITE
8

BLOCK: 191

0 (TREE-FORMING WORDS VLFORTH KWL 01JAN84)
1
2 : NCltiE (ADDR -- ADDR‘)
3 HERE SWW HERE 0 9 0 9 (LEFT k RIGHT POINTERS)
4 EL WORD CC 1+ ALLOT (WORD OF TEXT FOR DATA) :
c

: SONS (mtiu -- mtiu AtiDu’)
7 tfClP NEXT-CELL :
Fc
9 : ENDSONS (ADDR --) DROP :

i n
11 : .NODE (ADDR --) 2 CELLS + .ID SPACE : . .-.
L L

13 --:>
14
15

BLOCK: 192

VLFORTH KWL 01JAN84) 0 (TREE EXAMPLE
1
2 VARIABLE TREE TREE
3 NODE I S SONS
4 NODE THIS ENDSONS
5 NODE I N SONS
h NODE TREE SONS
7 NODE A ENDSONS

9 NODE INORDER
8 NOLIE PRINTED ENDSONS

1 0 NODE ClSlNG SONS
11 NODE FASHION ENDSONS
12 NODE FORMS. DROP
13
1 4 -->
15

BLOCK: 193

o (TREE-PRINTNG wouns VLFORTH KWL Ol,lAN84)

1
2 FORM INORDER (ADDR --)
3 BEGIN DClP WHILE
4 DClP NEXT-CELL @ %MYSELF DLlP 0 %EXEC
5 C REPEAT DROP
4 END-FORM
7 : . INORDER (--) CR TREE @ %‘ .NODE INORDER CR i
8
9 FORM PREORDER (ADDR --)

10 BEGIN DUP WHILE
11 DUP CR 0 %EXEC DUP NEXT-CELL C
12 %: 3 SPACES 0 %EXEC X i MYSELF
1 3 C REPEAT DROP
14 END-FORM
15 : .PREORDER (--) CR TREE @ %‘ .NODE PREORDER CR i

FORTH Dimensions 14 Volume VI, No. 2

BLOIX: 195

0 (SORTING FORM VLFORTH KWI- 0 1 J A N 8 4)

2 FORM SORT (ADDR LEN --) (INSERTION SORT)
3 (SORTS TABLE AT GIVEN ADnRESS WITH GIVEN LENGTH)
4 2 - CELLS OVER + SWAP OVER

h 1F I @ I
7 BEGIN DUP NEXT-CELL C OVER ! NEXT-CELL
:3 OVER OVER NEXT-CELL C SWAP 0 %EXEC
9 OVER 5 P I C K > 0- ANn O=

5 no I DCIP e sww NEXT-CELL c SWAP o %EXEC

10 LINT I L !
1 1 THEN
12 -1 CELLS +LOOP DROP
13 END-FORM
14
15 : ISORT %' < SORT :

BLOCK': 196

0 (SCIRTING EXAMPIX VLFORTH KWL ~IJANS~)
1
2 HEX .
3 VARIARLE A -1 lX1.L.S AILLOT
4 h 7 , 1 4 , 2 0 , 7 7 9 , 1 1 7 33 7 8 7 14 I 15 >

5 3 2 - 2 2 , 7 , 2 0 , 5 4 , 32, 2 , 1 5 , 2 2 , 7 ,
h
7 A 14 ISORT CR A 14 LIUMP C:R
8
9 (HEX RESULTS PRINTED SHOULD BE:)

l o (2 , 7 , 7 , 7 , 8 . 9 , 1 1 , 1 4 7 14. 1 5 ,)
1 1 (15 7 70 , 20 , 72 9 22 I 32 , 33 . 33 , 54 . 67 9)
12
13 DECIMAL I 14
15

BLCIICK: 197

0 (VOCABULARY FORM VLFORTH KWL 0 1 J A N 8 4)

1 FORM PER-WORD (L F A --)
2 3R BEGIN R 0 %EXEC WHILE R> @ >R REPEAT R> DROP
3 END-FORM
4
5 : V L I S T (--) (P R I N T NAMES OF WORDS)
h CR LATEST %: '?WAIT DIJP I F LFA>NFA . I D
7 SPACE 1 THEN %: PER-WORD :
n
9 : FINCI-CONSTANT (N -- CPFAI FLAG)

10 (F I N D A CONSTANT WITH THE GIVEN VALUE) LATEST
1 1 %: nlJP I F CIUP I..FA>CFA e C ' 0 P F A X F A Q 1 L I T E R A L
12 I F OVER OVER LFA>PFA C =
13 I F SWAP DROP LFA:>PFA 1 0
14 ELSE DRClP 1 THEN ELSE DROP 1 THEN
15 ELSE IlROP DROP 0 0 THEN %: PER-WORD : -->

I
0 (VOCABULARY FORM VLFORTH KWL OlJAN84)
1 : .CONSTANT (N --) (USES FIND-CONSTANT)
2 DtJP F IND-CONSTANT CR
:3 I F PFA>NFA . ID ELSE . " NO CONSTANT" THEN
4 . ' I HAS VALUE " . CR :
5
h
7 HEX
8 : WORrl-STATS (--) (VOCARCILARY S T A T I S T I C S)
3 0 (3 LATEST
in x : r w IF NFA ce IF ANti + SWAP i + SWAP i THEN x i

1.2 C:R . 14 NIJMBER OF w m r w 18 OVER .
14 CR - 1 1 AVERAGE L.ENGTH: 18 SwAr I . i
is ~ ~ C : I M A L

I 1 PER-WrJRD

13 i:R . " TCITAI. OF NAMES LENGTHS: " tIlW .

it returns, the frame pointer is restored
to its original value.

The word %MYSELF - rather than
using (FORM) - simply compiles in the
CFA of the run-time code of the form
currently being defined. The procedure
stack and argument list are left
untouched.

In actual practice, all of the run-time
words - (FORM), %PUSH, etc. - should
be re-defined as CODE words (assembly
language) for efficiency. The definitions
presented here model what should hap-
pen. Also, ABORT should reset the poin-
ter for the procedure stack as well as for
the system stacks.

I also find it is handy to have words to
shorten certain common sequences, for
example %' <word> to take the place of
' <word> PFA>CFA %PUSH. Some of
these could also be CODE words.

Note to 6502 users: Some versions of
Forth on the 6502 do not allow a code
field to straddle a page boundary. In this
case you must take care, since the defini-
tions of FORM END-FORM and %: %; pre-
sented here could put code fields on
page boundaries. The simplest way I
have found on my own system is to re-
define WECUTE to accept CFAs on page
boundaries and then make sure that
CFAs defined by these words are always
executed with this new version of WE-
CUTE. This includes having an extra run-
time word for use by %MYSELF that exe-
cutes the word (CFA) following it as an
in-line argument.

Summary
I have shown one technique for han-

dling forms and procedural arguments.
This is by no means the only one and
probably not even the best. But I hope it
causes the average Forth programmer
to give more thought to the uses of pro-
cedural arguments to produce good fac-
toring.

Acknowledgments
My special thanks to ROLM Corpo-

ration for use of their facilities in prepar-
ing this article. Also to Gerald Gutt for
supplying me with VLFORTH, which
the screens are written in.

References
1. Glass, Harvey, "Functional Programming
in Forth," Forth Dimensions III/S, pg. 137.

Volume VI, No. 2 15 FORTH Dimensions

2. Knuth, Donald E., The Art of Computer
Programming, Vol. 3, “Sorting and Search-
ing,” Addison-Wesley, Reading, Massachu-
setts, 1973.

3. Laxen, Henry, “A Techniques Tutorial:
Execution Vectors,” Forth Dimensions 1111 1,
pg. 174.

4. Bilobran, Bill, “Execution Variables,”
1981 FORML Conference Proceedings, Vol.
1, pp. 245-255, Asilomar, California.

5. McKibbin, David, “Parameter Passing to
DOES>,” Forth Dimensions 1111 1, pg.14.

6. Laxen, Henry, “A Techniques Tutorial:
Parameterized CREATE DOES>,” Forth
Dimensions IV/ 5 , pg. 27.

7. Sommers, Roy W., “Vectored Execution
and Recursion,” Forth Dimensions V/4, pg.
17.

RI.OCK: IYY

Cl (SOMMERS” RECIJHSIVE TREE VLFORTH EWL O l J A N 8 4)

1 VARIABLE ‘I..HH
2 VARIABLE LEVEL B LEVEL I (VAL OF C:ALLINCi LEVEL)

3 v w 1 A m . E ANGLE 20 ANGLE I (ANG BETWEEN STEMS)
4
5 : RETI.IRN R:> n R w : (RETCIHNB TO CALL rNC; LEVEL)

h : LRR .’t.BR Ca PFA FCI EXECUTE : < I)EFINE I N TERMS OF ’LBR)
7 : RRR ’HEIR C PFA FA EXECCITE : (DEFINE I N TERMS OF ‘RRR)
:3
9 : NIXIF

(ClSEn TO STORE PFAS) VARIARLE ’RHR

1 0 I..EVFL C 1 c: I F RETURN THEN
11 - I LEVEI. t! ANG1.E ct LEFT (ADJI.IST I .EVEL AND TlJRN
12 1 HR (DRC)W I.FFT RRANC:H)
13 ANGLE B l* RIGHT (TlJHN)
14 HHH (rww RIGHT BRANCH)
15 ANCil F C I EFT 1 1.F.VEI. +I (RESET --->

HI .l:ll::)r: 3rr1

CI (SAME 7 RFF ILlSINlri FORMS
1 : NOOF :

VL FORTH C.WL ii i JAN84

7
8 : NCII’IE (I EN RNCi1.F 1.E‘VEI. -- LEN ANGLF LEVEI-)

ii niw IF
-1 + IWER LFFT %‘ 29 %’ MYSELF BR 1 1:)

1 1 OVFR ?Q RIOHT % ’ N O W % ” MY’-’ >ELF BH
12 OVER I .EFT 1+ THEN :
1 :3
t 4 : $FTLIP 1 0 20 8 %.” Z’* % ” Ni7EtE HR LIRCIP DROP LSRrJP ;
15

~.

FORTH Dimensions
-~

16 Volume VI, No. 2

f

Frame Pointer

Stack Pointer ,-I

Call to
(l % E X E C) I

1 %EXEC ENDFORM
%'+ 0 %ARG A ENDFORM
%'* B 0 %EXEC ENDFORM
DUP C ;

The above code yields the procedure stack shown at the
left at the point that the form A calls

Figure Three

Volume VI, No. 2 17

The Integer Solution
Marc Perkel

Springfield, Missouri

The title of this article is taken from
“The TO Solution” by Paul Bartholdi
(Forth Dimensions, 1/4,5). Dealing with
this subject in a different way, I chose to
use the name INTEGER purely for psycho-
logical reasons, so as to put this concept
in a class by itself. To use the name
VARIABLE here might imply that I intend
to replace the present concept of VARIA-
BLE, which is not what I want to do. Not
only that, the name INTEGER implies that
I’m talking about sixteen-bit words and
not strings, stacks, arrays or floating-
point numbers.

Integers are self-fetching variables.
Normally, they act like constants but,
when following the operator -> (“to”)
they store the stack top. In other words,
INTEGER X creates X with initial value
zero. When x executes, it leaves its value
on the stack. When the phrase 5 -> x
executes, a five is stored in X.

Some of the reasons for usings INTE-
GERS include the symmetry between them
and constants, not having to use @ and
! and making Forth programs signifi-
cantly more readable. How much more
readable wasn’t apparent until I changed
my new compiler to use integers. It
creates a whole new style of program-
ming. Consider the following task: I
want to write a word MORE that will load
the next several screens after the one I’m
presently on. For example, 3 MORE loads
the next three screens. The ordinary way
to code this is shown in figure one-a, and
the method with integers is shown in
figure one-b.

And consider the comparison in fig-
ure two-a and two-b. In this example,
the word BOX comes in with the length,
width and height on the stack, and
leaves with the volume, surface area and
length of edges on the stack.

As you can see from these examples,
there is a more far-reaching impact on
programming style than merely elimi-
nating the need for @ and 1. The use of
integers creates an environment that
inspires the writing of very readable
code, especially in the area of stack

: MORE (n - : l o a d n more s c r e e n s)

BLK @ 1). IiUP ROT t SWAP DO I LOAD LOOP i

Figure One-A

: MORE (r i .- I l oad ri more sc ree r i s)
BLK + it BLK it DO I Lcmn L a w i

Figure One-B

Figure Two-A

INTEGER LENGHT INTEGER WIDTH INTEGER HEIGHT

: BOX (l ens f th width h e i s h t - volume surface e d g e s)
.-:::. HEIGHT -> WIDTH -:::. LENGHT
LENGHT WIDTH HEIGHT * *
LENGHT WIDTH * LENGHT HEIGHT X WIDTH HEIGHT ;k t t 21:
LENTHT WIDTH HEIGHT t t 4 * i

Figure Two-B

manipulation, which is one of the major
complaints about Forth.

Now we’ll deal with the implementa-
tion techniques of INTEGER. There are
several good ways to go about this. The
best one so far, which was suggested to
me by Henry Laxen, (thanks, Henry) is
like CONSTANT with a second code field
on the end. The second code field is for
writing to the integer. (See figure three.)

In this implementation, the read code
field and the stored integer are exactly
the same as what CONSTANT compiles.
The addition is the write code field

which points to native machine code
that causes the top of the stack to be
stored into the integer.

To define some terms here, I will refer
to the address of the read code field as
the read address, the address where the
integer is stored as the integer address
and the address of the write code field as
the write address.

In the normal course of interpreta-
tion, the read address is what is nor-
mally compiled or executed. This works
exactly like CONSTANT. The write opera-
tor -> can be defined as in figure four.

FORTH Dimensions 18 Volume VI. No. 2

I n t e g e r Format:

Header 1 R R I I I I W W

-Write Code F i e l d
S t o r e d I n t e g e r

Read Code F i e l d

Figure Three I

INTEGER DUMMY F I N D DUMMY 4 t CONSTANT :>VAR

: -:> (i n t e d e r w r i t e arerator')
F I N D ?DUP NOT I F HERE Ill+ .' S a r What?' ABORT THEN
4 t DUP @ N A R = N O T I F HERE I D , .' A i n ' t an InteSer '
ABORT THEN STATE @ I F v ELSE EXECUTE THEN i IMMEDIATE

Figure Four

Figure Five

: PRINT-BAEiE. (p r i n t s c u r r e n t base -- as!;unies inteser!!;)

SAVE BASE DECIMAL.. RASE + RESTORE BASE: E

: RECREATE (c r e a t e s new d e f i r i i t i o r i o f fa l lawir i s ward arid
return:; t h e a d d r e s s o f the old d e f i i i i t i o r s)

SAVE ::IN FINiCf RESTORE :::.IN CREATE i

Figure Six

Of course, if STATE were an integer,
the @ would be eliminated. At this
point, we see that both the read and
write operators compile only two bytes
instead of four. This saves two bytes for
every reference to variables. Not only
that, both reads and writes are faster.

The definition of -> uses the 79-
Standard FIND which returns the CFA
or zero. Error checking is provided in
two ways. First, the next word after -> is
checked to see that it exists. Then, if it
exists, it is verified as being an integer.
After these checks are made, the address
is incremented by four to point to the
write address. Thus, the word behaves
the same whether you are compiling or
executing.

The concept of integers is powerful in
itself but, as a side effect, it generated a
series of other words to expand its use-
fulness even further. Along with -> con-
sider four additional definitions: +>,
SAVE, REPLACE and RESTORE.

As you can probably guess, x> is the
integer equivalent of +!. It adds the top
of stack to the integer. In the explana-
tion of these words, I'm using high-level
Forth definitions. These can easily be
changed to native code for optimum
performance.

We can define +> as in figure five.
Note that we are dealing with the integer
address itself here. +>is state smart so as
to work the same in either the compile or
execution state. In this example, error
checking was left out but could have
been included.

The next word SAVE saves the follow-
ing integer on the return stack. That is,
SAVE DUMMY saves the value of DUMMY.
It replaces the phrase DUMMY @ >R.
Used in conjunction with SAVE is RE-
STORE which does the opposite of SAVE.
RESTORE DUMMY is equivalent to R>
DUMMY !..The word REPLACE is similar to
SAVE but also stores a new value into the
integer. REPLACE DUMMY is equivalent to
DUMMY @ >R DUMMY 1.

Since SAVE, RESTORE and REPLACE are
best implemented in native code, and
the technique would be similar to that
for +>, I am not going to code these
words here. Some examples of usage are
shown in figure six.

Continued on page 35

Volume VI. NO. 2 19 FORTH Dimensions

Forth Control Structures
David W. Harralson

Yorba Linda, California

The Forth machine is a hypothetical
stack computer that executes instruc-
tions sequentially. In order to imple-
ment changes in program flow, a branch-
ing capability has been provided. There
are two branch types defined in the
Forth-83 version of the Forth virtual
machine: BRANCH for unconditional
branches, and ?BRANCH for branching
on a true stack condition.

The high-level elements of the Forth-
83 language have defined the following
control structures for controlling pro-
gram flow:

IF... (ELSE)... THEN
BEGIN ... WHILE ... REPEAT
BEGIN ... UNTIL
DO ... (LEAVE) ... (+)LOOP

In this tutorial, we will take a look at
the Forth machine and its control flow,
and at the high-level Forth language to
see how high-level control statements
are translated into the Forth machine
language. We will also take a look at
how we can othogonalize and generalize
Forth control structures while retaining
compatibility with the current Forth-83
Standard.

For each word we discuss, a definition
much as in the form used in the Forth-83
Standard will be given. Sample imple-
mentation code will be given, but with
all the code presented separately. The
sample implementation is given for an
8080 processor using absolute sixteen-
bit addresses for all branch operands.
WHILE and LEAVE require an indefinite
chain of addresses to resolve. This is
done by chaining through the address
space reserved by >MARK. If an imple-
mentation uses eight-bit offsets or other
than sixteen-bit addresses, the imple-
mentation will change considerably.
Where a CODE sequence is used, a sam-
ple high-level definition is also given.
CODE sequences are used where execu-
tion speed is important in the imple-
mentation.

The above paragraphs discussing im-
plementation got us ahead of ourselves
by mentioning words that have not been
defined. At this point, let’s pick up some
of these words and also discuss what
happens in the Forth compiler when you
want to compile any of the Forth con-
trol structures.

Low-Level Definitions
At the lowest level, four words in the

System Extension Word Set Glossary
control the placement of addresses in
the compiled instruction stream of the
program which Forth is compiling:

>MARK addrl --- addr2

Used at the source of a forward
branch. Typically used after a branching
operation. >MARK compiles space in the
dictionary for a branch address which
will later be resolved by >RESOLVE, and
extends a possible chain of forward ref-
erences. >MARK is used by IF, WHILE and
LEAVE.

<MARK --- addrl

Used at the destination of a backward
branch. <MARK reserves space in the dic-
tionary for a branch address which typi-
cally will be resolved later by <RESOLVE.
It leaves the current address on the stack
for use by <RESOLVE. <MARK is used by
BEGIN and DO.

>RESOLVE addrl ---

Used at the destination of forward
branches. >RESOLVE resolves a possible
chain of addresses starting at addr 1,
compiling in the current dictionary add-
ress, until no more addresses are left to
resolve. >RESOLVE is used by UNTIL,
THEN and REPEAT.

<RESOLVE addrl addr2 ---

Used at the source of a backward
branch.<RESOLVE compiles addrl into
the dictionary and then uses >RESOLVE
to resolve any possible pending forward
branches. <RESOLVE is used by UNTIL
and LOOP.

The following words also belong in
the System Extension Word Set Glos-
sary. They control branching of the
Forth program.

BRANCH ---
At run time, an unconditional branch

operation is performed with the branch
address data contained in the compila-
tion stream immediately following the
branch. Whether the data is an absolute
address or an offset, or is one, two or
more bytes long is implementation
specific.

At compile time, this is typically gener-
ated with a COMPILE BRANCH followed
by <RESOLVE or >MARK.

?BRANCH flag ---

At run time, a branch is performed if
the contents of the stack are false; other-
wise execution continues at the compila-
tion address immediately following the
branch address. See BRANCH for more
details.

At compile time, Forth statements
like IF, WHILE or UNTIL will perform a
COMPlLE?BRANCH followed by <RESOLVE
or >MARK.

The above words are all in the Forth-
83 Standard. The following word is
added to provide minimal orthogonality
in the Forth computer. Tests for false
and true are now provided and allow for
more powerful high-level constructs.

TBRANCH flag ---

At run time, a branch is performed if
the contents of the stack are true; other-
wise execution continues immediately
following the branch address. See
?BRANCH for more details.

Additional branches could be consi-
dered.Such branches as <BRANCH,
>BRANCH, =BRANCH, etc. are possible.
However, since the Forth computer real-
ly only tests for true or false, and since
the words <, > and = provide a suitable
true or false flag, the words are not
strictly necessary.

.

20 Volume VI, No. 2 FORTH Dimensions

Now that we know how the compiler
can compile in various branching instruc-
tions, let’s see how high-level control
structures are implemented.

All high-level control structures are
contained in colon definitions. This
means that the Forth compiler is in
compile mode when it encounters a con-
trol structure statement. Since we gener-
ally do not want to compile the control
statement but do want the control state-
ment to compile appropriate code, these
statements are made IMMEDIATE so they
will execute even at compile time. The
following example of IF will demon-
strate the general technique.

: IF (--- 0 addrl 2)
o o (mark chains)
COMPILE ?BRANCH (compile ?branch)
>MARK 2 ; IMMEDIATE (mark place)

IF first initializes two possible chains
of addresses to zero or none. It then
compiles ?BRANCH so that a branch in
the program will be taken if the top of
the stack is zero or false. >MARK then
marks the place in the instruction stream
so that THEN (using >RESOLVE) can com-
pile the proper forward address. Finally,
two is left on the stack for structure
checking by ELSE and THEN.Other con-
trol statements use the same general
technique.

High-Level Definitions

The following words belong in the
Required Word Set. The compiling
words <MARK, >MARK, <RESOLVE and
>RESOLVE are used as defined in the
System Extension Word Set Glossary.

IF flag ---

Used in the form:
--- sys (compiling)

flag IF ... (ELSE) ... THEN

At execution time, if the flag is true,
the words following IF are executed up
to ELSE (if present). The words between
ELSE and THEN are skipped. If the flag is
false, words from IF through ELSE (or
from IF through THEN if there is no ELSE)
are skipped.

IF is an immediate compiling word. It
compiles ?BRANCH and uses >MARK to
reserve space for a resolved forward
branch. “sys” is system-dependent data

to provide compiler security and address
resolution information. IF must be bal-
anced by a corresponding ELSE or THEN.

ELSE ---
sys 1 --- sys2 (compiling)

Used in the form:
flag IF ... ELSE ... THEN

ELSE executes after the true part fol-
lowing IF if the flag is false and continues
up to and through THEN.

ELSE is an immediate compiling word.
It verifies, through sysl, that it follows
an IF, compiles BRANCH and uses >MARK
to reserve space for a resolved forward
branch and uses >RESOLVE to fill in the
reserved branch space following IF.

THEN ---
sys2 --- (compiling)

Used in the form:

or
IF ... ELSE ... THEN

IF ... THEN

THEN has no run-time action. It is the
point where execution continues after
ELSE (or after IF if there is no ELSE).

THEN is an immediate compiling word.
It verifies that it correctly follows a cor-
responding IF or ELSE and then resolves
the forward branches left by IF and/or
ELSE with >RESOLVE.

BEGIN ---
--- sys (compiling)

Used in the form:
BEGIN ... (flag WHILE) ... (LEAVE) ...

flag UNTIL
or

BEGIN ... (flag WHILE) ... (LEAVE) ...
REPEAT

BEGIN marks the start of an uncounted
loop that is terminated with either UNTIL
for conditional looping or REPEAT for
uncon-ditional looping. There is no run-
time action.

BEGIN is an immediate compiling word.
It marks the current compile address
with <MARK for address resolution and
leaves “sys” for proper compile-time
action.

DO wl w2 ---
--- sys (compiling)

Used in the form:
DO ... (flag WHILE) ... (LEAVE)...

LOOP

or
DO ... (flag WHILE) ... (LEAVE)...

DO marks the start of a counted loop.
The loop begins at w2 and terminates at
wl based on the terminating conditions
for LOOP or +LOOP. At run time, the loop
parameters are removed from the para-
meter stack and used in a system-
dependent manner to provide the proper
loop control. A legal Forth-83 program
cannot modify either the loop index or
loop limit while within the loop.

DO is an immediate compiling word.
It compiles a run-time do loop initializ-
ing word, marks the current compile
address with <MARK and leaves “sys” for
proper compile-time operation.

+LOOP

WHILE flag ---
sysl --- sys2 (compiling)

DO ... flag WHILE ... (+)LOOP

BEGIN ... flag WHILE ... REPEAT

BEGIN ... flag WHILE ... flag UNTIL

At run time, selects conditional exe-
cution based on “flag.” If flag is true,
execution continues after WHILE. If flag
is false, execution continues after the-
LOOP, +LOOP, REPEAT or UNTIL terminat-
ing the DO or BEGIN, thus exiting the
loop structure. It is an implementation
consideration whether WHILE removes
loop parameters when it exits a counted
loop.

WHILE is an immediate compiling
word. It compiles ?BRANCH and uses
>MARK to reserve space for a resolved
forward branch. “sys” is systemdepen-
dent data to provide compiler security
and address resolution information.

Used in the form:

or

or

LEAVE flag---
sysl --- sys2 (compiling)

Used in the form:

or

or

DO ... LEAVE ... (+)LOOP

BEGIN ... LEAVE ... REPEAT

BEGIN ... LEAVE ... flag UNTIL

At run time, execution continues after
the LOOP, +LOOP, REPEAT or UNTIL ter-
minating the DO or BEGIN at this syntac-
tic nesting level, thus exiting the loop

Volume VI. No 2 21 FORTH Dimensions

structure. It is an implementation con-
sideration whether LEAVE removes loop
parameters when it exits acounted loop.

LEAVE is an immediate compiling
word. It compiles BRANCH and uses
>MARK to reserve space for a resolved
forward branch. “sys” is system-depen-
dent data to provide compiler security
and address resolution information.

REPEAT ---
sys --- (compiling)

BEGIN ... (flag WHILE) ... (LEAVE) ...
Used in the form:

REPEAT

Marks the end of a BEGIN REPEAT
loop. At execution time, REPEAT con-
tinues execution to just after the corres-
ponding BEGIN.

REPEAT is an immediate compiling
word.It compiles BRANCH and then uses
<RESOLVE to resolve the backward
branch to the corresponding BEGIN and
>RESOLVE to resolve any possible WHILES
or LEAVEs. “sys”is used to ensure proper
BEGIN REPEAT nesting.

UNTIL flag ---
sys --- (compiling)

Used in the form:
BEGIN ... (flag WHILE) ... (LEAVE) ...

Marks the end of a BEGIN UNTIL loop.
At execution time, UNTIL continues exe-
cution to just after the corresponding
BEGIN if flag is false.If flag is true, loop-
ing is terminated.

UNTIL is an immediate compiling word.
It compiles ?BRANCH and then uses
<RESOLVE t o resolve the backward
branch to the corresponding BEGIN and
>RESOLVE to resolve any possible WHlLEs
or LEAVEs. “sys”is used to ensure proper
BEGIN UNTIL nesting.

flag UNTIL

LOOP ---
sys --- (compiling)

At execution time, increments the DO
LOOP index by one. If the new index was
incremented across the boundary be-
tween limit-1 and limit, execution con-
tinues at the compilation address imme-
diately following the branch address. If
the loop is not terminated, execution

continues to just after the corresponding
DO. The loop arguments must be re-
moved in a system-dependent manner
when exiting the loop structure.

LOOP is an immediate compiling word.
It compiles a run-time loop word and
then uses <RESOLVE to resolve the back-
ward branch to the corresponding DO
and >RESOLVE to resolve any possible
WHILES or LEAVES. “sys”is used to ensure
proper DO LOOP nesting.

+LOOP n ---
sys --- (compiling)

At execution time, increments the DO
LOOP index by n. If the new index was
incremented across the boundary be-
tween limit-1 and limit, execution con-
tinues at the compilation address imme-
diately following the branch address. If
the loop is not terminated, execution
continues to just after the corresponding
DO. The loop arguments must be re-
moved in a system-dependent manner
when exiting the loop structure.

+LOOP is an immediate compiling
word. It compiles a run-time +LOOP
word and then uses <RESOLVE to resolve
the backward branch to the correspond-
ing DO and >RESOLVE to resolve any
possible WHlLEs or LEAVEs. “sys” is used
to ensure proper DO +LOOP nesting.

The eagle-eyed among you have no-
ticed that the wording of the definitions
for the control structures allows a more
general use of the words in Forth pro-
grams than specified by the Forth-83
Standard. Following are the Forth-83
allowed structures and the generalized
structures. The generalized structures
contain the Forth-83 structures as a sub-
set, but are considerably more powerful
and regular.

Forth-83 definitions:

IF. .. (ELSE)... THEN
BEGIN ... (WHILE) ... REPEAT
BEGIN ... UNTIL
DO ... (LEAVE) ... (+)LOOP

Generalized definitions:

IF ... (ELSE)... THEN
BEGIN ... (WHILElLEAVE) ... REPEATlUNTlL
DO ... (WHILE/LEAVE) ... (+)LOOP

e

1
There are quite a few advantages to

having the more regular control struc-
tures. In the real world, the standard
Forth control structures force awkward

concatenate and invert the intermediate
testing points to get to a single decision
point. Not only does this lead to obscure
programming, but it complicates main-
tenance.

Also, the old Forth BEGIN AGAIN infi-
nite loop structure (which is removed to
the uncontrolled reference word set even
though the Forth nucleus used it) can
now be expressed with the natural BEGIN
REPEAT loop structure. Also, all loops
can be exited with WHlLElLEAVE (instead
of you having to remember which type
of loop you are in).

Now, remember that we defined a
low-level machine word TBRANCH that
branched on the stack being true rather
than false. This orthogonalized the basic
Forth machine instructions but, so far,
no high-level Forth control words have
used this low-level word. We will now
proceed to orthogonalize the high-level
Forth control structures.

Forth programmers can look through
their code (or through the Forth nucleus)
and see many instances of O= IF, O=
WHILE or o= UNTIL. These code sequences
are nebessary to manipulate the stack
value so that the limited branching cap-
ability of the Forth computer can be
used. (The other problem, having to OR
or AND together multiple decisions before
a WHILE or UNTIL has been lifted already
with the revised definitions.) What the
Forth language is really implementingis
IFTRUE or WHILETRUE or UNTILFALSE and
we would like the corresponding defini-
tions IFFALSE or WHILEFALSE or UNTIL-
TRUE. However, because of the history
of usage of the Forth words, we will
define new words NIF (not if or if false),
NWHILE (not while or while false) and
NUNTIL (not until or until true).

NIF flag ---

Used in the form:

programming with OR, AND and O= to s

*.

--- sys (compiling)

flag NIF ... (ELSE) ... THEN

At execution time, if flag is false, the
words following NIF are executed up to
ELSE (if present). The words between
ELSE and THEN are skipped. If flag is

I Volume VI. No. 2 FORTH Dimensions 22

t

true, words from NIF through ELSE or NIF
through THEN are skipped.

NIF is an immediate compiling word.
It compiles TBRANCH and uses >MARK to
reserve space for a resolved forward
branch. “sys” is system-dependent data
to provide compiler security and address
resolution information. NIF must be bal-
anted by a corresponding ELSE or THEN.

r
I

NWHILE flag ---
sysl --- sys2 (compiling)

DO ... flag NWHILE ... (+)LOOP

BEGIN ... flag NWHILE ... REPEAT

BEGIN ... flag NWHILE ... flag UNTIL

Used in the form:

or

or

At run time, selects conditional exe-
cution based on “flag.” If flag is false,
execution continues after NWHILE. If flag
is true, execution continues after the
LOOP, +LOOP, REPEAT or UNTIL terminat-
ing this DO or BEGIN, thus exiting the
loop structure. It is an implementation
consideration whether NWHILE removes
loop parameters when it exits a counted
loop.

NWHILE is an immediate compiling
word. It compiles TBRANCH and uses
>MARK to reserve space for a resolved
forward branch. “sys” is system-depen-
dent data to provide compiler security
and address resolution information.

!

NUNTIL flag ---
sys --- (compiling)

BEGIN ... (flag (N)WHILE) ...
Used in the form:

(LEAVE) ... flag NUNTIL

Marks the end of a BEGIN NUNTIL loop.
At execution time, NUNTIL continues
execution to just after the correspond-
ing BEGIN if flag is true. If flag is false,
looping is terminated.

NUNTIL is an immediate compiling
word. It compiles TBRANCH and then
uses <RESOLVE to resolve the backward
branch to the corresponding BEGIN and
>RESOLVE to resolve any possible
(N)WHILEs or LEAVES. “sys” is used to
ensure proper BEGIN NUNTIL nesting.

s
1

So far, we have regularized the loop-
ing control structures so that awkward

-

sequences of >R, R>, OR, AND and O= are
not necessary before WHILES or UNTlLs to
concatenate multiple decisions into one
decision point. The same needs to be
done for IF ELSETHEN since it is a pain to
either concatenate decisions before one
IF statement or to nest IFs with the task
of keeping track of the IFs and using the
appropriate number of THENs at the end.
Thus, we will define THENIF (to and deci-
sions) and NTHENIF (to or decisions).
Used properly, these constructs allow
rather simple expressions of logic that
were either very difficult or hard to
understand in regular Forth, to be ex-
pressed in a readable manner.

THENIF flag ---
sysl --- sys2 (compiling)

Used in the form:
flag IF ... (ELSE) ... flag THENIF ...

(ELSE) ... THEN

If flag is true, the words following
THENIF are executed up to the ELSE (if
present). The words between ELSE and
THEN are skipped. If flag is false, words
from THENIF through ELSE or THEN are
skipped. THEN is the point where execu-
tion continues after ELSE (or after THENIF
if there is no ELSE).

THENIF is an immediate compiling
word.It verifies that it correctly follows
a corresponding IF, ELSE or THENIF,
compiles ?BRANCH and uses >MARK to
reserve space for a resolved forward
branch.

NTHENIF flag ---
sysl --- sys2 (compiling)

Used in the form:
IF ... (ELSE) ... NTHENIF ... (ELSE) ...

THEN

If flag is false, the words following
NTHENIF are executed up to the ELSE (if
present). The words between ELSE and
THEN are skipped. If flag is true, words
from NTHENIF through ELSE or THEN are
skipped. THEN is the point where execu-
tion continues after ELSE or after (N)IF or
(N)THENIF if there is no ELSE.

NTHENIF is an immediate compiling
word. It verifies that it correctly follows
a corresponding IF, ELSE or (N)THENIF,

compiles TBRANCH and uses >MARK to
reserve space for a resolved forward
branch.

THENIF considerably lightens the load
of writing nested IF structures. Another
form of nested IFs is the CASE structure.
While a CASE can be simulated with
THENIFs, the following word definitions
make for more easily understandable
code. CASES have been covered in sev-
eral previous Forth publications, so that
the following code illustrates how your
particular CASE can be integrated. Also,
the words chosen can be changed to
meet your requirements (i.e. CASE ESAC,
OF ENDOF or {] for the case delimiters).

CASES n --- n
--- sys (compiling)

Used in the form:
n ... CASES
nl ... CASE ... ENDCASE
n2 ... CASE ... ENDCASE

nx ... CASE ... ENDCASE
ENDCASES

...

CASES has no execution-time effect.
CASES is an immediate compiling

word. It provides proper system infor-
mation for the following CASE ENDCASE
ENDCASES words.

CASE n n l ---n I -

Used in the form:
sysl --- sys2 (compiling)

n l CASE ... ENDCASE

At execution time, CASE examines the
top two stack items. If they are equal,
they are discarded and execution con-
tinues immediately following the branch
address that follows the run-time CASE
word. If the two top stack items are not
equal, the top item is discarded and a
branch is performed to the location fol-
lowing the ENDCASE word.

CASE is an immediate compiling word.
It verifies that it followed a CASES or
ENDCASE word, compiles the run-time
CASE word and uses >MARK to reserve
space for a resolved forward branch.

ENDCASE ---
sysl - sys2 (compiling)

n l CASE ... ENDCASE
Used in the form:

Volume VI. No 2 23 FORTH Dimensions

At execution time, ENDCASE performs
a branch to the end of the CASE struc-
ture. See BRANCH.

ENDCASE is an immediate compiling
word. It verifies that it followed a CASE
word and uses ELSE to compile BRANCH,
>MARK to mark the forward reference
and >RESOLVE to resolve the branch
from the previous CASE to the current
compilation address.

ENDCASES n ---

Used in the form:
sys 1 --- (compiling)

n ... CASES
nl ... CASE ... ENDCASE
n2 ... CASE ... ENDCASE

nx ... CASE ... ENDCASE
ENDCASES

...

At execution time, ENDCASES pops
the case selector value from the stack
since no case selection criterion has been
met.

ENDCASES is an immediate compiling
word. It verifies that it followed a CASES
or ENDCASE, compiles DROP and then
uses THEN logic to resolve all the END-
CASE branches to the current compila-
tion address.

Summary
We have seen how the Forth comput-

er implements changes in program flow
and how the Forth language uses this
capability to implement high-level lan-
guage control constructs. The constructs
implemented are:

(N)IF ...(ELSE) ... ((N)THENIF) ...(ELSE) ...
THEN

BEGIN ... ((N)WHILE/LEAVE) ...
(N) UNTIL/REPEAT

DO ... ((N)WHILE/LEAVE) ... (+)LOOP

The Forth computer has been ortho-
gonalized by giving it the ability to
branch on a true condition as well as on
a false Condition. The Forth computer
can now:

1 . BRANCH always.
2. TBRANCH if the stack is true.
3. ?BRANCH if the stack is false (FBRANCH).

Simple Implementation of
Forth Control Structures

: >MARK
?COMP HERE SWAP , ;

: <MARK
?COMP HERE 0 :

: >RESOLVE
BEGIN
?DUP WHILE
DUP @
HERE ROT ! REPEAT ;

: <RESOLVE
SWAP ,
>RESOLVE ;

CODE BRANCH
B n MOV c L MOV
M C MOV H INX M B MOV
NEXT ;C

: BRANCH
R> 4 >R ;

CODE ?BRANCH
H POP L A MOV H ORA
’ BRANCH >BODY JZ
B INX B INX
NEXT ;C

: ?BRANCH
R> SWAP
NIF J
ELSE 2+
THEN >R ;

CODE TBRANCH
H POP L A MOV H ORA
‘ BRANCH >BODY JNZ
B INX B INX
NEXT :C

: TBRANCH
R> SWAP
IF @
ELSE 2 +
THEN >R ;

: (DO)
R> -ROT
SWAP DUP >R
- > R
> R ;

CODE (LOOP)
RPP LHLD M INR
’ BRANCH >BODY JNZ
H INX M INR
’ BRANCH >BODY JNZ

B INX B INX B INX B INX

RPP LHLD 4 D LXI D DAD
RPP SHLD NEXT ;C

LABEL loop-tern

LABEL loop-exit

(addrl --- addr2
(extend chain of forward refs

(--- addrl 0
(where to branch, init chain

(addrl ---

(chain not resolved yet?
(get where it points to
(resolve it to HERE

(addrl addr2 ---
(put backward addr in
(and resolve any forward refs

(-_-
(move IP
(get next address
(NEXT is a macro, >NEXT JMP

branch to addr following
get addr at branch

flag ---
is flag false (0)?
yes, do branch logic
no, skip over branch addr

branch if false

(stack false, get addr
(true, skip

(flag ---
(is flag true (#O)?
(yes, do branch logic
(no, skip over branch addr

branch if true

(Wl w2 ---
(put return addr below loop parm)
(limit value)
(negative # iterations
(original return stack

) (---
(inc # left)
(lsb not 0 go to branch)
(inc msb)
(msb not zero branch

(else skip branch addr & 1-ex)

(inc return stack past loop parm)
(and store

*

FORTH Dimensions 24 Volume VI. No. 2

: (LOOP)
R> R> 1t
DUP >R
IF @

THEN >R ;
~ ELSE 2+

(inc # times left
(replace
(not end branch
(end, skip over branch addr
(replace and return

(--- CODE LOOP-EXIT
loop-exit HERE 2- ! ;C (use loop-exit for LOOP-EXIT

I : LOOP-EXIT
R> R> R>
2DROP >R ;

(get loop parms
(toss them

CODE (+LOOP) (n ---
RPP LHLD M E MOV H INX M D MOV (get # left
H POP H A MOV A ORA (find out if pos or neg
O < NOT IF D DAD (pos add in
loop-term JC (and term if cross 0

XCHG RPP LHLD E M MOV H INX D M MOV (replace # left
’ BRANCH >BODY JMP THEN (and branch to do
D DAD loop-branch JC (neg inc, not cross go
loop-term JMP ;C (crossed, term loop

LABEL loop-branch

: (+LOOP)
R> SWAP R> 2DUP t
>R OVER XOR O <
IF Re XOR O <
IF @
ELSE 2+
THEN
ELSE DROP 63
THEN >R ;

(n ---
(get # left and dir
(dir, # left different?
(yes, dir, # left diff sj
(yes, not end, loop
(no, end of loop

(dir, # left same sign, loop
(

CODE I (--- n
RPP LHLD M E MOV H INX M D MOV (# left
H INX M A MOV H INX M H MOV (limit
A L MOV D DAD HPUSH JMP ;C (add to get index

: I
R> R> RB
+
-ROT R> R> ;

(get loop parms
(add to get index
(put stuff back, leaving index

CODE J
RPP LHLD 4 D LXI D DAD (point to inner loop parms
‘ I 5 + JMP ;C (and to I logic

: J
R> R> R> R> RB + -ROT >R >R -ROT >R >R ;

: BEGIN (- _ _ addrl 0 1
<MARK 1 ; IMMEDIATE (mark start and BEGIN loop

: IF
0 0
COMPILE ?BRANCH
>MARK 2 ; IMMEDIATE

: NIF
0 0
COMPILE TBRANCH
>MARK 2 ; IMMEDIATE

: DO
COMPILE (DO)
<MARK 3 ; IMMEDIATE

: ELSE
2 ?PAIRS
COMPILE BRANCH
SWAP >MARK SWAP
>RESOLVE
0 -2 ; IMMEDIATE

_-- 0 addrl 2
mark chains
compile ?branch
mark place

--- 0 addrl 2
mark chains
compile tbranch
mark place

--- addrl 0 3
run time do
mark place

(0 addrl 2 --- addr2 0 -2
(follow if?
(branch
(extend chain of elses
(resolve if
(init chain and else flag

The Forth-83 language control struc-
tures have been generalized, made easier
to use, more powerful, modeless and
orthogonal while retaining Forth-83 com-
patibility as follows:

0 NIF, THENIF and NTHENIF have been
added to IF ELSE THEN. This allows
direct testing for both true and false
stack values as well as easy nesting of
IF structures. A sample non-indexed
CASE structure has been added.

0 Uncounted loops always start with
BEGIN. They can terminate with the
same three conditions that the Forth
computer allows:
REPEAT loops back always.
UNTIL loops back if the stack is false.
NUNTIL loops back if the stack is true.

0 Both counted and uncounted loops
can be exited with the same set of
words, can have multiple exits and
can exit with the same three condi-
tions that the Forth computer allows:

LEAVE exits always.
WHILE exits if the stack is false.
NWHILE exits if the stack is true.

Bibliography

Forth-83 Standard

“A Generalized Loop Construct for Forth,”
Forth Dimensions, Vol. 11, No.2.

“Case Contest,” Forth Dimensions, Vol.11,
No. 3 .

“Transportable Control Structures,” 198 1
Rochester Forth Standards Conference.

“Modern Control Logic,” Wil Baden.

Volume VI. NO. 2 25 FORTH Dimensions

C64=FORTH/79
New and
Improved

for the
Commodore 64

C64-FORTH/79TM for the Commodore 64-
$W.%

*New and improved FORTH-79
implementation with extensions.

.Extension rckage including Ihes,
circles, x a ing, windowng, mixed
high res-character graphics and
sprite graphics.

.Fully compatible floatin point package
including arithmetic, refitional, logical
and transcendental functions.

.String extensions including LEFT$,
RIGHT$, and MID$.

.Full feature screen editor and
macro assembler.

.Compatible with VIC peripherals
including disks, data set, modem,
printer and cartridge.

.Expanded 167 page manual with
examples and application xreens.

."SAVE TURNKEY" normally allows
application program distribution
without licensing or royalties.

(Commodore 64 is a trademark of Commodore)

TO ORDER

-Disk only.
-Check, money order, bank card,

-Add $4.00

-Mass. orders add 5% sales tax
-Foreign orders add 20% shipping

-Dealer inquiries welcome

COD'S add $1.65

USA and (%a2
and handling

sta e and handling in

PERFORMANCE
MICRO

PRODUCTS
770 Dedham Street,
Canton, M A 02021

(61 7) 828-1 209

: THEN
ABS 2 ?PAIRS
>RESOLVE
>RESOLVE ; IMMEDIATE

: THENIF
ABS 2 ?PAIRS
COMPILE ?BRANCH
>MARK 2 : IMMEDIATE

: NTHENIF
ABS 2 ?PAIRS
COMPILE TBRANCH
>MARK 2 ; IMMEDIATE

: clesve

-1 >R
BEGIN DIIF iR
3 = NWHILE
R'm 1 - NIJNTIL
>MARK BEGIN
R > DIlP I+
NUNTIL DROP ;

: LEAVE
[' I BRANCH
cleave ; IMMEDIATE

: WHILE
(' 1 ? B R A N C H
cieave ; IMMEDIATE

: NWHILE
[' 1 TBRANCH
cleave ; IMMEDIA'l'E

UNTIL
i ??AIRS
COMPILE ?BRANCH
<RESOI,VE ; IMMEijIATE

' NUNTIL
1 ?PAIRS
COMPILE TBRANCH
<RESOLVE ; IMMEDIATE

: REPEAT
1 ?PkIi.'S
COMPILE BRANCH
<RESOLVE ; IMMEDIATX

: LOOP
3 ?PhiRS
COMPILE (LOOP)
<RESOLVE
COMPILE LOOP-EXIT ;
IMMEDIATE

: +LOOP
3 ?PAIRS
COMPILE (+LOOP)
<RESOLVE
COMPILE LOOP-EXIT ;
IMMEDIATE

C03E (CS)
H POP 1) POP
L A MOV 4 SUB A L MOV

addrl addr2 2 1 - 2 ---
follow if or else?
resolve if
resolve else

a1 a2 21-2 --- a1 a3 2)
follow if or else?)
compile ?branch)
mark place, extend chain)

a1 a2 21-2 --- a1 a3 2)
follow if or else? 1
compile tbranch)
mark place, extend chain)

addrl 113 addr2 --- addrd 113 i
compi le branch 1-ype passed
mark start of loop
put parm on re turn)
if do flag exit loop)
else check for until
extend chain)
return stack to parm s la<.k
until -1 encountered I

addrl 1 1 3 arldr2 113)
get brancl; I
compile it ar id extend chain)

adcI2 I ~ 3 1 addrl 113 ---
get ?branch)
compile it and extend chain j

n d d r l 1 1 3 add2 I 13)
get tbranch)
coinpj le i t and Pxtend chain)

addrl addr2 1 - - - j
follow begjn?)
compile 7brancli 1
resol\re to berJiI i ,wii i l r j l r .ave ' t ,)

addrl addr2 1 ---)
follow k e y i t : ?)
compile tbransh
reso lvr to tJeLTiri,whjleilaave's)

addrl addr: i
follow begirl? i
compile branch 1
reso3 ve to b c x j i r ' . , w h i lei I rdvt- ' s)

) addrl addr2 3 ---
) follow do?

run time loop)
resolve to do and wt,ile./leave A)

dump loop parms 1

addrl addr2 3 ---)
f o 1 low do?)
run time +loop)
resolve to do and while/leave's)

1 dump loop parms

n n l n I -)
ye1 a1ys

(subtract them)
1

)

H A MOV D SBB L ORA O= NUT (= ?
IF D PUSH ' BRANCH >BODY JMP (no, push n, br to nxt test)
THEN Y INX B I N X
NEXT :C

(yes. .;kip branch addr

FORTH Dimensions Volume VI. No. 2 26

: (CS)
OVER =
IF DROP R > 2+
ELSE R> !a
THEN > R ;

: CASES
0 0 4 , IMMEDIATE

(11 n~ - - - I1 I -)
! n=nl?)
(y e s , d r . 9 ~ 11, sklp bralirh adrli,
(no, branch 1

(-- 0 0 4)
(mark addr chains, cas-3 1

: CASE I addrl addr2 4 --- addi.1 addr9 5)
4 ?PAIRS (follow cases or eridcase?)
COMPILE (CS) i ruii t i m e case)
>MARK 5 ; IMMEDIATE (extend chsin, mark. case)

. ENDCASE
5 ?PAIRS
2 [COMPILE] ELSE
DROP 4 ; IMMEDIATE

(addrl addr? 5 --- addr3 3 4)

(U:.C else to cornpiit, hra!ii.li,maik)
(follow case?)

f drop 2, mark endcase)

: ENDCASES 1 addrl 0 4 ---)
4 ?PAIRS (follow cases or endcase 1
COMPILE DROF (rlwp I? at riiii t imr 1
>RESOLVE >RESOLVE ; IMMEDIATE ! resolve endcase's)

Huve Ym Gotten T k WordYi?
I Companies such as IBM, Atari, Varian, Hewlett Packard, FORTH Fundamentals $395.00 I

Dysan and Memorex are now using FORTH for a number Advanced Systems
of applications. If you are concerned about efficiency and
transportability, then FORTH is a language should
learn. FORTH workshop catalogue).

~~~l~ $495.00 
(For further information, piease send for our complete 

Join the FORTH Revolution! 
0 Intensive 5-day workshops 
0 Small classes 
0 Experienced professionals 
0 On-site classes by special arrangement 

Inner Access Corporation 
P.O. Box 888, Belmont, CA 94002 
(41 5) 591 -8295 

n 
Volume VI, No. 2 27 FORTH Dimsnsions 



Forth in Rehabilitation Applications 
David L. Jaffe 

Palo Alto, California 

Readers of this magazine are well 
aware of the many computer applica- 
tions of Forth. In this article, I will dis- 
cuss the use of Forth in devices that 
serve disabled individuals, with a spe- 
cific example drawn from my research. 

First of all, a few definitions are in 
order. For the purpose of this paper, 
disabled people are those mentally nor- 
mal individuals who experience physical 
difficulty in interacting with others or 
with their environment. This diminished 
interaction may include such output 
functions as mobility and communica- 
tions (both person-to-person and person- 
to-machine) and input sensory functions 
of hearing and sight. 

Devices for disabled people typically 
foster interaction between the user and 
the environment and other people by 
providing enhanced or alternate com- 
munication pathways. For example, 
some blind people use canes as a tactile 
hand extension to feel objects in their 
travel route. In addition, the echo of 
cane tap sounds can provide aural infor- 
mation about the surroundings. The 
utilization of the cane is thus a substitute 
for vision, while hearing aids or glasses 
provide enhanced hearing or vision by 
amplification of sound too soft for some 
to hear or correction of light rays that 
would be out of focus for misshaped 
eye balls. 

Adaptations of commercially availa- 
ble equipment built for the able bodied 
can often assist disabled people. An 
electric typewriter operated by a mouth- 
stick is a writing substitute for people 
who do not have use of their hands or 
arms. Even toys can be useful; a Speak- 
and-Spell can produce spelled speech 
for non-vocal individuals. In these exam- 
ples a machine facilitates communica- 
tion between individuals. Other disabili- 
ties require specialized solutions. An 
electric wheelchair provides mobility for 
those who are unable to command their 
legs. In this example, a hand-operated 
joystick is typically used to tap a control 

site, the user’s hand position, and trans- 
late it into mechanical rotation of elect- 
ric motors, producing motion. 

The formula of a user interface to a 
machine, translation of sensory input 
into machine activation, and produc- 
tion of a result which reflects on the 
environment is common to many reha- 
bilitation devices. (Figure one). These 
elements are identical to those constitut- 
ing a process control system. Thus, one 
strategy for developing aids for disabled 
individuals is to use methodologies that 
have been successful in process control 
applications; an area in which Forth and 
microcomputer technology excels. 

Although many current products for 
the disabled do not use a computer, 
there is a class of rehabilitation devices 
that could benefit from the inclusion of 
a microcomputer. Products that require 
1) an unusual user input, 2) a complex 
translation algorithm, 3) a real-time 
output, or 4) that are dynamically pro- 
grammable are good candidates for an 
embedded microcomputer. For rehabil- 
itation devices developed with this 
scheme, the user interacts with it through 
specialized inputs and outputs rather 
than the keyboards, cassette recorders, 
disk drives and CRT terminals of con- 
sumer microcomputer systems. The intri- 
cacies of the computer’s operation need 
not be of concern to the user. In fact, 
from the users’ point of view, it may 

even be desirable to be unaware of the 
existence of the embedded computer; it 
functions as a “black box.” An example 
of such a system would be a voice- 
activated robotic aid in which vocal 
commands of the user are translated by 
an internal computer into mechanical 
movement instructions. 

The design and development of any 
microcomputer product is not an easy 
task. Devices for rehabilitation use are 
no exception. As with traditional sys- 
tems, the rehabilitation design engineer 
must be concerned with both hardware 
and software issues. Besides resource, 
performance and cost considerations 
(memory requirements, program execu- 
tion time and product price), an addi- 
tional consideration involves the design 
of microcomputer hardware and soft- 
ware that is accessible to the researcher 
during development but performs invis- 
ibly for the end user. 

At the Palo Alto Veterans Adminis- 
tration Medical Center’s Rehabilitation 
Research and Development center, stand- 
ardized hardware, software and an effi- 
cient development strategy has been 
formulated for the construction of em- 
bedded microcomputer systems. Key 
elements of this process are listed below. 

1. Industry standard computer boards 
are selected wherever possible. Although 
this may be more costly in price and 
space than building a custom board, it 

User 

Machine 4 t Environment 

Figure One 
Interaction Triad 

FORTH Dimensions 28 Volume VI. No. 2 



does assure the designer of a working 
piece of hardware. It also reduces the 
designing, wiring, testing and debugging 
time necessary in building a custom 
board. Standard bus boards are com- 
mercially available and can provide al- 
most any function: serial interface, par- 
allel interface, memory, counter/ timer, 
A / D  or D / A  conversion. Their wide- 
spread availability means that systems 
specifying these boards can be easily 
replicated. 

2. As previously mentioned, Forth 
has proven to be a software system that 
is ideal for process control applications. 
A major advantage of the language for 
rehabilitation purposes is that its inter- 
active development techniques and bot- 
tom-up programming structure can fos- 

Forth 
Utilities: 

Assembler 
Editor 
HodTarget Link 

O-- 

ter rapid implementation of systems 
that can be demonstrated to prospective 
users (and to superiors) during their 
development phase. During this time, 
program segments can be easily modi- 
fied and optimized. The resultant Forth 
application program typically runs fas- 
ter than the comparable BASIC pro- 
gram and is easier to code than the 
assembly language equivalent. 

3. The final element in this design 
methodology is the link between a com- 
puter development system and the reha- 
bilitation application system. This is 
done in the following manner. Hard- 
ware communication is typically accom- 
plished by a serial interface between the 
systems. During development, this con- 
nection is the pathway for Forth dialog, 

Forth 
Disk 
Utilities 

Host Development System 

Development Cycle: 

Target Application System 

1 Data 

Serial 

Program 

Forth 
Kernel 

m Devices 

I 
I 

4 T 
Running Application 

n 1 Data I RAM 

......................... 
Serial 
Maintenance 

Link Program 
Application CRT or 

Hand-Held 
Terminal EPROM 

Forth 
Kernel 

Figure Two 
Host/Target System Development 

while during operation it serves as a 
serial maintenance link providing a 
means for parameter modification and 
trouble-shooting. Figure two diagrams 
the relationship of the host and target 
systems and their memory resources 
during both the development and reha- 
bilitation use phases. 

Forth uses this link in several ways. 
The host development system with its 
disk, printer and terminal resources is 
used to edit, store and list the pro- 
grammer’s code. When entered, the pro- 
gram is transmitted over the link and 
compiled by the application’s Forth 
kernel into its memory space. At this 
point the program can be tested on the 
application system, using the hardware 
that will comprise the final system.. 
When thoroughly tested, the applica- 
tion program RAM memory image is 
transferred into EPROM storage. Then, 
upon powerup, the target system begins 
executing the application program, now 
in non-volatile memory. The version of 
Forth sold by Jib Ray supports the 
Host/ Target scheme presented here. * 

The typical minimum hardware re- 
quirements for the host development 
system are a CP/  M microcomputer sys- 
tem with disk storage, CRT terminal 
and a serial communications link to the 
application system. The target system 
also requires a serial port, as well as 
EPROM memory to hold the Forth 
kernel, and memory that can be config- 
ured either as random access or non- 
volatile storage. Several commercially 
standard products are available that 
contain this functionality on a single 
board. Additional boards to support the 
desired application would complete the 
target system’s complement of hardware. 

Specific Example 
Ultrasonic Head Control Unit 

The Palo Alto VA Rehabilitation 
Research and Development Center rec- 
ognized and addressed the generic need 
of disabled people to communicate their 
will to their environment. 

In the specific design that follows, a 
unique man/ machine has been devel- 
oped using standard microcomputer hard- 
ware and Forth software techniques. 
The result is a unit with which severely 
disabled users can control devices. The 

Volume VI. No. 2 29 FORTH Dimensions 



unit translates head position informa- 
tion into control signals which operate 
devices to which it is attached, such as 
electric wheelchairs or specialized com- 
munications systems. 

In this design, two Polaroid ultra- 
sonic transducers are employed (figure 
three). They emit inaudible sound waves 
which propogate through the air until 
reflected by an object. A portion of the 
echo signal returns to the transmitting 
sensor and is detected by an electronic 
circuit. The measured time from trans- 
mission of the ultrasound pulse to the 
reception of the echo is proportional to 
the round-trip distance from the sensor 
to the object. In the commercial camera 
application, camera focussing is accom- 
plished by ranging the distance from the 
camera to the subject being photo- 
graphed. In this rehabilitation applica- 
tion, two separated sensors are directed 
at the user’s head (from the front or the 
rear). The two distance ranges, one from 
each sensor to the head, and the fixed 
separation of the sensors describe an 
imaginary triangle whose vertices are 
the two stationary sensors and the user’s 
head. A geometric relationship allows 
the offset from the base line and center 
line of the two sensors to be calculated. 
This information is then used to map the 
user’s head position into a two-dimen- 
sional control space. 

In operation, users of the Ultrasonic 
Head Control Unit (UHCU) merely tilt 
their head off the vertical axis in the 
forward/ backward or left/ right direc- 
tions. Their changing head position can 
be made to produce output signals iden- 
tical to those from a proportional joy- 
stick. Both these interfaces, the UHCU 
and the joystick, can be used to control 
devices to which they are attached such 
as an electric wheelchair, a communica- 
tion aid or a video game. 

An examination of the last dictionary 
word (figure four) will help to explain 
the unit’s operation in a mobility appli- 
cation on an electric wheelchair. 

The Forth software operates in one 
continuous loop which is entered upon 
power-up. At that time, the system is 
intialized; all the hardware ports are 
configured and variables are set to their 
starting values. A short audible tone 
signals the unit is ready for operation. 

k 

I 
I 

R I = RANGE FROM A 
R2 * RANGE FROM B 
R 3  = TRANSDUCER SPACING 

TO BE MEASURED 

HEAD POSITION AT REST 

X , Y  =DISTANCES TO BE CALCULATED 

Figure Three 
Ultrasonic Head Control 

Unit geometry 

?SWITCH looks for a change of state of a 
head-operated switch. When it has been 
pressed, the buzzer provides an acknowl- 
edgement and the Polaroid ranging elec- 
tronics are activated. After a brief delay, 
the user’s head position is acquired and 
used as a reference from which to judge 
subsequent head positions. After this 
CENTERing operation, the motor con- 
troller is powered by the software acti- 
vation of a relay. At this point, the oper- 
ating loop of the software is entered. 
First a pair of distance rangings to.the 
head are made and averaged with pre- 
vious rangings. This procedure assures a 
smooth ride despite an occasional bad 
data value or rapidly changing head 
position due to a bump in the path of the 
wheelchair or a sneezing rider. The CALC 
routine figures the absolute X-Y head 
position, while ADJUST subtracts the 
current head position from the reference 
head positions, thus producing relative 
data. VELOCITY and SPEED calculate the 
percentage of the maximum wheelchair 
velocity desired and output the approp- 
riate values to the digital-to-analog 
converters that produce such velocity 
through the action of the wheelchair 
motor controller. At the end of the loop, 

the head switch is again interrogated for 
a state change, which would signify that 
the user wished to stop the wheelchair. If 
so, the motor controller and ranging 
system are deactivated. 

The main advantage of this type of 
hardware interface is no mechanical 
contact between the sensors and the 
user’s head is required. This effectively 
separates the user from the device being 
controlled. Therefore with this unit, 
users should not feel “wired-up” or con- 
fined by a device around their face or 
body, as frequently occurs with other 
interfaces. The UHCU as implemented 
on an electric wheelchair has another 
advantage; it is aesthetically superior to 
competing man/ machine interfaces used 
for this purpose. It has also proven to be 
more socially acceptable than other alter- 
natives. 

Another desirable characteristic of 
the UHCU is its high speed of operation 
(which, in part, can be attributed to its 
use of Forth). Devices that it controls 
can thus be manipulated quickly. In 
addition, the UHCU can be directly 
substituted in many applications where 
ajoystick is currently used. Its real-time 

i 

i 1 :  
i 
t 
! ’  

1 
i 
i 

i 

1 .  

FORTH Dimensions 30 Volume VI, No. 2 



: RUN 
I N I T I A L I Z E  BUZZ 2 SEC-DELAY 
BEG I N  

BEGIN ?SWITCH UNTIL 

BUZZ 2 SEC-DELAY RANGING-ON CENTER BUZZ CHAIR-ON 

BEGIN 
RANGE 
F I L T E R  
CALC 
ADJUST 
VELOCITY 
SPEED 
?SWITCH 

CHAIR-OFF 
WLNG I NG-OFF 

UNTIL 

0 UNTIL  : 

Figure Four 
Software operation of electric wheelchair 

action and proportional control make it 
faster to operate than the discrete com- 
mand characteristics of voice recogni- 
tion units. In the most general case, the 
UHCU can map two degrees of head 
position information (forward/ back- 
ward and left/right) into an alternate 
control space. 

Users of a modified electric wheel- 
chair equipped with the Ultrasonic Head 
Control Unit can navigate the chair by 
tilting their head off the vertical axis. 
The changing head position is translated 
by the on-board Forth computer into 
speed and direction signals for the elec- 
tric motors on the chair. Users thus 
direct the motion of the chair with their 
head. To travel forward, one wQuld 
move the head forward of its normal 
relaxed vertical position. Similar move- 
ments perform motion in the remaining 
three directions: left pivot, right pivot 
and backwards. Since this system accepts 
combinations and degrees of these mo- 
tions, a smooth right turn can be accom- 
plished by positioning the head slightly 
forward and to the right. In effect, the 
user’s head has become a substitute for 
the joystick control found on some 
electric wheelchairs. 

In fact, the signals that the UHCU 
produce exactly mimic those produced 
by a joystick. In wheelchair applica- 
tions, the UHCU can be simply plugged 

into the motor controller instead of the 
joystick. In this manner, no modifica- 
tions to the motor controller need to be 
made; the UHCU becomes an electric 
module providing head position con- 
trol. From the perspective of the motor 
controller, the UHCU generates signals 
that emulate those produced by the joy- 
stick from which it was originally made 
to operate. Other devices that normally 
use a joystick or switch closure as the 
human input mechanism can use an 
adapted Ultrasonic Head Control in- 
stead. 

In actual operation, the wheelchair 
system performs quite satisfactorily. Af- 
ter a minimum amount of training and 
practice (usually under one hour), its 
control can be mastered by even the 
most severely injured individuals who 
still retain good head position control. 
The head tilting required is so slight, 
only an inch or two, that observers fre- 
quently can not deduce the method of 
control. Since the UHCUonly responds 
to head tilts, the user can freely move the 
eyes or rotate the head without affecting 
the navigation path. In this manner, one 
can watch for automobiles at intersec- 
tions or converse with others while 
traveling. 

In this instance, the UHCU is com- 
pletely transparent to the operator. The 

existence of any computer hardware or 
Forth software is not apparent to the 
user. One “test pilot” commented that 
the system was so “high tech” that it 
appeared “low tech.” 

Other applications of the Ultrasonic 
Head Control Unit are being pursued. 
The head control unit of a robotic arm 
system and operation of a communica- 
tion system will permit disable individu- 
als more efficient manipulation of ob- 
jects and words. 

References 
1. Jib Ray Forth, distributed by Bob Strat- 
ton, Applied Digital Systems, 805/ 257-0244. 

Volume VI. No. 2 31 FORTH Dimensions 



Simple Data Transfer Protocol 
Keith Ericson and Dennis Feucht 

Beaverton, Oregon 

Data communication: 
Simple or Complex 

One of the most readily available data 
communications media is the RS232C 
Serial Asynchronous Protocol (referred 
to here as RS232). It can be used to 
transfer any data, be it ASCII only 
(text), binary (object code) or Forth 
screens, between quite different comput- 
ing systems. The need for such data 
transfer frequently arises when persons 
such as local FIG members with differ- 
ent systems want to exchange data(such 
as Forth programs). The problem is to 
coordinate the sending station and re- 
ceiving station to ensure reliable com- 
munication: this is the task of a data 
transfer protocol. 

A simpler protocol is desirable for at 
least two reasons: 
1) If the destination system has no com- 
patible communication protocol, the 
receive words will probably be typed by 
hand. The decreased amount of typing is 
desirable. 
2) Often one must understand the pro- 
tocol to implement the system-dependent 
details. The concepts of the protocol 
presented here are straight-forward and 
readily grasped. 

As a simple protocol, this method 
lacks error-checking. However, for rela- 
tively reliable channels (which is often 
the case), this is not a serious omission. 
In our experience, only rarely has a 
screen of bad data needed to be re-sent. 

Theory of Operation 

Before any data can be transferred, 
the transmitting function (the Forth 
word XMT) and the receiving function 
(RCV) must be synchronized. An impor- 
tant consideration in the design of this 
protocol is that either XMT or RCV could 
be the first to begin executing; which- 
ever starts first will wait. for a signal 
from the other before proceeding to 
transfer data. 

The required synchronization scheme, 
effected by the word SYNC, is the first 

Figure One 
Simple RS-232 Connection 

RCD 

1XD 
RT5 

CTS 

DCO 

Figure Two 
Complete RS-232 Connection for Simple Communications 

function executed by both the transmit 
and receive stations. It works by exchang- 
ing specific control characters between 
the two stations. Therefore, the serial- 
port receive buffers must first be cleared 
to ensure that whatever is in the buffer is 
not erroneously interpreted as one of the 
synchronization characters. SYNC clears 
the receive buffers by sending two ASCII 
nu1 (hex 0) characters. SYNC causes the 
receive and transmit stations then to 
enter a loop which sends enq characters 
(hex 5 )  while simultaneously looking for 
incoming enqs. As soon as an enq is 
received, a single ack character (hex 6) is 
sent, and the station then begins waiting 
to receive a return ack. When both sta- 

tions have received their ack, the sta- 
tions are synchronized and SYNC exits. 

Once XMT and RCV are synchronized, 
data transfer commences. XMT imme- 
diately enters the word ENQ which sends 
a single enq and waits for an ack from 
RCV. RCV, meanwhile, Calls BLOCK to 
assign a memory buffer for the incoming 
data. When BLOCK is completed, which 
could take some time if disk access is 
required, the word ACK is then executed. 
ACK'S function is to respond to an enq 
received from the other station by send- 
ing an ack. (If necessary, ACK waits for 
the enq to arrive.) Transmission of the 
ack by the receive station indicates it is 

FORTH Dimensions 32 Volume VI, No. 2 



SCREEN 1 
( forth screen transfer utility - fig-Forth 
: SEND-BLOCK ( block-addr --- ) 

DUP B/BUF + SWAP 
BEGIN DUP C@ XOUT 1+ 2DUP = 
UNTIL 2DROP ; 

: TAKE-BLOCK ( block-addr --- 
DUP B/BUF + SWAP 
BEGIN XIN OVER C! I +  2DUP 
UNTIL ZDROP UPDATE ; 

: SYNC TXCLR 
BEGIN 5 XOUT ?XIN 

UNTIL 6 XOUT 
BEGIN XIN 6 = UNTIL ; 

IF XIN 5 = ELSE 0 THEN 

SCREEN 2 
( forth screen transfer utility - fig-Forth 
: M T  ( first-scr# last-scrd --- 

SYNC 1+ SWAP 
DO ENQ 2 XOUT I BLOCK SEND-BLOCK 
LOOP ENQ 4 ( eot ) XOUT ; 

: RCV ( first-scr# --- ) 
SYNC 
BEGIN DUP BLOCK ACK XIN 2 ( SLX OVER = 

IF DROP TAKE-BLOCK 0 
ELSE 4 ( eot = 

IF DROP FLUSH 
THEN 1 

THEN SWAP 1+ SWAP 
UNTIL DROP ; 

SCREEN 3 
( communication primitives - IBN-PC 
HEX 
3F8 CONSTANT PORT 3FD CONSTANT STATUS 

: ?XOUT STATUS PC@ 20 AND ; 
: ?XIN STATUS PC@ 01 AND ; 

: XOUT BEGIN ?XOUT UNTIL PORT PC! ; ( WAIT, SEND A CHAR ) 
: XIN BEGIN ?XIN UNTIL PORT PC@ ; ( WAIT, GET A CHAR ) 

: TXCLR 0 XOUT 0 XOUT ; 

: ENQ BEGIN 5 ( enq ) XOUT XIN 6 ( ack ) UNTIL ; 
: ACK BEGIN XIN 5 ( enq ) = UNTIL 6 ( ack ) XOUT ; 

DECIMAL 

ready to receive data. When the transmit 
station receives the ack, the wait loop in 
EN0 will be exited. If another block of 
data is to be sent, XMT sends an STX 
character (hex 2). RCV then expects to 
receive BlBUF bytes of data, which imme- 
diately follow. If, on the other hand, no 
more data is to be sent, XMT sends an 
EOT character (hex 4), causing RCV to 
save the contents of the memory buffers 
onto disk and exit. 

The Listings 

Screens 1 and 2 list the intermediate- 
level functions (SEND-BLOCK and TAKE- 
BLOCK) and the high-level functions XMT 
and RCV. These functions are identical 
for all the systems - IBM PC, Apple I1 
and Rockwell RSC-Forth. fig-FORTH 
and Forth-79 implementations, to be 
useful for the entire address space, use 
the BEGIN-UNTIL construct to define 
words SEND-BLOCK and TAKE-BLOCK. (In 
Forth-83 systems these could be imple- 
mented with the simpler DO-LOOP con- 
struct, with the loop index used as as the 
block-address). Screens 3, 4 and 5 in- 
clude system specific serial-communica- 
tion primitives for the systems imple- 
mented: IBM PC running Laboratory 
Microsystems’ PC-Forth; Apple I1 run- 
ning MicroMotion’s Forth-79; and the 
Rockwell R65F11 singlechip Forthcom- 
puter running RSC-Forth (version 1.5). 
Screen 6 is a terminal emulator for the 
Apple I1 and is explained below (see 
notes on Apple listing). 

Serial Communication Primitives 

On the Rockwell RSC-Forth system a 
serial communication port is provided, 
but both the IBM PC and the Apple I1 
require the addition of a serial commun- 
ication card. Each system will require its 
own set of serial communications primi- 
tives, determined by both hardware and 
software considerations. A 6850 ACIA 
will require different code than will an 
825 1; machines that access serial com- 
munication functions through an oper: 
ating system will require different code 
than “direct access” systems. The primi- 
tives for your system will very likely be 
different. 

The word ?XKEY differs from ?KEY in 
that it checks for the presence of an 

Volume VI. No. 2 33 FORTH Dinmnsions 



input from the keyboard without affect- 
ing the keyboard strobe bit; KEY is then 
used to read the detected character. 

For each computer system, the com- 
munication-port primitives must be sup- 
plied. They are the following: 

XINIT performs communication initiali- 
zation. This may include, but is not 
necessarily limited to, asserting RTS 
and setting of baud rate, number of bits, 
parity and number of stop bits. (This is 
actually used outside of the data-transfer 
functions in preparing the computer to 
correctly interface to the RS232 port.) 

?XIN determines whether or not a char- 
acter has been received, and returns a 
true flag if so. Note that a character is 
not waited for, nor is it retrieved if one 
has arrived. 

?XOUT determines whether or not the 
previous character has been transmit- 
ted, and returns a true flag if so. 

XIN waits for a character to be received, 
then fetches it. 

XOUT waits for previous character to be 
transmitted, then stores the current char- 
acter for its transmission. 

RS232 Link - Data and Control Signals 

For the simplest RS232 link, the two 
stations are connected together as shown 
in figure one. Notice that pins 2 and 3 
are interchanged in the RS232 connec- 
tors. The DCE (Data Communications 
Equipment) connector is normally used 
for the computer or modem and the 
DTE (Data Terminal Equipment) con- 
nector is used for the terminal. When 
both stations have DCE connectors, 
however, an adapter (called a “null 
modem”) is required to interchange pins 
2 and 3, the Transmitted Data (TxD) 
and the Received Data (RxD) pins. 

RS232 has several control lines, at 
least two of which must be considered 
here. The receiver will be enabled only if 
the DCD line is asserted, and the trans- 
mitter will be enabled only if the CTS 
line is asserted. A loop connection at 
each station, in which the local RTS 
(Request To Send) signal is usedto assert 
both the local CTS and DCD signals, is 
shown in figure two. (Alternatively, the 

SCREEN 4 
( comtunication primitives APPLE I [  1 
HEX 3 CONSTANT COMSLOT# 
COMSLOT# 10 C080 + CONSTANT XSTATUS 

XSTATUS 1+ CONSTANT XDATA 

: XINIT 3 XSTATUS C! 9 XSTATUS C! ; 

: ?XIN XSTATUS C@ 1 AND ; 

: XIN BEGIN ?XIN UNTIL XDATA C@ ; 

: ?XOUT XSTATUS C@ 2 AND ; 

: XOUT BEGIN ?XOUT UNTIL XDATA C! ; 
DECIMAL 

SCREEN 5 
( communication primitives - RSC-FORTH ) 
HEX 

: ?XOUT SCSR C@ 40 AND ; 
: ?XIN SCSR C@ 01 AND ; 

: XOUT BEGIN ?XOUT UNTIL SCDR C! ; ( wait, rend a char 
: XIN BEGIN ?XIN UNTIL SCDR C@ ; ( wait, get a char 

: TXCLR 0 XOUT 0 XOUT ; 

: ENQ BEGIN 5 ( enq ) XOUT XIN 6 ( ack = UNTIL ; 
: ACK BEGIN XIN 5 ( enq ) = UNTIL 6 ( ack XOUT ; 

DECIMAL 

SCREEN 6 
( APPLE TERMINAL EMULATOR - USE NULL MODEM ) 
HEX CODE ?XKEY COO0 LDA, 80 # AND, PHA, TYA, PUSH JIIP, END-CODE 
DECIMAL 
: TERMINAL XINIT 

BEGIN 1 ?XKEY 
IF KEY DUP 24 ( CAN) = 

IF DROP 1- 
ELSE XOUT 
THEN 

THEN 

IF XIN DUP 10 ( LF) 

THEN 

WHILE ?XIN 

IF DROP ELSE EMIT THEN 

REPEAT ; 

volume VI. No. 2 FORTH Dimensions 34 



CTS and DTR signal lines could be 
connected to the hardware’s positive 
supply, +5 to +12volts, typically, through 
a lk- to 4.7k-ohm resistor.) 

Notes on Apple Listing 

A terminal emulator is included with 
the Apple listing. Its use is to verify that 
the RS232 link functions properly before 
attempting data transfer. To use it, 
invoke TERMINAL. This word initializes 
the communication port, then checks 
the keyboard (through ?KEY) to deter- 
mine if a key has been pressed. If so, it 
calls KEY to get the character. If it is a can 
character (hex 18, a control-X), it exits 
TERMINAL; otherwise, the character is 
sent by XOUT. Then the serial port is 
checked for an incoming character. If 
one is present, it is fetched by XIN, but 
ignored if it is a If character (hex 10, or 
line feed); otherwise it is EMlTed to the 
screen. The loop is then repeated. 

The word ?XKEY differs from ?KEY in 
that it checks for the presence of an 

input from the keyboard without affect- 
ing the keyboard strobe bit; KEY is then 
used to read the detected character. 

On the first screen of the Apple list- 
ing, the serial communication words 
assume a 6850 ACIA located in I/  0 slot 
number three. XlNlT will initialize the 
port; the ACIA control register (which 
is located at XSTATUS, the address of 
both the read-only status register and 
the write-only control register) is initial- 
ized so that RTS remains asserted, thus 
enabling communications via the local 
loops in figure two. 

Integer (Continued from page 19) 

SAVE, RESTORE and REPLACE when 
implemented in native code make pro- 
grams run faster, compile smaller and 
read more clearly. Also, these words 
allow definitions which use variables to 
be re-entrant. This is important when 
multi-tasking or recursion is desired. 

Bibliography 

McNeil, Michael, “The TO Variable,” 1980 
FORML Conference Proceedings. 

Nieuwenhuijzen, Hans, “Standard Forth 
to TO-Forth,’’ 1980 FORML Conference 
Proceedings. 

Bartholdi, Paul, “The TO Solution,” Forth 
Dimensions,Volume I, Number 43 .  

Inner Access holds 
the key to your 
software solutions 

When in-house staff can’t 
solve the problem, 
make us a part of your team. 
As specialists in custom designed 
software, we have the know-how 
to handle your application 
from start to finish. 

Call us for some straight talk 
about: 
I Process Control 
I Automated Design 
I Database Management 
a System Software & Utilities 
I Engineering 
I Scientific Applications 
I Turn Kev Svstems 

J J  

Inner Access Corporation R -  P.O. Box 888, Belmont, CA 94002 

PHONE (41 5) 591 -8295 

Volume VI. No. 2 35 FORTH Dimensions 



MVPWITH 
Stable - iransportable - Public Domain - Tools 
You need two primary features in a software development package a 
stable Operating system and the ability to move programs easily and 
quickly to a variety of computers. MVP-FORTH gives you both these 
features and many extras. This public domain product includes an editor, 
FORTH assembler, tools, utilities and the vocabulary for the best selling 
book "Starting FORTH". The Programmer's Kit provides a complete 
FORTH for a number of computers. Other MVP-FORTH products will 
simplify the deVelODment of your applications. 

MVP Books - A Series 
0 Volume 1, All about FORTH by Haydon. MVP-FORTH 

glossary with cross references to fig-FORTH, Starting FORTH 
and FORTH-79 Standard. 2nd Ed. $25 

$20 
$1 0 

0 Volume 4, Expert Sysrem with source code by Park $25 
0 Volume 5, File Management System with interrupt security by 

Moreton $25 

MVP-FORTH Software - A Transportable FORTH 
0 MVP-FORTH Programmer's Kit including disk, documen- 

tation, Volumes 1 & 2 of MVP-FORTH Series (All About 
FORTH, 2M Ed. & Assembly Source Code), and Starting 
FORTH. Specify 0 CPIM, 0 CPIM 86. 0 CP/M+ , 0 APPLE, 
0 IBM PC. 0 MS-DOS, 0 Osborne, 0 Kaypro, 0 H891289, 
0 2100, 0 TI-PC, 0 MicroDecisions. Northstar, 
0 Compupro, 0 Cromenco. 0 DEC Rainbow. 0 NEC 8201, 

0 Volume 2, MVP-FORTH Assembly Source Code. Includes 
CP/M' , IBM-PC" , and APPLE" listing for kernel 

0 Wumo 3, Floating Point Glossary by Springer 

d 0 TRS-801100 $1 50 

$300 
0 MVP-FORTH Cross Compiler for CPlM Rogrammer's Kit. 

Generates headerless code for ROM or target CPU 
0 MVP-FORTH Met8 Compiler for CPIM Rogrammer's kit. Use 

for appiicatons on CP/M based computer. Includes public 
domain source $1 50 

0 MVP-FORTH Fast Floating Point Includes 951 1 math chip on 
board with disks, dGCumentatiOn and enhanced virtual MVP- 
FORTH for Apple 11, II+ , and Ile. 

0 MVP-FORTH Frogramming Aids for CPIM, IBM or APPLE 
Programmer's Kit. Extremely useful tool for decompiling, 

0 MVP-FORTH PADS (Professional Application Development 
System) for IBM PC. XT or PCjr or Apple 11, II+ or Ile. An 
integrated system for customizing your FORTH programs and 
applications. The editor includes a bidirectional string search 
and is a word processor specially designed for fast 
development. PADS has almost triple the compile speed of 
most FORTH's and provides fast debugging techniques. 
Minimum size target systems are easy with or without heads. 
Virtual overlays can be compiled in object code. PADS is a 
true professional development system. Specify 
Computer. $500 

*.O MVP-FORTH Floating Polnt & Matrix Math for IBM or 

*@I 0 MVP-FORTH Graphics Extension for IBM or Apple 

$450 

callfinding, and translating. $200 

Apple $85 
$65 
$80 MVP-FORTH MS-DOS file interface for IBM PC PADS 

0 MVP-FORTH Expert System for development of knowledge- 
*& based programs for Apple, IBM. or CPIM. $1 00 

FORTH CROSS COMPILERS Allow extending, modifying and compiling 
for speed and memory savings, can also produce ROMable code. 
Specify CPIM, 8086,68000, IBM, 280, or Apple 11, II+ $300 

FORTH COMPUTER 
0 Jupiter Ace $1 50 

Ordering Intormatlon: Check, Money Order (payable to MOUNTAIN ViEW PRESS, 
INC.). VISA, Mastercard. American Express. COD'S $5 extra. Minimum order $15 
No billing or unpaid Po's California residents add sales tax Shipping costs in US 
included in price. Foreign orders, pay in US funds on US bank, include for handling 
and shipping by Air: $5 for each item under $25, $1 0 lor each item between $25 and 
$99 and $20 for each item over $100. All prices and products suhect to change or 
withdrawal without notice. Single system and/or single user license agreement 

FORTH MSKS 
FORTH with editor, assembler, and manual. 

*&o APPLE by M', 83 $loo 0 280 by LM, 83 *' $100 
0 APPLE by Kuntze $90 0 8086/88 by LM, 83 * $1 00 
0 ATARP valFoRTH s6O 0 68000 by LM, 83&* $250 

0 VIC FORTH by HES, VIC20 *' 0 HP-85 by Lange $90 cartridge $50 
0 C64 by HES Commodore 64 

0 Timex by l-h'd $25 

*O cpIw by M', 83 

0 HP-75 by Cassady 

$loo 

$1 50 

* 0 NOVA by CCI 8" DS/DD$175 
80 IBM-PCO by LM. 83 $100 cartridge $60 

Enhanced FORTH with: F-Floating Point, G-Graphics. T-Tutorial, 
S-Stand Alone, M-Math Chip Support, MT-Multi-Tasking, X-Other 
Extras, 79-FORTH-79, 83-FORTH-83. 

0 C64 by Parsec. MVP. F, 79 I 

$96 
0 FDOS for Atari FORTH's $40 

4 0 APPLE by MM, *' F.G. &83  $180 &-G & X  
0 ATAR~ by PNS, F,G, & x, $90 

*+,, 0 CPIM M ~ ,  & 83 $1 40 0 Extensions for LM Specify 
IBM, 280, or 8086 

0 Apple, GraFORTH by I $75 0 Software Floating 

CPIM, X & 79 $395 0 8087 Support 

3o 
0 951 1 Support 

0 Multi-Tasklng FORTH by SL. Point $1 00 

F, X. & 79 (280 or 8086) $1 00 

& 79 $45 (IBM-PC) $1 00 

0 Victor 9000 by DE,G,X $1 50 ~~~~~~~~~t $200 

(IBM-PC or 8086) $1 00 0 TRS-8OIi or 111 by MMS 

17 llmex by FD, tape G,X, Color Graphics 

0 Data Base 

0 f1gFORTH Programming Aids for decompiling, callfinding, 
and translating. CPIM, IBM-PC, 280, or Apple $200 

0 ALL ABOUT FORTH by 0 1980 FORML Roc. $25 
0 1981 FORML Roc 2 Vol $40 

FORTH MANUALS, GUIDES & DOCUMENTS 

Haydon. See above. 

$25 0 1981 Rochester FORTH Derick & Baker 

++,- 0 The Complete FORTH by Roc. $25 
$16 0 1982 Rochester FORTH Winfield 

0 Understanding FORTH by Roc. $25 
Reymann $3 0 1983 Rochester FORTH 

ROC. $25 0 FORTH Fundamentals, 
Vol. I by McCabe 

References, 1 st. Ed. $1 5 +& 0 FORTH Fundamentals, 
Vol. II by McCabe $1 3 The Application & Research 

Anderson & Tracy 

$' Chirlian 

Pocket Guide $' 0 METAFORTH by 

college level text. 

$25 
0 FORTH Encyclopedia by 0 1982 FORML ROC. $25 

$1 6 0 A Bibliography of FORTH 

Of 

+& 0 FORTH Tools, Voi.1 by 0 Voi. 1, No. I $20 
$20 

0 Beginning FORTH by 0 A FORTH Primer $25 

0 FORTH Encyclopedia Languages $23 

0 And So FORTH by Huang. A Cassady $30 

0 FORTH Programming by FORTH $25 

0 Threaded interpretive 

$25 0 Systems Guide to f ig  

Scanlon $1 7 
0 FORTH on the ATARl by E. 

0 Starting FORTH by Brodie. 
Best instructional manual 
available. (soft cover) $18 

cover) $23 

Floegel $8 

0 Starting FORTH (hard 

0 invitation to FORTH 
PDP-11 User Man. 

0 FORTH-83 Standard 
0 FORTH-79 Standard 
0 FORTH-79 Standard 

0 Tiny Pascal figFORTH 
Conversion 

$20 
$20 
$1 5 
$1 5 

$1 0 
$1 0 

0 68OOO fig-Forth with 0 NOVA fig-FORTH by CCI 
assembler $20 Source Listing $25 

Vickers Manual $25 
0 Installation Manual for fig-FORTH, $1 5 
Source Listings of fig-FORTH, for specific CPU's and computers The 
Installation Manual is required for implementation Each $1 5 

3 Jupiter ACE Manual by 0 NOVA by CCI User's 

0 1802 0 6502 0 6800 0 AlphaMicro 
0 8080 0 8086188 0 9900 0 APPLE I1 
0 PACE 0 6809 0 NOVA 0 PDP-11 ILSI-11 *d 

Volume VI. No. 2 FORTH Dimensions 36 



Forth and the AIM-65 
William F. Ragsdale 
Hayward, California 

“Ask the Doctor” is Forth Dimen- 
sions’ health maintenance organization 
devoted to helping you use and under- 
stand Forth. Questions about problems 
you have, references you need or con- 
temporary techniques are most approp- 
riate. When needed, your good doctor 
will call in specialists. Published letters 
will receive apre-print of the column as 
a direct reply. 

Questions on locating products, such 
as “Where can I get Forth for my Pet, 
Apricot, Apple, Cray, Amdahl, etc. 
may be better answered by reading the 
advertisements in your favorite maga- 
zine. We have found that ifthe vendor is 
unwilling to advertise his product, the 
likelihood is great that documentation 
and support will also be limited. 

Morning rounds having been com- 
pleted, we find the doctor seated at his 
terminal, contemplating the latest cor- 
respondence-from readers. 

Professor Jose J. Ruz-Ortiz of the 
University of Madrid, Spain writes, “I 
am very interested about the use of 
Forth in process control. In our student 
laboratory in the Department of Com- 
puter Science and Automatic Control, 
we have AIM-65 systems for student 
projects. I would be grateful for approp- 
riate bibliographic references.” 

Rx: I assume you have the Forth 
ROMs for the AIM-65 offered by Rock- 
well. This version of fig-FORTH for the 
6502 was supplied by the good doctor to 
John Baumgarner and Dave Boulton, 
who customized it to the display and 
I /  0 of the AIM. This machine offers a 
full keyboard, one-line display and a 
selection of peripherals. Rockwell doc- 
umentation is excellent. 

The volume A Bibliography of Forth 
References edited by David Hoffert (pub- 
lished by the Institute for Applied Forth 
Research, Inc., 70 Elmwood Ave., Roch- 
ester, New York 14611) surveys the 

entirety of Forth literature. This volume 
is an invaluable aid to the doctor. It 
should be part of the library of any 
serious Forth user. For example, the 
subject listing on applications cites fifty- 
two articles with subject matter as diverse 
as parking lot control and radar control. 

The subject of Forth on the AIM-65 
reminds the good doctor of an interest- 
ing event of international note. About 
1979, an excursion was made to China 
(PRC) by Ray Dessey of Virginia Poly- 
technic, who took with him Forth and 
an AIM computer. Dr. Dessey lectured 
in China on laboratory automation, 
gave many Chinese students their first 
view of a personal computer (and Forth!) 
and, upon his return, related his expe- 
rience to the Northern California FIG 
Chapter. 

Glenn Mitchell of Bedford, Indiana is 
using the HES cartridge of fig-FORTH 
(written by FIG’s own Tom Zimmer) on 
t h e  C o m m o d o r e  6 4 .  G l e n n ’ s  
letter states, “My goal is to program 
real-time analysis for audio systems. If 
there is any written material on this sub- 
ject or tools available (fast Fourier trans- 
forms, etc.) that might help, please let 
me know. 

In a similar vein (ouch!), we have a 
query from Ken Fasano of Hixson, 
Texas asking, “What information can 
you offer on using Forth as a tool for 
automated music composition with 
microcomputers. I am interested in the 
researches of composers such as Xena- 
kis and Koenig being made available to 
the individual microcomputerist.” 
Rx: A definitive article on the subject 

of a Forth interface to music is by Kim 
Harris (FIG’s secretary) and Jeff Morris 
(Bell Telephone Labs) in the 1983 
Rochester Forth Conference Proceed- 
ings, pp. 43-66. Although the instru- 
ment was a special-purpose processor, 
the Forth techniques are quite general. 
This is a follow-up to the paper Jeff 
presented at the 1982 Rochester Forth 
Conference. 

Another item is “Music Generation in 
Forth”by Michael Burton, Forth Dimen- 
sions Volume 111, Number 2, pp. 54-56. 
This article might be particularly inter- 
esting, as it presents an interface to the 
General Instrument programmable 
sound generator AY3-8910. This inter- 
face could serve as a template to be mod- 
ified to match the Commodore chip. 
Scores are given in Forth source code 
for “Red River Valley” and “Jesus 
Christ, Superstar.” 

A final paper is “Fast Fourier Trans- 
form in Forth,” Dr. Hans Nieuwenhuij- 
Zen, 1982 Rochester Forth Conference 
Proceedings, pp. 241-246. Dr. Nieuwen- 
huijzen is a contributor to the Forth 
standards effort and has authored numer- 
ous papers on Forth. This work is based 
on the Cooley-Tukey algorithm as coded 
by J. Brault at Kitt Peak National 
Observatory and requires eight floating- 
point primitives. 

The FIG-Tree dial-in data base on 
Forth is a bulletin board system oper- 
ated by your faithful Forth practitioner 
(call 415-538-3580). Our next question 
was found on the FIG-Tree, contributed 
anonymously. The user asks, “Logo 
offers the ability to later modify the 
definition of an already-compiled proce- 
dure. It would be nice if Forth could 
offer such an ability. For example, if the 
definition 

: CIRCUMFERENCE DIAMETER 
PI-TIMES ; 

uses a definition for PI-TIMES as 

: Pi-TIMES 22 7 */ ; 

then we could later refine the precision 
by re-defining PI-TIMES as 

: PI-TIMES 355 113 */ ; 

Continued on page 41 

Volume VI. No 2 37 FORTH Dimensions 



Part I 

Henry Laxen 
Berkeley, California 

I realize that most of you will have 
little need for this article since, by utiliz- 
ing the modular approach of program- 
ming in Forth, most of your applica- 
tions simply work bug-free the first 
time. Occasionally, however - perhaps 
when you are forced to modify the code 
of someone who does not adhere to your 
strictly imposed self-discipline and exem- 
plary style - you may find some of 
these techniques valuable. In this article 
I will try to adhere to relatively machine- 
independent approaches to debugging. 
There are far more general and sophisti- 
cated techniques available to you once 
you allow yourself to be very machine 
specific, such as selective tracing of pre- 
viously defined definitions and even 
monitoring individual locations in mem- 
ory and trapping them when they are 
modified per your specification. We will 
cover those techniques in my next article. 

One of the proclaimed virtues of 
Forth is its lack of any run-time over- 
head associated with error checking. 
This is both a blessing and acurse. There 
is certainly much comfort to be had by 
knowing that the machine is trying to 
help you catch your own mistakes. The 
longer your program runs without the 
machine detecting an error, the higher 
your confidence level in your applica- 
tion code. Unfortunately, the price you 
pay is often exorbitant and most other 
languages do not give the programmer 
the choice of whether or not he is willing 
to pay this price. After all, the compiler 
writer is smarter than you and knows 
what is best for you, right? The Forth 
approach is to put the full responsibility 
for run-time error checking on the pro- 
grammer. While this is probably an 
overwhelming burden for the novice, 
after reading this article you will find 
that, maybe, it’s not so difficult after all. 

There are two basic items that need to 
be implemented for our debugging tool 
kit. The first is to decide on what should 

be done when a run-time error is de- 
tected. The second is to figure out how 
to detect run-time errors. Before I con- 
tinue, I should mention that all of the 
code listed in this article is written in 
F83, the public-domain implementation 
of Forth by Mike Perry and myself. F83 
is based on the 83-Standard, and if your 
system is either fig-FORTH or Forth-79 
you will need to modify portions of it. 

Now then, suppose we have just de- 
tected a run-time error of some type. 
What now? Well, there are two very 
important pieces of information we are 
generally interested in: what was on the 
parameter stack and where we were in 
our program at the time the error oc- 
curred. Most Forth systems contain, as 
a tool that helps us with the contents of 
the parameter stack, the word .S which is 
a non-destructive stack printing word. 
The code in figure one illustrates the 
implementation of .S for a Forth-83 SYS- 
tem. We first check if the number of 
items on the stack is negative. It is quite 
rare that we have 32,768 legitimate items 
on the stack, and even rarer that we 
want to display them; so negative depths 
are treated as errors and generate the 
“Stack Underflow”message. If the DEPTH 
was zero, then the stack was empty and 
we tell the user so. Otherwise, we print 
out each item on the stack as an unsigned 
number right-justified in afield of width 
seven and with a trailing space. The 
KEY? ?LEAVE allows us to exit the defini- 
tion if there is more on the stack than we 
care to see. Since we used PICK to grab 
the items, we leave the contents of the 
stack unchanged. Thus .S is an ideal run- 
time debugging tool since it displays 
information on the screen without dis- 
turbing the state of the Forth system. 
You can simply include a .S anywhere in 
your code when you are debugging 
without disturbing anything. I suggest 
you do so when you suspect a word is 
being passed incorrect data. 

The second piece of information we 
are interested in is what exactly was 

running at the time when the detected 
error occurred. The word commonly 
delegated to this task is called UNRAVEL 
in most systems since its purpose is to 
unravel the nesting structure and dis- 
play it on the screen. Let us briefly 
review how Forth nesting works. 

When the Forth inner interpreter exe- 
cutes a high-level (i.e. defined by :) word, 
the run-time action is to save the current 
value of the interpretive pointer (IP) on 
the return stack and change the value of 
the IP to point to the parameter field of 
the new definition. If that sentence meant 
something to you, then you will realize 
that in order to UNRAVEL the nesting 
structure, all you need to do is peel off 
items from the return stack and display 
the name associated with each of them. 
The simplest version of UNRAVEL, which 
is present in many systems, is listed in 
figure two. RP@ returns the address of 
the top of the return stack. RPo is a vari- 
able that contains the initial address of 
the return stack, when it is empty. Thus, 
while these two values are unequal, we 
pop a number off the return stack, back 
it up by two (if,as most, you are running 
a post-incrementing system), fetch the 
contents of that location (which should 
be the code field of the word currently 
executing), get to the name field with 
>NAME and print it with .ID. Once the 
return stack is empty, we exit the BEGIN 
WHILE REPEAT loop and execute QUIT, 
which ends what we were doing and calls 
the INTERPRETer. This version of UN- 
RAVEL works well and can be used when- 
ever we detect a fatal error. However, it 
can be improved. 

The problem which you will soon dis- 
cover with the above version of UNRAVEL 
is that often it will print strings that are 
obviously not names in your Forth sys- 
tem. Something is wrong somewhere. 
Unfortunately, the return stack in Forth 
is not used exclusively for holding return 
addresses. In most Forth systems, the 
return stack is also used to hold DO LOOP 
limits and indices. Obviously, when a 

Volume VI, No. 2 FORTH Dimensions 38 



random DO LOOP limit or index is con- 
verted to a NAME field address, the old 
garbage-in garbage-out syndrome takes 
place. Furthermore, many programmers 
have the unfortunate habit of using the 
return stack as a temporary data storage 
area. When they do this. they are gener- 
ally not putting a valid code field onto 
the return stack. Thus, it would be nice if 
we could distinguish between I P  add- 
resses that are saved on the return stack 
and other data, such as that put there by 
DO LOOPS or bad programmers. Fortu- 
nately this, too, is easy. 

There are only two types of defini- 
tions in Forth that cause nesting to take 
place. The obvious kind is colon defini- 
tions. One property shared by all of 
these is that the contents of their code 
field points to the same piece of code. 
Thus, for any word defined by : the fol- 
lowing will yield the same result: ' 
<word> ? since the code fields all point 
to the run-time code for :. This gives us a 
way of testing whether or not a value on 
the return stack is really a saved I P  value 
that was pushed there by the run-time 
action of a colon definition. 

The other type of definition that causes 
nesting to take place is, of course, the 
run-time portions of high-level defining 
words, i.e. our old friends CREATE and 
DOES>. If we are executing the DOES> 
portion of a word then the run time for 
DOES> also pushes the IP onto the 
return stack, just like :. In addition, it 
also pushes the address of the parameter 
field onto the parameter stack, but we 
can ignore that. The rule for detecting 
DOES> words on the return stack is 
slightly different. If we fetch the con- 
tents of the value on the return stack, 
then that address must contain a CALL 
or JSR instruction to the run-time code 
for DOES>. Because different processors 
store the target address of the CALL 
instruction in different ways, we can't 
really verify that the CALL instruction 
is pointing at the same code in a very 
machine-independent way. Thus, all we 
can really do is check for the existence of 
the CALL instruction itself. The code in 
figure three illustrates how to do this 
and also how to modify the code in fig- 
ure two to take into account our new 
refinement. Thus, our latest definition 
of UNRAVEL will print the nesting struc- 
ture completely and will only print valid 

t - m i ) t v "  Tli[-N i 

Figure One 

Figure Three 

Figure Four 

: DKOP I '2ENOIJGH D R O F  : : 2 D H U P  2 7ENOUGH ZDHOP : 
: 2DllP 2 7?ENOlJGH 2 D L P  : : DIJF' 1 ?ENOUGH UUP : 

: IJL'EH 2 'ENOIJOH OVER : : 1NJ.P 2 '"ENOUGH N I P  : 
: -HOT 3 ?ENOUGH -ROT : : ROT .:. 7'ENOlJGH HOT : 

: I  2 "ENOlIOH Y : /  2 'ENOUGH / 
: .5 1 'SENOIJGH .3 . I  . .  2 '?ENOUGH ! 

: +  ? ;7ENCiIJGH + . -  2 ''ENOUGH - 

Figure Five 

Volume VI. No. 2 39 FORTH Dimensions 



names. Other values present on the 
return stack will be printed out as un- 
signed numbers. Thus, by understand- 
ing how your DO LOOPS work, you can 
even figure out the loop limit and cur- 
rent index value at the time of the error. 

Now that we have the tools we need to 
get valuable state information when an 
error is detected, we need to look at 
when to use error detection. One very 
simple and powerful technique is to 
define the words ?ENOUGH and ?EXACTLY 
as in figure four. ?ENOUGH will give an 
UNRAVEL trace whenever the number of 
parameters on the parameter stack is 
less than expected. This is very useful for 
detecting stack underflows. ?EXACTLY 
will give an UNRAVEL trace whenever the 
precise number of parameters on the 
stack is not present. You can use 
?ENOUGH to re-define all of the stack and 
arithmetic primitives to check that 
enough parameters are present on the 
stack before they attempt their opera- 
tion. Figure five illustrates this. The use 
of ?EXACTLY is very application- 
dependent. Once you have determined 
that, during execution of a particular 
word, there should be exactly n parame- 
ters on the stack, you can use ?EXACTLY 
to verify this. This is very useful when 
some unknown word is leaving extra 
items on the stack. However, it requires 
you to insert extra code in your applica- 
tion source. 

Figure six illustrates one way of min- 
imizing the damage. By defining EXACTLY 
to take a literal number following it, 
rather than preceding it, we can later 
define EXACTLY to ignore the following 
number and compile nothing. Thus, the 
run-time checking can be thrown away 
or enabled, depending only on the defi- 
nition of EXACTLY and no other source 
code needs to be changed. Needless to 
say, simply not loading the code in fig- 
ure five will remove the run-time stack 
underflow checking and will also speed 
up the resulting application. 

Other instances of run-time checking 
are up to you, as only you know your 
application. If you are using arrays, you 
can do run-time bounds checking very 
easily as illustrated in figure seven. The 
checking can be removed by simply re- 
defining MAP. The rest is up to you and 

: EXACTLY (S -- ) 

EL WORD NUMBER DROF CCOMPIL.El L l T E R C i L  
C O M P I L E  -EXACTLY : I M M E D I A T E  

: EXAMPLE (S n i  n T  -- ) 

EXACTLY 2 . "  There a re  2 numbers on t h e  stack " 5WAb . . 
: EXACTLY (S -- ) ( M a k e  i t  dlsappear 1 

RL WORD DROP : I M M E D I A T F  

Figure Six 

: MAP (S addr -- addr'  ) 

2DlJP .3 U.. I F  2+ SWAP 2 X  i 
ELSE CR . "  Subscr ip t  ou t  ot r.anue. in1$:: 15 " .> . " t.ri ed " . IJNFtfWEL. THEN 

: ARRAY 
I X E A T E  ( S  n -- ) . 
DOES: ( S  ri edcir ) MhF' : 

: CASE: 
CREATE (S  n ) . J 
DOES: (S  ri -- ) M W  :3 EXECUTE : 

Figure Seven 

your application. As you can see, the 
amount of code needed to support run- 
time error checking is extremely small, 
especially once the primitive UNRAVEL 
has been defined. Only you are the best 
judge of what should be checked and for 
what. No compiler writer can do it for 
you in all cases. 

That is enough for now. Next time, we 
will look at other debugging techniques, 
particularly those involving knowledge 
of the internal structure of your Forth 
system. These will allow us to retroac- 
tively debug previously defined words 
with no additional compilation and no 
overhead once debugging is completed. 
Until then, best of luck and may all your 
bugs be harmless. 

Copyright @ 1984 by Henry Luxen. 
AN rights reserved. 

Henry Laxen is Vice-president of 
Research and Development for Para- 
dise Systems, Inc. He worked on the 
operating system for the Panasonid 
Quasar HHC, the world's first hand- 
held computer. He will soon participate 
in a tango competition, and has a cat 
named Sophie who sounds like a bird. 

40 Volume VI. No. 2 FORTH Dimenstons 



Forth Dimensions welcomes press 
releases and product announcements, 
as well as reader letters regarding pro- 
duct performance. 

November 16-17 are the dates of the 
Sixth Annual Forth Convention and 
banquet. The convention will meet the 
needs of Forth enthusiasts, beginners or 
experienced professionals, with tutor- 
ials, exhibits/vendor booths, lectures 
and discussions. The event is to be held 
at the Hyatt Palo Alto (California); for 
information regarding special room rates 
and exhibit space, call the FIG Het Line 
(4 15-962-8653) or write the Forth Inter- 
est Group (P.O. Box 1105, San Carlos, 
California 94070). 

Siggraph 1984 (July 23-27) will include 
a panel on microcomputer graphics this 
year; panelists include Chuck Moore, 
Bill Atkinson and Susan Kare (of Apple 
Macintosh fame), Scott Kim (miK 
ttocS?) and others. A Forth-specific 
caucus will be held during the week, as 
well as demonstrations of QuickDraw 
and MacPaint, low-resolution typo- 
graphy and real-time animation. There 
should be plenty of interest to Forth 
folks who make it to the Minneapolis 
venue. For details, call Howard Perl- 
mutter at 408425-8700. 

National Semiconductor Corporation 
has announced the MA2301 Forth Lan- 
guage Interpreter. The development sys- 
tem implements MVP-FORTH and is 
designed to be used with companion 
products in the MA2000 family, with 
the NCS800 or with an 8080/Z80-com- 
patible processor. NSC’s product an- 
nouncement states, “FORTH - it’s 
currently the hottest high level comput- 
er programming language in the 
industry. ” 

fig-FORTH is now available in ROM 
for the Epson HX-20. Talbot Microsys- 
tems’two CMOS 8K EPROMs contain 
interpreter, compiler, assembler, string 
handling and other extensions for HX- 
20 1 / 0  devices. In addition, a target 

compiler development system for HX- 
20 or other 6801 16301 hardware is avail- 
able for CP/M-80 or CP/M-68K sys- 
tems. Call 213-376-9941. 

TeleForth for the Apple I1 is Forth- 
79 and includes a screen editor, macro 
assembler,. high resolution turtle gra- 
phics, floating-point and double-preci- 
sion math, and a DOS 3.3 interface. It is 
compatible with most eighty-column 
cards and with a modified DOS such as 
Diversi-DOS. Source code and cross 
compiler optional. Call Telekinetics 
(Nova Scotia) at 902-443-1813. 

Audiogenics (U.K.) produces Forth 
for the Commodore 64 and VIC-20 
computers. A screen compression tech- 
nique lessens access time on minimum 
memory VICs. Any screen can be edited, 
and the editor makes use of the Com- 
modore screen editing features. In the 
U.S., call Regenics at 714-639-9396. 

Doctor (Continued from page 37) 

Rx: Not to worry: Forth will not let 
you down in your quest for language 
parity. At least three methods may be 
used to change a word’s run-time action 
without recompiling. Only the last exam- 
ple is recommended by your counsellor, 
though. 

First, you may locate the offending 
Forth address and patch the compiled 
value to the execution address of the 
newer definition. This is called “hot 
patching,” equivalent to doing auto 
brain surgery. The pity is that the small- 
est error will turn into an auto lobot- 
omy. This is definitely the last resort, 
usually reserved for bug fixes. 

Secondly, you may alter the code field 
contents to direct execution of a later 
definition. This is similar to the DOES> 
of Forth-83. I can’t find this method in 
print. 

The third method, and the only one 
safe enough for daily use, is the Laxen- 
Perry DEFER and IS combination. For 
your example, you would execute 

DEFER PI-TIMES 
: PI*-COARSE 
‘ PI*-COARSE IS PI-TIMES 

22 7 */ ; 

and later you could substitute 

: PI*-FINE 
‘ PI*-FINE IS PI-TIMES 

355 113 * I  ; 

and the later definition would be the run 
time for PI-TIMES. A simplified version 
of DEFER and IS using Forth-83 words is 

: DEFER CREATE [‘I ABORT, 
DOES @ EXECUTE ; 

: IS ’ >BODY ! : 

This method is described in Henry 
Laxen’s article on “Self-Defining 
Words” in Forth Dimensions, Volume 
V, Number 6, pp. 35-36. His earlier arti- 
cle in Volume II1,Number 6, pg. 174 on 
Zxecution vectors has a deeper discus- 
sion of the method. 

Until next time, I remain yours in 
practicing Forth. 

41 FORTH Dimensions Volume VI. No. 2 



U.S. 

ARIZONA 

Phoenix Chapter 
Call Dennis L. Wilson 
6021 956-7678 

Tucson Chapter 
Twice Monthly, 2nd & 4th Sun., 2 p.m. 
Flexible Hybrid Systems 
2030 E. Broadway #206 
Call John C. Mead 
6021 323-9763 

CALIFORNIA 

Berkeley Chapter 
Monthly, 2nd Sat., 1 p.m, 
10 Evans Hall 
University of California 
Berkeley 
Call Mike Perry 
41 51 624-342 1 

Los Angeles Chapter 
Monthly, 4th Sat., 1 1  a.m. 
Allstate Savings 
8800 So. Sepulveda Boulevard 
% mile North of LAX 
Los Angeles 
Call Phillip Wasson 
21 31 649-1428 

Orange County Chapter 
Monthly, 4th Wed., 7 p.m. 
Fullerton Savings 
Talbert & Brookhurst 
Fountain Valley 
Monthly, 1st Wed., 7 p.m. 
Mercury Savings 
Beach Blvd., & Eddington 
Huntington Beach 
Call Noshir Jesung 
7141842-3032 

San Diego Chapter 
Weekly, Thurs., 12 noon. 
Call Guy Kelly 
6191268-3100 ext 4784 

Sacramento Chapter 
Monthly, 2nd Tues. 7 p.m. 
170B 59th St., Room C 
Call Tom Gormley 
9 161444-7775 

Silicon Valley Chapter 
Monthly, 4th Sat., 1 p.m. 
Dysan Auditorium 
5201 Patrick Henry Dr. 
Santa Clara 
Call Glenn Tenney 
4151524-3420 

Stockton Chapter 
Call Doug Dillon 
2091931-2448 

COLORADO 

Denver Chapter 
Monthly, 1st Mon., 7 p.m. 
Call Steven Sarns 
3031477-5955 

CONNECTICUT 

Central Connecticut Chapter 
Monthly, 1st Thurs., 7 p.m. 
Meriden Public Library 
Call Charles Krajewski 
203 / 344-9996 

0 FLORIDA 

Southeast Florida Chapter 
Miami 
Call John Forsberg 
3051 252-0108 

ILLINOIS 

Central Illinois Chapter 
Urbana 
Call Sidney Bowhill 
2171 333-4150 

Fox Valley Chapter 
Call Samuel J.  Cook 
3121879-3242 

Rockwell Chicago Chapter 
Call Gerard Kusiolek 
3121 885-8092 

INDIANA 

Central Indiana Chapter 
Monthly, 3rd Sat., 10 a.m. 
Call Richard Turpin 
3 171 923-1321 

IOWA 

Iowa City Chapter 
Monthly, 4th Tues. 
Engineering Bldg., Rm. 2128 
University of Iowa 
Call Robert Benedict 
3 191 337-7853 

KANSAS 

Wichita Chapter (FIGPAC) 
Monthly, 3rd Wed., 7 p.m. 
Wilbur E. Walker Co. 
532 S. Market 
Wichita, KS 
Call Arne Flones 
3161267-8852 

MASSACHUSETTS 

Boston Chapter 
Monthly, 1st Wed. 
Mitre Corp. Cafeteria 
Bedford, MA 
Call Bob Demrow 
6171688-5661 after 7 p m  

MINNESOTA 

MNFIG Chapter 
Even month, 1st Mon. 7:30 p.m. 
Odd Month, 1st Sat., 9:30 a.m. 
Vincent Hall Univ. of MN 
St. Paul, MN 
Call Fred Olson 
6121 588-9532 

MISSOURI 

Kansas City Chapter 
Monthly, 4th Tues., 7 p.m. 
Midwest Research Inst. 
Mag Conference Center 
Call Linus Orth 
8 16/ 444-6655 

St. Louis Chapter 
Monthly, 3rd Tue., 7 p.m. 
Thornhill Branch of 
St. Louis County Library 
Call David Doudna 
31418674482 

NEVADA 

Southern Nevada Chapter 
Suite 900 
10 1 Convention Center Drive 
Las Vegas, NV 
Call Gerald Hasty 
7021452-3368 

NEW YORK 

FIG, New York 
Monthly, 2nd Wed., 8 p.m. 
Queens College 
Call Tom Jung 
2121432-1414 ext. 157 days 
21 21 261-321 3 eves. 

Rochester Chapter 
Bi-monthly, 4th Sat., 2 p.m. 
Hutchison Hall 
Univ. of Rochester 
Call Thea Martin 
716/ 235-0168 

Syracuse Chapter 
Monthly, 1st Tues., 7:30 p.m. 
Call C. Richard Comer 
3 1 5 1456-7436 

OHIO 

Athens Chapter 
Call Isreal Urieli 
6141594-3731 

Cleveland Chapter 
Call Gary Bergstrom 
2 161 247-2492 

Dayton Chapter 
Twice monthly, 2nd Tues & 
4th Wed., 6:30 p.m. 
CFC 11 W. Monument Ave. 
Suite 612 
Dayton, OH 
Call Gary M. Granger 
5 131 849-1483 

OKLAHOMA 

Tulsa Chapter 
Monthly, 3rd Tues., 7:30 p.m. 
The Computer Store 
4343 South Fkoria 
Tulsa, OK 
Call Art Gorski 
918 174341 13 

OREGON 

Greater Oregon Chapter 
Monthly, 2nd Sat., 1 p.m, 
Computer & Things 
3460 SW 185th, Aloha 
Call Timothy Huang 
503/289-9135 

PENNSYLVANIA 

Philadelphia Chapter 
Monthly, 3rd Sat. 
LaSalle College, Science Bldg. 
Call Lee Hustead 
215/ 539-7989 

TEXAS 

Dallas/Ft. Worth 
Metroplex Chapter 
Monthly, 4th Thurs., 7 p.m. 
Software Automation, Inc. 
14333 Porton, Dallas 
Call Chuck Durrett 

Bill Drissel 

Bill Drissel 
2 14/ 264-9680 

2141788-1655 

214/ 788-1655 

Houston Chapter 
Call Dr. Joseph Baldwin 
7 13/ 749-2 120 

VERMONT 

Vermont Fig Chapter 
Monthly, 3rd Mon., 7:30 p.m. 
Vergennes Union High School 
Rm. 210, Monkton Rd. 
Vergennes, VT 
Call Hal Clark 
8021877-291 1 days 
80214524M2 eves 

VIRGINIA 

Norfolk FIG Chapter 
Call William Edmonds 
8041 8984!29 

Volume VI. No. 2 
FORTH Dimensions 42 



Potomac Chapter 
Monthly, 1st Tues.. 7 p.m. 
Lee Center 
Lee Highway at Lexington St. 
Arlington, VA 
Call Joel Shprentz 
703 / 437-92 18 eves. 

Richmond Forth Group 
Monthly, 2nd Wed., 7 p.m 
Basement, Puryear Hall 
Univ. of Richmond 
Call Donald A. Full 
8041 739-3623 

FOREIGN 

AUSTRALIA 

Melbourne Chapter 
Monthly, 1st Fri., 8 p.m 
Contact: Lance Collins 
65 Martin Road 
Glen Iris, Victoria 3146 
03 129-2600 

Sydney Chapter 
Monthly, 2nd Fri., 7 p.m. 
John Goodsell Bldg., 
Rm. LG19 
Univ. of New South Wales 
Sydney 
Contact: Peter Tregeagle 
10 Binda Rd.. Yowie Bay 
021524-7490 

BELGIUM 

Belgium Chapter 
Monthly, 4th Wed.. 20:00h 
Contact: Luk Van Loock 
Lariksdreff 20 
2 I20 Schoten 
03/658-6343 

Southern Belgium FIG Chapter 
Contact: Berinchamps Jean-Marc 
Rue N. Monnom, 2 
B-6290 Nalinnes 
Belgium 
071 / 21 3858 

CANADA 

Nova Scotia Chapter 
Contact: Howard Harauitz 
227 Ridge Valley Rd. 
Halifax, Nova Scotia B3P 2E5 
902/477-3665 

Southern Ontario Chapter 
Monthly, 1st Sat.. 2 p.m. 
General Sciences Bldg. 
Rm 312 
McMaster University 
Contact: Dr. N. Solntseff 
Unit for Computer Science 
McMaster University 
Hamilton, Ontario L8S 4KI 
4161525-9140 ext. 2065 

Toronto FIG Chapter 
Contact: John Clark Smith 
P.O. Box 230, Station H 
Toronto, ON M4C 552 

COLOMBIA 

Colombia Chapter 
Contact: Luis Javier Parra B 
Aptdo. Aereo 100394 
Bogota 
2 14-0345 

ENGLAND 

Forth Interest Group ~ U.K. 
Monthly, 1st Thurs., 7 p m . ,  Rm. 408 
Polytechnic of South Bank 
Borough Rd., London 
Contact: Keith Goldie-Morrison 
Bradden Old Rectory 
Towchester, Northamptonshire 
"12 8ED 

FRANCE 

French Language Chapter 
Contact: Jean-Daniel Dodin 
77 rue du Cagire 
3 I 100 Toulouse 
(16-61) 44.03 

. GERMANY 

Hamburg FIG Chapter 
Monthly, 4th Sat., 1500 hrs. 
Contact: Horst-Gunter Lynsche 
Holstenstr 191 
D-2000 Hamburg 50 

IRELAND 

Irish Chapter 
Contact: Hugh Dobbs 
Newton School 
Waterford 
051 / 75757 
05 1 / 741 24 

. ITALY 

FIG Italia 
Contact: Marco Tausel 
Via Gerolamo Forni 48 
20161 Milano 
02/645-8688 

SWITZERLAND 

Swiss Chapter 
Contact: Max Hugelshofer 
ERN1 & Co. Elektro-Industrie 
Stationsstrasse 
8306 Bruttisellen 
011833-3333 

REPUBLIC OF CHINA 

R.O.C. 
Contact: Ching-Tang Tzeng 
P.O. Box 28 
Lung-Tan, Taiwan 325 

SPECIAL GROUPS 
Apple Corps FORTH 
Users Chapter 
Twice Monthly, 1st & 
3rd Tues., 7:30 p.m. 
1515 Sloat Boulevard, #2 
San Francisco, CA 
Call Robert Dudley Ackerman 
4151626-6295 

Baton Rouge Atari Chapter 
Call Chris Zielewski 
504/292-19 10 

Detroit Atari Chapter 
Monthly, 4th Wed. 
Call Tom Chrapkiewicz 
3131524-2100 

FIGGRAPH 
Call Howard Pearlmutter 
408 1 425-8700 

Volume VI. No. 2 43 FORTH Dimensions 



FORTH INTEREST GROUP 

MAIL ORDER 

L6A 
$15 

$15 

$15 

OMembenhip in FORTH Interest Group and 

U B a c k  Volumes o f  FORTH DIMENSIONS. Rice per each. 

u f i g - F O R T H  Installation Manual, containing the language model 

a Assembly Language Source Listings of  fig-FORTH for specific CPU's 

Volume Vlof FORTH DIMENSIONS 

121 On Or11 CIIV o v  
o f  fig-FORTH, a complete glossary, memory map and installation instructions 

and machines. The above manual is required for installation. 
Check appropriate box(es). Rice par each. 

~ 8 0 8 0  O8086/8088 0 9 9 0 0  OAPPLE 11 OECLIPSE 0 I BM pc 
GPACE O N O V A  O P W - 1 1  G68000 U A L P H A  MICRO 

$15 
a l e 0 2  0 6 5 0 2  0 6 8 0 0  0 6 8 0 9  O V A X  0 2 8 0  

a " S t a r t i n g  FORTH, by Brodie .  BEST book on FORTH. (Paperback) $18 
" S t a r t i n g  FORTH" by Brodie. (Hard Cover) $23 u PROCEEDINGS: FORML (FORTH Modif icat ion Conference) 

fl 1980, $25USA/$35Foreign ,z 1981, Two Vol . ,  $40USA/$55Foreign 
1982, $25USA/$35Foreign 

ROCHESTER FORTH Conference 
L;' 1981, $25USA/$35Foreign c 1982, $25USA/$35Foreign a 1983, $25USA/$35Foreign T o t a l  $ 

- I--' STANDARD: FORTH-79, CFORTH-83. $15US~$18FoIe ign  EACH. T o t a l  $ 

a MAGAZINES ABOUT FORTH: c BYTE Repr in ts  8/80-4/81 
U D r  Dobb's J r n l  9/81,  9/82, ~ 9 / 8 3  
17 Poplar  Cornputi&F9/83 $3.50USA/$5Foreign EACH. T o t a l  $ 

,g K i t t  Peak Primer,  by Stevens.  $25 $35 

C FIG T-sh i r t s :  1 2  Small p Medium Large a X-Large $10 $12 
P o s t e r ,  BYTE Cover 8/80, 16"x22" $ 3  $ 5  

JFORTH P r o g r a m e r ' s  Reference Card. I f  ordered s e p a r a t e l y ,  send 
a stamped, s e l f  addressed envelope.  Free 

TOTAL $ 

FOREIGN 
AIR 
$27 

$18 

$18 

$18 

$22 
$28 

NAME MS /APT 

ORGANIZATION PHONE( ) 

C I T Y  STATE ZIP COUNTRY 

V I S A #  MASTERCARD# 

Card Expi ra t ion  Date 
(Minimum of $15.00 on Charge Cards) 

Make check o r  money order  i n  US Funds on US Bank, payable  to :  FIG. A l l  p r i c e s  i n c l u d e  
postage.  No purchase o r d e r s  without  check. C a l i f o r n i a  r e s i d e n t s  add s a l e s  tax. 10/83 

ORDER P m  W R :  (415) 962-8655 

FORTH INTEREST GROUP* PO BOX 1105 * SAN CARLOS, CA 94070 

FORTH INTEREST GROUP 
PO. Box 1105 
San Carlos, CA 94070 

Address Correction Requested 

BULK RATE 
U.S. POSTAGE I PAID I 
Permit No. 3107 
San Jose, CA 


