
Dimensions 

fig -Forth 
Interpreters 



By Elliot B Schnetder 

TOTAL CONTROL OVER YOUR COMMODORE-64'" 
USING ONLY WORDS 

MORE THAN JUST A LANGUAGE.. . 
A complete, fully-integrated program development system. 
Home Use, Fast Games, Graphics, Data Acquisition, Business, Music 

Real Time Process Control, Communications, Robotics, Scientific, Artificial Intelligence 

A Powerful Superset of MVPFORTH/FORTH 79 + Ext. for the beginner or professional 

0 1/4 x the programming time 
0 Easy full control of all sound, hi res. 

Access all C-64 peripherals including 4040 

0 Single disk drive backup utility 
0 Disk & Cassette based. Disk included 
0 Full disk usage-680 Sectors 
0 Supports all Commodore file types and 

Access to 20K RAM underneath ROM 

0 Vectored kernal words 
0 TRACE facility 

drive and EPROM Programmer. 
, )tting line & 

circle 
0 Controllable SPLIT-SCREEN Display 

0 Forth virtual memory 
Full cursor Screen Editor 
Provision for application program 

0 FORTH equivalent Kernal Routines 

es interactive interpreter & compiler 
Forth Virtual disk 

areas 
distribution without licensing 

0 Source screens provided 
0 Comoatible with the book "Startina Forth" 

ASCII error messages 
FLOATING POINT MATH SIN/COS 8 SQRT 

0 Access to all 1/0 ports RS232, IEEE, Tutorial examples provided, in extensive 
includina memorv & interruots manual I 

USER Support 

SUPER FORTH 64@ compiledcode 
becomes more compact than even assembly code! 

SUPER FORTH 64@ i s  more 
powerful than most other computer languages! 

w.w exira. NO D 

in US included in price. Foreign orders, pay 
in US funds on US bank, include for handling 
ond shipping $10. 

I 
I piice o'f only P - 0 .  BOX 4656, MT* VIEW, CA 94040 fornia residents OL- rr...il 

Dealer for 

Drower 1776, Fremont, CA 94538 
PARSEC RESEARCH An6 T -  

AUTHOR INQUIRIES INVITED 
Free Shipping in U.S.A. 

L 
@ PARSEC RESEARCH (Ertobltrhed 1976) Commodore 64 & VIC-20 TM of Commodore A 

FORTH Dimensions 2 Volume VI. No. 1 



FORTH Dimensions 
Published by the Forth Interest 

Group 
Volume VI, Number 1 

May/ June 1984 

Editor 
Marlin Ouverson 

Production 
Jane A. McKean, Et Al. 

Forth Dimensions solicits editorial ma- 
terial, comments and letters. No responsi- 
bility is assumed for accuracy of material 
submitted. Unless noted otherwise, mate- 
rial published by the Forth Interest Group 
is in the public domain. Such material 
may be reproduced with credit given to 
the author and the Forth Interest Group. 

Subscription to Forth Dimensions is 
free with membership in the Forth Inter- 
est Group at $15.00 per year ($27.00 for- 
eign air). For membership, change of 
address and/or to submit material for 
publication, the address is: Forth Interest 
Group, P.O. Box 1105, San Carlos, Cali- 
fornia 94070. 

Symbol Table 

Simple; introductory tu- 
torials and simple appli- 
cations of Forth. 

Intermediate; articles 
and code for more com- 
plex applications, and 
tutorials on generally dif- 
ficult topics. 

Advanced; requiring stu- 
dy and a thorough under- 
standing of Forth. a 
Code and examples con- 
form to Forth-83 stand- 
ard. 

Code and examples con- 
form to Forth-79 stand- 
ard. 

Code and examples con- 
form to fig-FORTH. 

Deals with new propos- 
als and modifications 
to standard Forth sys- 
tems. 

Dimensions 

FEATURES 

12 

9 

f 
f 
t 
t 

i 
22 

24 

26 

33 

fig-FORTH Interpreters 
by C.H. Ting 
This tutorial on Forth interpreters sheds light on the essential nature of the 
language’s inner workings. 

Automatic Capitalization in Forth 
by Jeffrey B. Lotspiech and Thomas M. Ruehle 
Using lower-case letters can greatly enhance the readability of any code; 
this smart technique allows entry in all lower case, automatically capitaliz- 
ing where appropriate. 

More Screens for the Apple 
by Allen Anway 
Take advantage of the Apple IIe’s extra 16K of memory to load more 
fig-FORTH screens despite the bank-switching problem. 

Interactive Editing 
by Wendall C. Gates 
Stack display and manipulation have been brought into this editor, which is 
entered from an aborted execution and which will interpret and execute 
Forth code a line at a time. 

Parnas’ it. ..ti Structure 
by Kurt W. Luoto 
This general control structure includes more traditional conditional state- 
ments as special cases. It can simplify expression of both deterministic and 
non-deterministic algorithms. 

Anonymous Variables 
by Leonard Morgenstern 
The author proposes that the solution to stack overuse, wasted space and 
conflicting variable names is a variable with no name or link field. 

Forth List Handling 
by Birger Olofsson 
Using variables to create list structures gives the advantages of speed and 
ease of management. 

DEPARTMENTS 
5 Letters 
7 
8 
10 
39 
42 FIG Chapters 

Editorial: A Few Changes ... 
President’s Letter: New FIG Directors by William F. Ragsdale 
Ask the Doctor: Moving to ROM by William F. Ragsdale 
Chapter News by John D. Hall 

‘1 
3 FORTH Dimensions Volume VI, No. 1 



YVP-WRTH 
Stable - iransportable - Public Domain - Tools 
You need two primary features in a software development package a 
stable operating system and the ability to move programs easily and 
quickly to a variety of computers. MVP-FORTH gives you both these 
features and many extras. This public domain product inclvdes an editor, 
FORTH assembler, tools, utilities and the vocabulary for the best selling 
book "Starting FORTH". The Programmer's Kit provides a complete 
FORTH for a number of computers, Other MVP-FORTH products will 
simplify the develoDment of vour applications. 

MVP Books - A Series 
0 WUIM 1, All about FORTH by Haydon. MVP-FORTH 

glossary with cross references to fig-FORTH, Starting FORTH 
and FORTH-79 Standard. 2nd Ed. $25 

0 Volume 2, MVP-FORTH Assembly Source Code. Includes 
CP/M" , IBM-PC" , and APPLE" listing for kernel $20 

$1 0 
0 Wume 4, Expert System with source code by Park $25 
0 Wume 5, file Management System with interrupt security by 

Moreton $25 

0 Volume 3, floating Point Glossary by Springer 

MVP-FORTH Software - A Transportable FORTH 
0 MVP-FORTH Programmer's Kit including disk, documen- 

tation, Volumes 1 & 2 of MVP-FORTH Series (All About 
FORTH. 2"4 Ed. & Assembly Source Code), and Starting 
FORTH. Specify 0 CPIM, 0 CP/M 86, 0 CPIM+ , 0 APPLE, 
0 IBM PC. 0 MSDOS. 0 Osborne. 0 Kawro. 0 H89IZ89, 
0 2100, 0 TI-PC, 0 MicroDecisions, 0 Northstar, 
0 Compupro. 0 Cromenco, 0 DEC Rainbow, 0 NEC 8201, 4 0 TRS-80IlOO $1 50 

0 MVP-FORTH Cross Canpiier for CPIM Rogrammer's Kit. 
Generates headerless code for ROM or target CPU 

0 MVP-FORTH Mot. Compiler for CPIM Programmer's kit. Use 
for applicatons on CP/M based computer. Includes public 
domain source $1 50 

0 MVP-FORTH Fast Floating h i n t  Includes 951 1 math chip on 
board with disks, documentation and enhanced virtual MVP- 
FORTH for Apple 11, II + , and Ile. 

0 MVP-FORTH Programming Aids for CPIM, IBM or APPLE 
Rogrammer's Kit. Extremely useful tool for decompiling. 

0 MVP-FORTH PADS (Rofessionai Application Development 
System) for IBM PC, XT or PCjr or Apple 11, 11+ or Ile. An 
integrated system for customizing your FORTH programs and 
applications. The editor includes a bidirectional string search 
and is a word processor specially designed for fast 
development. PADS has almost triple the compile speed of 
most FORTH's and provides fast debugging techniques. 
Minimum size target systems are easy with or without heads. 
Virtual overlays can be compiled in object code. PADS is a 
true professional development system. Specify 
Computer. $500 

$300 

$450 

callfinding, and translating. $200 

&O MVP-FORTH Floating Point & Matrix Math for IBM or * Apple $85 
@I 0 MVP-FORTH Graphics Extension for IBM or Apple 
+yl0 MVP-FORTH MSDOS file interface for IBM PC PADS 
+&O MVP-FORTH Expert System for development of knowledge- 

$65 
$80 

$1 00 based programs for Apple, IBM. or CP/M. 

FORTH CROSS COMPILERS Allow extending, modifying and compiling 
for speed and memory savings, can also produce ROMable code. 
Specify CPIM, 8086,68000, IBM, Z80. or Apple 11, I1 + $300 

FORTH COMPUTER 
0 Jupltar Ace $1 50 

Ordmrlng Inlormmtlon: Check, Money Order (payable to MOUNTAIN ViEW PRESS, 
INC.), VISA, Mastercard. American Express. COD'S $5 extra. Minimum order $1 5. 
No billing or unpaid Po's. California residents add sales tax. Shipping costs in US 
included in price. Foreign orders, pay in US funds on US bank, include for handling 
and shipping by Air: $5 for each item under $25, $10 for each item between 325 and 
$99 and $20 for each item over $1 00. All prices and products subect to change of 
withdrawal without notice. Single system andlor single user license agreement 
reauired on some woducts. 

FORTH #SKS 

&O APPLE by MM, 83 $100 0 280 by LM, 83 *& $100 
FORTH with editor, assembler, and manual 

* APPLE by Kuntze 0 8086188 by LM, 83 & $1 00 
0 ATARI@ valFORTH $60 68000 by LM, 83*& $250 

0 VIC FORTH by HES, VIC20 *' 0 HP-85 by Lange $90 cartridge $50 
0 C64 by HES Commodore 64 

0 Timex by HW $25 

4' cp/w by MM, 83 $ loo 

0 HP-75 by Cassady $1 50 

0 NOVA by CCI 8" DSIDD$175 
+&o IBM-PIY by LM, 83 $100 cartridge $60 

Enhanced FORTH with F-Floating Point. G-Graphics, T-Tutorial, 
S-Stand Alone, M-Math Chip Support. MT-Multi-Tasking, X-Other 
Extras, 79-FORTH-79,83-FORTH-83 
0 APPLE by MM. 

0 ATAR~ by PNS, F,G, & x $90 

0 C64 by Parsec MVP. F, 79, 
*& F,G, &83 $180 , ,G&X $96 

0 FDOS for Afar1 FORTH's $40 

&*O CPlM by MM, F & 83 $1 40 

0 Apple, OnFORTH by I $75 0 Software Floating 

Extensions for LM Specify 
IBM, Z80, or 8086 

0 Multi-Tssklng FORTH by SL, Point $1 00 

F, X, & 79 (280 or 8086) $1 00 

CPIM. X & 79 $395 0 8087 Support 

$1 3o 
0 951 1 Support 

(IBM-PC or 8086) $1 00 0 TRS-8011 or 111 by MMS 

0 nmex by FD, tape G,X, 0 Color Graphics 

0 Data Base 
& 79 $45 (IBM-PC) $1 00 

0 VlCtOr 9000 by DE.G,X $150 Management $200 
0 figFORTH Programming Aids for decompiling. callfinding, 

and translating CPIM, IBM-PC, Z80, or Apple $200 

0 ALL ABOUT FORTH by 0 198OFORMLRoc. $25 
Haydon See above 0 1981 FORML ROC 2 Vol $40 

0 FORTH EncycioWia by 0 1882 FORML ROC. $25 
Derick & Baker $25 0 I981 Rochester FORTH 

+.yl 0 The Complete FORTH by ROC. $25 
Winfield $1 6 0 1982 Rochester FORTH 

0 Understanding FORTH by ROC. $25 
Reymann $3 0 1983 Rochester FORTH 

ROC. $25 

$1 
0 FORTH Fundamentals, 

References, 1st. Ed. $1 5 Vol i by McCabe 
*& 0 FORTH Fundamentals, 

Vol II by McCabe $1 3 The Jwrnai of 
Application & Research 

0 Vol.1,No.l $20 
$20 Anderson & Tracy 

0 Beginning FORTH by 0 A FORTH Rimer $25 
Chirlian $' 0 Threaded interpretive 

0 FORTH Encyclopedia Languages $23 
Pocket Guide $7 0 METAFORTHby 

0 And So FORTH by Huang A Cassady $30 
college level text 

0 FORTH Programming by FORTH $25 
Scanlon S1 invitation to FORTH $20 

0 FORTH-83 Standard $1 5 
Floegel 

Best instructional manual Standard $' 
available (soft cover) $1 8 0 FORTH-79 Standsrd 

$23 0 Tiny Pascal fig-FORTH $10 cover) 

assembler $20 Source Listing $25 

Vickers $ 1 5  Manual $25 
0 instalistion Manual for fig-FORTH, $1 5 
Source Listings of fig-FORTH, for specific CPUs and computers The 
Installation Manual is required for implementation Each $1 5 

FORTH MANUALS, GUIDES L DOCUMENTS 

$25 

0 A Bibliography of FORTH 

+.yl FORTH TOOIS, V0l.l by 

$2%4 0 vol. 1, No. 2 

$25 0 Systems Guide to flg- 

On the ATARi by 0 PDP-11 Umr Man. $20 

0 Starling FORTH by Brodie 

0 Starting FORTH (hard Converslon $1 0 

0 WOO0 fig-Forth with 

3 Jupiter ACE Manual by 

0 NOVA fig-FORTH by CCI 

0 NOVA by CCI User's 

0 1802 0 6502 0 6800 0 AlphaMicro 
0 8080 0 8086I88 0 9900 0 APPLE II 

I1 1 

0 PACE 0 6809 0 NOVA 0 PDP-11ILSI-11 ., 11 I 



NOT and LEAVE Background was better than anything I had seen rea- 
son for which to hoDe. 

Dimensions IV/3). “LEAVE should NOT 
Jump” (Definition of LEAVE,” Forth 

Dear Marlin, 
I can see from reading the letters to the 

editor in recent Forth Dimensions that 
there is a lot of interest and program- 
ming being done in the new Forth-83 
Standard. I was especially interested in 
Leo Brodie’s letter about NOT and LEAVE 
and have some background information 
on the development of these ideas. 

In the 1979 Standard the other typical 
logical operations were available: AND 
XOR OR and the two’s complement; yet 
for unknown historical reasons the one’s 
complement was absent. When using a 
one’s complement, one was left with 
second-best alternatives such as -1 XOR 
(six bytes on a fig-FORTH system) or 
NEGATE 1- (four bytes with Forth-79). 
Also, the naming issue was unclear; the 
name given in the Uncontrolled Refer- 
ence Word Set of Forth-79 was COM, I 
had coded INV, and other possible names 
included COMP, COMPLEMENT and 
INVERT. 

At least as early as 198 1, NOT was pro- 
posed as a one’s complement for the 
Forth standard (“The Nature of the 
Forth Standard,” Hans Nieuwenhuyzen, 
1981 Rochester Forth Standards Con- 
ference, p. 91; “Some Thoughts on the 
Forth-79 Standard,”Rieks Joosten, 1981 
Rochester Forth Standards Conference, 
pp. 134-5; “NOT vs. COMP,” Hans Nieu- 
wenhuyzen, 1981 Rochester Forth Stand- 
ards Conference, p. 149; “Some Con- 
cepts in Forth,” Rieks Joosten, 1981 
Rochester Forth Standards Conference, 
pp. 328-9). But this was when a flag out- 
put was one. 

When Forth-83 standardized NOT as 
the one’s complement, it was a simplifi- 
cation allowed by the new flag, in which 
all bits are set to one.The common usage, 
such as O< NOT, was not disturbed. A 
redundancy in the 1979 standard, O= and 
NOT, was eliminated. The hole left by the 
missing one’s complement was plugged. 
Furthermore, the naming issue was elim- 
inated without controversy. All this was 
accomplished with no additional cost in 
new words to the standard. This result 

This gain was not without some cost. 
An example of a common phrase which 
required re-thinking was -TEXT NOT. This, 
of course, is most simply re-phrased 
-TEXT o=. NOT could no longer be used 
with any number before an IF; the input 
to  the NOT had to be a pure flag. How- 
ever, full functionality was maintained as 
O= took over where NOT didn’t operate in 
the same manner. 

I also have some information on the 
history of LEAVE. The old LEAVE techni- 
cally set a flag; it was a programming 
trick that functionally encoded the leave 
flag into the index and limit. After exe- 
cuting LEAVE the loop body would con- 
tinue to execute until encountering the 
LOOP or +LOOP. What I recall of the old 
LEAVE was the extra massaging required 
to allow the loop to execute part of an 
iteration after it was done. The old LEAVE 
was like the new LEAVE in that it could be 
used any number of times within a do- 
loop at any nesting level of other control 
structures. 

Standards Team meeting, October 1982, 
Proposal 23 1). “A jumping LEAVE ... is 
incompatible with Forth-79”(‘“on-IMME- 
DlATE Looping Words,” Klaxon Suralis, 
4th FORML Conference, October 1982). 
But the idea that prevailed was, “A 
widely desired change has been to branch 
directly from LEAVE to the continuation” 
(“Leavable Do-Loops: A Return Stack 
Approach,” George B. Lyons, 4th 
FORML Conference, October 1982). 

The history of LEAVE is tied in with the 
history of the do-loop. The 1979 stand- 
ard found the do-loop to be so contro- 
versial that the standard itself said that 
further consideration was likely (“Forth- 
79,” Forth Standards Team, first edition 
p. 16; second edition, p. 17). Still today 
this loop is routinely misused to scan 
addresses which may fall on the 32K 
address boundary (see, for example, 
The Journal of Forth Application and 
Research, December 1983, p. 7). 

Even before the 1979 standard went 
into print (October 1980) the existence of 
the 64K circular loop was known. In 
early 1980, today’s loop idea was in pre- 
birth form as a bug in the routine 
32760 10 TYPE. By July of 1980 the bug 
was fixed and the 64K circular loop idea 
had been discussed with Bill Ragsdale 
and Guy Kelly; it was pubished at the 
198 1 Asilomar conference (Berkey, op. 
cit.). Robert L. Smith recast the ideas 
into a conventional format and during 
early 1982 promoted the structure at 
Northern California FIG meetings and 
in print (“Forth Standards Corner,” 
Forth Dimensions 111/6). At the Washing- 
ton standards team meeting in May 
1982, Andy Wright reported that he had 
been using a 64K circular loop since 1978 
in his own programming language, a 
language ancestrally aligned with Forth. 
But the new loop did not allow the old 
LEAVE implementation. 

Going back to Leo Brodie’s letter, his 
discovery ... IF DROP LEAVE THEN +LOOP 
was published in the original paper cover- 
ing the 64K circular loop (Berkey, op. 
cit., pp. 4,35.). A variety of implementors 

The earliest I had heard of the new 
LEAVE was in conversation with Robert 
Patten in August 1981. The idea was in 
print the following November (“A Gener- 
alized Forth Looping Structure,” Robert 
Berkey, 3rd FORML Conference Pro- 
ceedings, November 1981 republished in 
1981 FORML Proceedings, Vol. One, 
pp. 31-7). Attracted by the do-loop struc- 
ture in that paper, Robert L. Smith 
wrote “An additional difference from 
previous DO LOOPS is that LEAVE will 
cause the loop to be exited at the point 
that it is executed. In my opinion that is 
an improvement ...” (“An Experimental 
Proposal for DO, +LOOP and LEAVE,” 
Robert L. Smith, Forth Standards Team 
meeting, May 1982, Proposal 83). 

The following articles focused on 
LEAVE: “The existing LEAVE usage can 
work with the new DO ... LOOP.”(“LOOP&- 
LEAVE,” Klaxon Suralis, FIG-Tree 
modem conference, July 21, 1982; re- 
published as “Forth-79 Compatible 
LEAVE for Forth-83 DO ... LOOPS,” Forth 

Volume VI. No 1 

i 
FORTH Dimensions 5 



beyond those listed above, incuding par- 
ties outside the standards team, studied 
and implemented these various ideas 
during the course of the standardization 
process. Before the standard was ap- 
proved (June 1983), essentially complete 
Forth-83 systems were running substan- 
tial applications. 

Any standards group, no matter what 
the field of endeavor, considers the 
choices available and picks what is 
deemed best. Almost by definition not 
everyone is fully satisfied. When the 64K 
circular loop made the old LEAVE trick 
unworkable, the alternative deemed best, 
today’s LEAVE, was selected. 

The standard as a whole has now been 
implemented by many authors including 
commercial vendors without abandon- 
ing the requirements of the standard, 
and major applications are running on 
these systems. Today, as thorough read- 
ers of Forth Dimensions are aware, there 
are a variety of implementations, both 
commercial and public-domain systems, 
encompassing the complete Forth-83. 

The chairman of the standards team 
has announced that proposals for 
changes to the standard will not be acted 
upon before the 1986-1987 time frame. I 
have my own list of changes I’d like to see 
made, but the conclusion to be drawn is 
that the Forth-83 Standard is technically 
solid, useful and working, and isn’t going 
to change for a long time. 

I was impressed during the 1982 stand- 
ards team meetings by the general unani- 
mity of thought and action which pre- 
vailed. The low level of criticism which 
has followed is itself a measure of the 
general acceptance and support for the 
standard. Coming from a community 
rooted in individualism and non-conform- 
ism, the Forth-83 Standard is a signifi- 
cant achievement brought about by the 
work and compromise of many. 

Sincerely, 
Robert Berkey 
2334 Dumbarton Ave. 
Palo Alto. California 94303 

Standard Support 

Editor: 
Leo Brodie’s description of traps to 

watch out for in converting programs 
with NOT or LEAVE to the new Forth-83 
Standard will help others who are con- 
verting similar programs. The experi- 
ences described do not indicate any weak- 
ness in the standard, rather one-time 
adjustments to changes which were made 
for good reasons. 

On NOT, some earlier Forths had two 
words - NOT and O= - for the identical 
function. Forth-83 avoided this redun- 
dancy and made NOT the proper bit-wise 
operator to be used with AND, OR, etc. 
The new standard left O= unchanged. 

LEAVE was changed for several rea- 
sons, concerning both speed and 
generality. 

No standard can meet all needs and 
desires. Most Forth software products 
will have good reasons to use a few non- 
standard words and are expected to do 
so. Few, if any, would object to that 
practice, provided that the non-standard 
routines are documented if source code 
is distributed. 

The central purpose of Forth-83 is to 
overcome needless communication and 
incompatibility problems caused by the 
existence of dialects which developed 
historically but no longer serve any pur- 
pose. This new standard is not perfect, of 
course, but it is an excellent basis for 
building on the agreements we can 
achieve and for moving beyond the con- 
fusion of dialects. I support it in my 
work, and urge others to do so. 
Sincerely, 

John S. James 
Member, Forth Standards Team 
P.O. Box 1807 
Los Gatos, California 95031 

More on WITHIN 
Dear FIG: 

After reading “Within WITHIN” in 
Forth Dimensions (V/5), 1 thought Mr. 
Nemeth might be interested in a version 
of WITHIN I have been using for some 
time: 
: WITHIN ( lower, upper, n--boolean ) 
DUP >R MIN MAX R> =’ ; 

My WITHIN returns a true if n is logi- 
cally within the upper and lower limits, 
inclusive. This means that it tends to 
produce non-meaningful results if the 
operands fall outside the range of six- 
teen-bit two’s complement numbers, at 
least with my implementation of MIN and 
MAX. Its redeeming value, however, is 
that it is easily re-written to expect dif- 
ferent stack structures and can therefore 
be used with a minimum of operation 
overhead. To accept the upper limit 
before the lower, swap MIN and MAX. 
SWAP or ROT can be tacked to the begin- 
ning of the definition, or used before it, 
to allow limits to be placed anywhere 
with respect to the number to be checked. 

Rich Leggit 
P.O. Box 6607 
Salinas, California 93912 

Obstructing Knowledge? 

Editor: 
I would like to add my comments to 

those of Mr. William A. Paine, which 
were published in the letters section of 
the September-October issue. 

It occurs to me that too much of the 
literature is geared to those who might be 
termed “computer freaks” (people who 
know the inside workings and all the 
technical aspects of computers) and too 
little is geared towards people like myself 
-- people who want to program to meet 
specific personal needs and who don’t 
feel that it is necessry to be adept in seven- 
teen languages and have degrees in calm- 
lus and electrical engineering in order to 
be decent programmers. 

I, like Mr. Paine, would like to see 
in-depth evaluations of various Forth sys- 
tems that are available, and I would like 
comments on how suitable these versions 
are for beginners as well as those inti- 
mately familiar with the inner secrets of 
silicon chips. 
Thanks very much. 

Chuck Larrieu 
P.O. Box 294 
Corte Madera, California 94925 

Homebrew TI 
Dear Sir: 

I have a homebrew TI 9995 computer 
with fig-FORTH in an 8K EPROM. I 

Volume VI. No. 1 6 FORTH Dimensions 



A Few Changes 
FIG grows as public interest in Forth 

expands: more chapters and more mem- 
bers help us to expand our services and 
remind us to keep in mind new members 
and the public when planning our activi- 
ties. Forth Dimensions is keeping pace 
with the growth by utilizing new design 
elements which we hope will equal the 
high quality of our contributors’ work. 

Most noticeably, of course, our cover 
has changed. By putting the table of 
contents on the inside we can provide 
more information about each of the 
items it contains. A short abstract helps 
find articles of interest and, as time goes 
on, will be of more help than the title 
alone when searching for needed refer- 
ence material. 

You will notice that each of our regu- 
lar departments now has its own logo. 
This has been done in order to provide 

visual distinction from other articles 
when thumbing through the pages. And 
each article is now keyed to the general 
degree of difficulty of the material cov- 
ered. The “thermometer” indicators 
should prove most useful to program- 
mers new to Forth’s concepts. Easy-to- 
understand applications and introduc- 
tory tutorials are termed simple; larger 
applications and explanations of ad- 
vanced concepts are labelled interme- 
diate; and difficult material is shown as 
advanced. Writers will want to keep 
these categories in mind when submit- 
ting their work for publication. 

Henry Laxen, Forth’s programming 
techniques pro, has taken a couple of 
months off while teaching for the Uni- 
versity of California. His column will be 
welcomed back in the next issue. Keep 
your mental faculties finely tuned, as 

Henry has planned ‘some topics of spe- 
cial interest! 

Finally, we would like to welcome the 
Forth Interest Group’s new Board of 
Directors. Sitting on the new board are 
John D. Hall, Kim Harris (incumbent), 
Thea Martin, Robert Reiling and Mar- 
tin Tracy. A deep debt of gratitude is 
owed to outgoing board members Bill 
Ragsdale, Dave Boulton, John James 
and Dave Kilbridge, all of whom have 
served from the day of FIG’s inception. 
Their contributions have shaped FIG’s 
history, and we enjoy their continued 
participation and support. Our special 
thanks goes out to each of them. 

-Marlin Ouverson 
Editor 

was an assembly language bug until you 
converted me. Still, I like to relapse occa- 
sionally and since I have an excellent 
sixteen-bit assembler in my monitor, I 
wanted to use it for my Forth assembler. 

My best solution to date is simply to 
define a defining word MACRO: 

(machine address) MACRO (word) 

such that when word is executed the 
machine language program is run. The 
program is created by the Monitor Assem- 
bler. Maybe there is a better way to use 
an existing assembler in Forth program- 
ming. A sixteen-bit assembler is quite 
complex. The TI 9995 has many illegal 
codes which cause an interrupt and could 
also be used for machine language 
definitions. 

Incidentally, in your 9900 listing - 
which is excellently documented - I 
found that a warm start at line 0146 
needed a value of 11A2 in order to work. 

Maybe your 99/4A users have found 
this. 

Forth is great fun and I hope to use it 
extensively for musical and graphical 
applications. 

Yours truly, 

R.J. Mitchell 
Star Route 
Spencertown, New York 12165 

Keeping Time 

Dear Editor: 
In the very interesting article “Time- 

keeping in Forth”by Bill Ragsdale (Forth 
Dimensions, V/  5 )  there occurs this quote: 
“Some contemporary applications of keep- 
ing time use 0000 hours for midnight.” 

This sounds as if the author believes 
the 0000 to be the deviation, when it is 

indeed the standard. Midnight is des- 
cribed with 0000 hours. The only time 
2400 is used is if an event ends exactly at 
midnight (ref. ISO-3307 standard). 

As an aside, the twenty-four hour 
clock is so much superior over the tradi- 
tional twelve-hour clock that I am sur- 
prised it is not more widely used in this 
country. For one thing, it eliminates the 
confusion of what 12:OO p.m. is; not 
everyone will believe that it is noon. 

Perr Cardestam 
P.O. Box 32572 
San Jose, California 95 152 

Dear FIG, 
I believe you d o  your readers and Bill 

Ragsdale a great disservice by requiring 
a magnifying glass to read the screens in 
his article “Timekeeping in Forth.” 

Continued on page 31 

Volume VI. No 1 7 FORTH Dimensions 



M icroMotion 

MasterFORTH 
It‘s here- the next genera- 
tion of MicroMotion Forth. 

0 Meets all provisions, extensions and 
experimental pcoposols of the FORTH- 
83 International Standard. 

0 Uses the host operating system file 
structure(APPLE WS3.3  &CP/M 2.x). 

0 Built-in micreassembler with numeric 
local labels. 

0 Afull screen editor is provided which 
includes 16 x 64 format, can push & 
pop more than one line, user defik 
able controls, upper/lower caw key- 
board entry, A COPY utility moves 
Screens within & between lines, line 
stack, redefinable control keys, and 
seorch & replace commands. 

0 Includes all file primitives described 
in Kernigan and Plauge<s Software 
Tools. 

0 Theeditor, assemblerand screencopy 
utilities are provided as relocatable 
object modules. They are brought 
into the dictionary on demand and 
may be released with a single com- 
mand. 

0 Many key nucleus commands are 
vectored. Error handling, numberpar- 
sing, keyboard translation and so on 
can be redefined as needed by user 
programs. They are automatically r e  
turned to their previous definitions 
when the program is forgotten. 
The string-handling package is the 
finest and most complete available. 

0 A listing of the nucleus is provided as 
part of the documentation. 

0 The languoge implementation ex- 
actly matches the one described in 
FORTH TOOLS, by Anderson & Tracy. 
This 200 page tutorial and reference 
is included with MastemRTH. 

0 The input and output streams are 
fully redirectable. 

0 Floating Point & HIRES options avail- 
able. 

0 Available for APPLE ll/ll+/lle & CP/M 
2.x users. 

0 MastemRTH - $100.00. FP & HIRES - 
$40.00 each 

0 Publications 

- 

FORTH TOOLS - $20.00 
0 83 International Standard-$15.00 
0 FORTH-83 Source Listing 6502.8080, 

8086 - $20.00 each. 

12077 Wilshire B h d ,  Ste 506 
Los Angeles. CA 90025 

(213) 821-4340 

From the Desk of Bill Ragsdale On behalf of the membership, I would 

Many exciting activities are presently 
happening for the improvement of FIG, 
and I’d like to take this opportunity to 
bring all of the membership up to date. 
According to the FIG by-laws, member- 
ship is organized into professional mem- 
bers (everyone) and voting members 
(directors). The directors are elected for 
three-year terms. Our long-term desire is 
to expand the representation to the full 
membership as our organizational struc- 
ture develops. 

In previous years, the directors’ elec- 
tion was a modest formality, as candi- 
dates other than the founding directors 
were conspicuous by their absence. In 
other words, we carried on by momen- 
tum. 

On April fifth of this year, the direc- 
tors of the Forth Interest Group held 
their annual election meeting. This year’s 
meeting proved to be a breath of fresh 
air. Two months earlier, a nominations 
committee was appointed consisting of 
Larry Forsley, Marlin Ouverson, Ray 
Duncan and Gary Feierbach. By around- 
robin telephonic process they developed 
a slate of candidates. At our March bus- 
iness meeting, additional nominations 
were made from the floor. We asked that 
candidates confirm their interest by either 
attending the election or by submitting a 
short statement of their desires for the 
future of FIG. 

During the April fifth meeting, at- 
tended by about seven observers and 
candidates, the voting members elected 
the new directors. The tenor of the elec- 
tion was to have a wide geographical and 
interest representation reflected in the 
new directors.Elected were Bob Reiling, 
John Hall, Kim Harris, Thea Martin and 
Martin Tracy. This new group will 
represent your interests in policy forma- 
tion and the selection of FIG’s operating 
officers. 

like to offer hearty thanks to ;he outgo- 
ing directors: Dave Boulton, Dave Kil- 
bridge, Kim Harris (reelected), John 
James and myself. These original found- 
ers have guided FIG for the last seven 
years. 

By the time you read this, the officers 
will have been selected by the directors 
for the coming year. We expect to expand 
the breadth of our membership service 
through the work and expertise of the 
new officers. 

In the next issue, you’ll hear more of 
our welcome of Shepherd Associates, 
recently appointed as FIG’s management 
firm. I’d like to wrap up this month’s 
letter by expressing my gratitude, and 
indirectly that of the membership, to the 
staff of Martens and Associates. Roy 
Martens, Sari Martens and Betty Mat- 
tox have answered the FIG hotline, 
responded to your correspondence, pub- 
lished Forth Dimensions and handled all 
mail orders for the last three-and-a-half 
years. They have done the thousand- 
and-one tasks that facilitated our mem- 
bership growth from 2500 (in 1980) to 
the present 4713 members. Only their 
successful growth as Mountain View 
Press has necessitated our transition to 
an outside, independent management 
firm. Thanks, Roy! 

My gratitude is also offered to all of 
you who have made my five years as 
President of the Forth Interest Group 
such an exciting and informative period 
of my life. 

-Bill Ragsdale 

FORTH Dimensions 8 Volume VI. No. 1 



EXPLORE 
THE LANGUAGE 

OF FORTH 
4 easy-to-read books from a dilithium Press 

Beginning FORTH FORTH Fundamentals 
Volume 1: Paul M. Chirlian 

Here’s a clear, self-teaching Language Usage 
introduction to FORTH. It C .  Kevin McCabe 

FORTH Fundamentals 

Language Glossary 

How to Build a Program 

Now you can convert an original 
idea into a well designed com- 

Wolume 2: Jack Emmerichs 

3. Kevin McCabe 
starts with the very basic ideas puter program. TheYbook gives 

3rganized by core word you useful information about 
You need to to begin major versions of FORTH, name, this comprehensive errors and bugs, plus valuable 
programming* then to fig-FORTH and FORTH-79. The fig-FORTH and FORTH-79 testing techniques. Helpful 

glossarygives you all the appli- examples are included, and are the most complex FORTH 
programming procedures. 

cable vocabularies and pronun- shown in both BASIC and 
Pascal. ISBNO-91646096-3 220pages $16 95 and programming methods, ciation. Each word is fully 

defined, with notes on the 

A complete guide to the two 

book gives you nontechnical 
descriptions of FORTH words 

and it explores the language’s 
internal operation and use of differences between the two IsBN0-88056-068-I 352Wges $I9 95 
memory. FORTH versions. 50 Lllustrattons 

ISBNO-88056-091-6 248pages $15.95 ISBNO-88056-092-4 144pages $12.95 

dilithium Reas books are available at your local book store or 
computer store. You can also call us to charge your order on VISA 
or MC - (800) 547-1842 outside of Oregon, or 646-2713 in 
Oregon. (Prices are subject to change) 

Ask about BRAIN FOOD - our free catalog listing over 150 micro- 
computer books covering software, hardware, business applica- 
tions, general computer literacy and programming languages. 

dilithium Press 
We’re the number one publisher 
of easy-to-read computer book  
P.O. Box E, Beaverton. Or 97075 

SEND TO: dIUthhm Press. P.O. BOX E. Be~oerton. OR 97075 
1 -------------------c-- 

I 
I 
I 

I 
I 
I 
I 
I 
I 
I 

rmease send me the booklsl I have checked. I understand that U I’m not fully satlsfled. I can I return the booklsl wlthln LO days far full and prompt refund. 

0 BffiIlPnII(0FORTH $16.95 0 EOW TO WILD A PROGRAM 
 FUNDAMENT^ vo- 1: 

L u W w e  uwe $15.95 

$12.95 
0 FORTH FUNDAMENTALS VOLUME 1: 0 Send me your free catalog. B R ”  FOOD. 

0 check enclosed 9 ~ 

payable to dlllthlum h s s  
Please charge my 

I 
-0- 

Name 0 VISA 0 MasterCard 

x I 
I , I Clty. state. ZIP Exp. date 

Volume VI. No. 1 9 FORTH Dimensions 



Moving to ROM 
William F. Ragsdale 
Hayward, Calij-ornia 

“Ask the Doctor” is Forth Dimen- 
sions’ health maintenance organization 
for  queries, requests, help in locating 
suppliers, applications and aid in under- 
standing the subtleties of Forth. When 
needed, our columnist will call in spe- 
cialists in the peculiarities of vendors’ 
hardware variations affecting Forth 
operation. 

As he begins his second column, we 
find the doctor in his surgical blues, 
scrubbed and using his scalpel to deftly 
excise the first of your letters from its 
envelope. 

Steve Armstrong of Milwaukee, Wis- 
consin asks, “I have a copy of fig- 
FORTH 1.4 for the Atari 800. I wiped 
out the documentation screens starting 
at screen #40. How do I edit? Has there 
been an update to this version? Is there a 
glossary published?” 

Rx: fig-FORTH is published in paper 
listing form by the Forth Interest Group. 
Vendors, users groups and some com- 
puter manufacturers have then custom- 
ized the listing for their customer/mem- 
ber use, still identifying it as fig-FORTH. 
The symptoms you describe are incom- 
plete; who is the implementor or dis- 
tributor of your version? That source is 
the best starting point for the specifics 
of your editor or documentation. 

However, there are other sources of 
help. First, the FIG chapters listed peri- 
odically in Forth Dimensions can con- 
nect you with others in your local area. 
Next, your Atari users group should be 
familiar with library fig-FORTH ver- 
sions (such as the Coin-op Division ver- 
sion or the Atari Program Exchange 
version). Finally, you may unknowingly 
have a copy of a commercial product. In 
that case, you should consider purchas- 
ing the product with documentation 
and support. 

There have been no updates pub- 
lished by FIG in the last four years. We 
hope the vendors or supporting user 

libraries will keep their running system 
up to date. For example, the Apple 
Corps in San Francisco distributes a 
version developed from fig-FORTH by 
George Lyons. It has extensive docu- 
mentation and they offer aid from their 
knowledge base on the Apple 11. 

The glossary common to all fig- 
FORTHs is contained in the Znstalla- 
tion Manual and Model (authored by 
the good doctor). Consult the back 
cover of this issue for ordering 
information. 

J .  Read of West Beach, Australia 
laments, “I am the frustrated owner of a 
BBC micro, Model B with an eighty- 
track disk drive. The Acornsoft version 
of Forth will not run even while using 
tape only. I suspect trouble with the 
presence of the DFS chip.” 

The good doctor is stumped by this 
one. We’ve seen none of the machines 
west of Land’s End in Cornwall. This is 
another case of acute hardware depen- 
dency. I’ve taken the liberty of forward- 
ing your letter to Lance Collins of our 
Melbourne Chapter. 

Edward Avilaentreats, “Do you have 
advice on where I may get further 
information on converting a RAM- 
based Forth to operate from ROM? I 
am planning to build a ham radio 
repeater control system using a one- 
board computer.” 

Rx: This question is often asked. As 
products are transplanted from an inter- 
active environment to a dedicated prod- 
uct, significant changes are needed in 
technique. This is variously called “tar- 
get compilation,” “meta-compilation” 
or “cross-compilation.’’ 

The general method is to use a Forth 
program (target compiler) to translate 
your source program to the Forth object 
code form, placing the result on disk. 
This object code is accompanied by 
machine code for word definitions used 
by your application. The complete appli- 
cation is then copied to ROM and exe- 
cuted in the final product. Often there is 

no terminal or disk storage. Target- 
compiled applications generally range 
from 1K to 20K in size. 

At present, there are no complete 
books on this process. John Cassady’s 
MetaForth ($30 from Mountain View 
Press gives three compilers but they 
only compile to RAM, and John gives 
only four pages of text and theory. Two 
other authors are reported to be prepar- 
ing comprehensive texts. Jerry Boutelle 
(author of the Nautilus cross-compiler) 
provides a discussion of the process, 
with an example, in the Proceedings of 
the 1980 FORML Conference, pp. 
111-121. 

The generation of programs to  run in 
ROM is complicated by two elements. 
First, it is usually desired to conserve 
memory space by removing unneeded 
word definitions and all word headers. 
This makes testing quite a bit more dif- 
ficult than if all of Forth is present. 
Second, words specifying RAM must 
be re-designed to  operate with separ- 
ately allocated read/ write memory 
rather than using memory within the 
program (which is ROM). 

Mastery of target compilation also 
defines a significant career opportunity. 
Your question illustrates a need area in 
which educators and vendors could ap- 
ply their talents. The most direct educa- 
tional path to your goal would be to take 
a Forth Inc. (Hermosa Beach, Califor- 
nia; 213-372-8493) course on target com- 
pilation. The cost is about $900 and 
requires one week in residence. Inner 
Access Corp. (Belmont, California; 415- 
591-8295) occasionally teaches an ad- 
vanced class which touches on the topic. 
Nautilus Systems (Santa Cruz, Califor- 
nia, 408-475-7461) sells a target compi- 
lation system for several processors for 
$250. It is also sold by Mountain View 
Press and Laboratory Microsystems. 

Lastly, Henry Laxen wrote a series of 
articles on this topic for Forth Dimen- 
sions(IV/6, V/2 and V/3). Thematerial 

Volume VI, No I FORTH Dimensions 10 



is advanced, but the series serves as a 
good introduction to the above-men- 
tioned products. 

George Jones of Lower Hutt, New 
Zealand writes, “Do you know where 
we can buy a fig-FORTH listing for the 
Intel 8096 micro-controller? Is anyone 
developing one? What help is available 
for program development for one-chip 
processors?” 

Rx: fig-FORTH implementation 
pretty much ended in 1980. Few people 
appear willing to commit effort to a dia- 
lect that has been supplanted by Forth- 
79 and, presently, Forth-83. 

Some vendor work is available for 
one-chippers. Forth Inc. has some target 
compilers that may be of use. Elizabeth 
Rather reports that they have one for 
the 8048 and were working with Intel on 
an offering for the 8096. Intel dropped 
the project, although they mentioned it 
in some sales literature. Forth Inc. would 
be pleased to offer support in this area, 
but on a project basis rather than as a 
standard product. 

This issue of target compilation and 
cross development is a lively issue, as 

mentioned in the answer above. (Trans- 
late “lively issue” to  “commercial 
opportunity. ”) 

Rockwell offers the R65F11 one-chip 
processor which forms its own devel- 
opment system and EEPROM blower 
in seven chips on a four-inch square 
board! This is an enhanced 6502 fig- 
FORTH in ROM, two timers, an ASCII 
serial port and many I jO  ports. Rock- 
well’s documentation is excellent. Randy 
Dumse at New Micros, Inc. (Grand 
Prarie, Texas; 214-642-5494) sells the 
board wired and tested or in kit form. 
Randy’s documentation is still under 
construction and leaves much to be 
desired. 

Again, Mr. Jones’ question points 
out to software vendors and application 
practitioners that sufficient demand 
exists to support the ROM-based appli- 
cation needs. 

Bill Carlson of Cortland, New York 
asks if the doctor could supply informa- 
tion on the FIG model. “I understand 
that when the fig-FORTH model was 
first released, the editor string-compari- 
son word MATCH was supplied in code, 
but the present version gives it in high 
level. As I have a 5602 I’d appreciate the 

original form. How can I get a copy? A 
stamped envelope is enclosed.” 

Rx: Until August of 1980 the fig- 
FORTH Installation Manual had a 
machine code version of MATCH. In 
response to repeated member complaints 
on portability from non-6502 users, I 
adapted a version by Peter Midnight 
written in high-level form. It was as- 
sumed that those wanting a higher speed 
would re-code for their processor. The 
high-level form first appeared in print- 
ings marked November 1980. Bill Carl- 
son’s envelope has been returned con- 
taining a prescription for the requested 
MATCH. 

William F. Ragsdale was the founding 
President of the Forth Interest Group. 
Bill has authored articles on Forth and 
its use for  BYTE, Forth Dimensions and 
Dr. Dobb’s Journal. As the author of 
fig-FORTH Installation Manual and 
Model, his work has been translated to 
run on eleven processors. His member- 
ships include the Forth Standards Team, 
Society of American Magicians, IEEE 
and ACM. Bill is the President of an 
electronics manufacturer and a graduate 
of the Univeristy of California at Berke- 
ley in Electronics Engineering. 

Huve Y i  C&tten T k  WordYkt? 
Companies such as IBM, Atari, Varian, Hewlett Packard, FORTH Fundamentals $395.00 ~- 

Dysan and Memorex are now using FORTH for a number Advanced Systems & ~~~l~ $495.00 
of applications. If you are concerned about efficiency and 
transportability, then FORTH is a language YOU should (For further information, Please send for our complete 
learn. FORTH workshop catalogue). 

Join the FORTH Revolution! 
0 Intensive 5-day workshops 

Small classes 
Experienced professionals 

0 On-site classes by special arrangement 

Inner Access Corporation 
P.O. Box 888, Belmont, CA 94002 
(41 5) 591 -8295 

n 
Volume VI. No. 1 11 FORTH Dimensions 



f ig-forth Interpreters 
C. H .  Ting 

Sun Muteo. California 

“Examining a leopard through a pipe, 
you can see only one spot.“ 

-An old Chinese proverb 

“What is an outer interpreter and what 
is an inner interpreter?” This is a ques- 
tion often asked by Forth enthusiasts. It 
is not very easy to answer because it 
involves the very essence of Forth as an 
operating system and as a programming 
language. If we can answer this question 
satisfactorily, we should be able to cut 
through much of the mythical fog often 
surrounding Forth. Examining Forth as 
an interpretive language is one way of 
looking at this strange beast. It may not 
bring instant understanding of Forth, at 
least it will put you several steps further 
ahead in appreciating the mechanism 
which makes it tick. 

I did a little research in Forth litera- 
ture, looking for references on interpre- 
ters. The consensus is that there are two 
interpreters in Forth: a text (outer) inter- 
preter and an address (inner) interpreter. 
The best verbalization of these concepts 
is that by Linda Baker and Mitch Derickl: 

The outer interpreter is a text inter- 
preter (like a BASIC text interpreter). 
It parses text from the input stream 
and looks each word up in the dic- 
tionary. When a word is found in the 
dictionary, it is executed by calling 
the inner interpreter. 

The inner interpreter is an address 
interpreter (like Pascal’s p-code inter- 
preter), which executes definitions 
whose absolute addresses have been 
previously compiled into the dic- 
tionary. 

The two-level mode of interpreta- 
tion gives Forth both compactness 
and high speed of operation. 

The text interpreter reads the input 
text stream and translates the text com- 
mands to execution addresses, which are 
turned over to the address interpreter for 
execution. Most of the compiled com- 
mands in the dictionary are represented 
by lists of execution addresses which, 
again, can be executed by the address 

interpreter. In this sense, it is quite all 
right to equate the address interpreter to 
the inner interpreter. By execution ad- 
dress is meant the code field address of a 
dictionary entry. The address interpreter 
causes the CPU to jump to the address 
contained in the code field, i. e., an indi- 
rect jump through the code field. This 
indirect jump is the reason why Forth 
code is called indirect threaded code. 

Text Interpreter 
The text interpreter is the heart of a 

Forth system. In the fig-FORTH Model, 
the dictionary can be roughly divided 
into three sections: the nucleus, which 
consists of code definitions; the Level I 
words, which build up the text interpre- 
ter; and the Level I1 words which are 
enhancements and utilities over the text 
interpreter. If we were to pick one word 
to represent the text interpreter, no doubt 
it would be INTERPRET, which performs 
the parsing of the input text stream, dic- 
tionary searches, number conversion, 
invoking the inner interpreter, and even 
compilation of colon definitions. 

INTERPRET is a beautiful piece of code, 
a classic example of the simplicity and 
power of the Forth language in describ- 
ing complicated computational processes 
using high-level words. It is worth the 
time required to read the code and to do 
our best to gain the fullest understanding 
of it. The definition of INTERPRET reads 
as in figure one. 

-FIND is a very big word. It first parses 
a word out of the input stream and places 
it in the word buffer on the top of the 
dictionary. It then searches through the 
dictionary for a command with the same 
name. If a command is found, its pa- 
rameter field address is placed on the 
data stack followed by a true flag. Then 
STATE is examined. If STATE is zero, the 
parameter field address is converted to 
the code field address, which is then 
turned over to EXECUTE. EXECUTE exe- 
cutes this command by invoking the 
appropriate inner interpreter, which we 
shall discuss in a moment. 

If STATE is non-zero, indicating that 
we are in the compiling state, the param- 
eter field address is converted to code 
field address and compiled to the top of 
the dictionary by , (comma). In this 
fashion, the text interpreter is dubbed as 
the compiler of high-level colon defini- 
tions. Charles Moore took advantage of 
the great similarity between the text 
interpreter and the colon-definition com- 
piler and rolled them into a single piece 
of code. After the command is located in 
the dictionary and the code field address 
is available, the interpreter executes it 
with EXECUTE or the compiler compiles 
with, . 

Now, if -FIND failed to find a command 
with a matching name, control is passed 
to NUMBER which converts the parsed 
word to a double-precision number on 
the data stack. If a period was embedded 

: INTERPRET ( Interpret or compile source text input words) 
BEGIN - FIND ( Parse out a word and search dictionary) 

I F  ( F o u n d )  STATE @ < 
I F  CFA, ELSE CFA EXECUTE THEN 

ELSE HERE NUMBER D P L  @ I +  
I F  [COMPILE] DLITERAL 
ELSE D R O P  [COMPILE] LITERAL THEN 

T H E N  
?STACK 

AGAIN : 

Figure One 
The definition of INTERPRET 

FORTH Dimensions 12 Volume VI. No. 1 



in the number string, which causes DPL to 
differ from -1, the double-precision num- 
ber will be processed by DLITERAL; oth- 
erwise, the high-order part of the double 
number is dropped from the stack and 
the remaining single-precision sixteen- 
bit number will be processed by LITERAL. 
If you look over the definitions of DLI- 
TERAL and LITERAL, you will find that 
they also examine first the contents of 
STATE. If STATE is zero, indicating an 
executing state, the number is left on the 
data stack. If the STATE is non-zero, indi- 
cating a compiling state, the number will 
then be compiled on top of the diction- 
ary, either as a double-precision literal or 
as a single-precision literal. 

After any of these four paths is taken, 
the data stack is checked for underflow 
by ?STACK. If the stack is okay, control 
returns to the beginning of the loop to 
process the next word in the input stream. 
INTERPRET is an infinite loop without an 
explicit exit point. This loop may be 
terminated by three conditions: NUMBER 
failing to convert a word into a valid 
number, ?STACK detecting stack over- 
flow or underflow, or reaching the end of 
input stream. 

The actions taken by the text interpre- 
ter can also be described by a conven- 
tional flowchart, as shown in figure two. 
It clearly illustrates the four alternative 
paths after a word is parsed out of the 
input stream: a command is executed, a 
code field address is compiled, a number 
is left on the data stack, or a literal is 
compiled. 

The text interpreter in Forth is simple 
because it only has to deal with two types 
of information: names of commands in 
the Forth dictionary and numbers. It 
does not have to know anything about 
the commands other than their names. 
From a name, the text interpreter can 
find the code field address of the corres- 
ponding command, and uses this address 
for execution or compilation. All these 
things can be done in one pass, without 
complications that have to be dealt with 
in other high-level languages. 

E 

Inner Interpreters 
According to the definition of the 

inner interpreter we mentioned before, 
one could take the word EXECUTE as the 
inner interpreter. But equating the inner 
interpreter to the address interpreter 

really does not bring the characteristics 
of Forth into sharp focus. To fully 
appreciate the power of Forth and to 
understand its inner machinery, we have 
to dig one level beyond this indirectjump 
and investigate what happens after the 
jump. I would like to call these routines 
inner interpreters, to which execution 
control is steered by the code fields. 
These routines actually determine what 
the particular Forth word does and how 
the information stored in the parameter 
field is to be processed or “interpreted.” 

To restrict the inner interpreter to 
mean only the address interpreter leaves 
us with only a partial understanding of a 
very fundamental characteristic of Forth. 
Similar to other high-level languages, 
Forth has many different classes of com- 
mands. However, instead of burdening 
the text interpreter with the very compli- 
cated task of classifying them, Charles 
Moore chose to use many interpreters, 
each tailored to a class of commands. By 
factoring the syntax analysis out of the 
text interpreter and dealing with differ- 
ent classes of commands by steering 
them to appropriate inner interpreters 
via the code field, he preserved the sim- 
plicity of the text interpreter and also 
enhanced its ability to handle a variety of 
commands and data structures. 

Let me first propose a formal defini- 
tion of inner interpreters and then elabo- 
rate with more detailed discussion and 
examples. 

Inner Interpreters 
The set of execution procedures, 

usually in the machine code of the 
host computer, which execute various 
Forth words by processing the infor- 
mation stored in their parameter 
fields. The address of such a proce- 
dure is stored in the code field of a 
Forth definition. Forth definitions of 
the same class have the same address 
in their code fields. 

Following this definition, we can iden- 
tify several inner interpreters in a Forth 
system. Since the inner interpreters are 
not regular Forth definitions, they were 
not defined in 7PStandard or 83-Stan- 
dard. I have to pick their names from the 
fig-FORTH Model. Here is a list of the 
inner interpreters used in fig-FORTH: 

DOCOL Address Interpreter 
DOCON Constant Interpreter 

Volume VI. No 1 13 

C64=FORTH/79 
New and 
Improved 

for the 
Commodore 64 

C64-FORTH/79TM for the Commodore64 
$99.95 

.New and improved FORTH-79 
implementation with extensions. 

.Extension yckage including Ilnes, 
circles, x a  tng, windowing, mixed 
high res-character graphics and 
sprite graphics. 

.Fully compatible floatin point package 
including arithmetic, rektional, logical 
and transcendental functions. 

.String extensions including 
RIGHT$, and MID$. 

.Full feature screen editor and 
macro assembler. 

.Compatible with VIC peripherals 
including disks, data set, modem, 
printer and cartridge. 

.Expanded 167 page manual with 
examples and application screens. 

.“SAVE TURNKEY” normally allows 
application program distribution 
without licensing or royalties. 

(Commodore Ed is a trademark of Commodore) 

TO ORDER 

-Disk only. 
-Check, money order, bank card, 

-Add $4.00 osta e and handling in 

-Mass. orders add 5% sales tax 
-Foreign orders add 20% shipping 

-Dealer inquiries welcome 

COD’S add $1.65 

USA and fana& 

and handling 

PERFORMANCE 
MICRO 

PRODUCTS 
770 Dedham Street, 
Canton, M A  02021 

(617) 828-1209 

FORTH Dimensions 



DOVAR Variable Interpreter 
DOUSE User Variable Interpreter 
DOVOL Vocabulary Interpreter 
.+2 Code Interpreter 

In a code definition, the address stored 
in the code field is the parameter field 
address. In a sense, the machine-code 
routine in the parameter field is the inner 
interpreter of this code definition. How- 
ever, it is much more logical to group all 
the code definitions in one class and let 
.+2 serve as the inner interpreter for the 
whole class. 

Create New Inner Interpreters 
The above list of inner interpreters is 

by no means a complete list, because 
users can define new defining definitions 
by the CREATE.. . ;CODE and CREATE.. . 
DOES> structures (in 79-Standard dialect). 
When one creates a defining definition, 
he constructs both a compiler and an 
inner interpreter for a class of definitions 
to be defined. Let me try another way to 
express it, as in figure three. 

The new compiler describes how each 
of the new definitions is to be con- 
structed or compiled into the dictionary. 
The new inner interpreter, written in 
machine code, will execute or interpret 
the new definition when it is finally 
invoked and executed. The CREATE.. . 
DOES> structure allows the user to define 
the inner interpreter in high-level words 
similar to those used in a regular colon 
definition. How the high-level inner in- 
terpreter works depends upon the im- 
plementation, but its function is similar 
to an inner interpreter defined entirely in 
machine code. 

A couple of examples probably will be 
helpful. Please refer to figure four. MSG 
and ARRAY are thus two new defining 
words in our Forth system. When these 
two words are executed in their appropri- 
ate contexts, they will compile new defi- 
nitions into the dictionary: 

MSG HELLO HOW ARE YOU?” 
MSG ANSWER I AM FINE. AND 
YOU?” 
10 ARRAY VECTOR 

When MSG or ARRAY is executed, the 
compiler part of their definitions con- 
structs new definitions on top of the dic- 
tionary. When the new definitions created 
by MSG or VECTOR are executed, the 

I N T E R P R E T  
-- 

P A R S E  A U O R D  

1 
SEARCH 

CONTEXT 

! 

P U S H  C F A  
O N  STACK 

C O N V E R T  
YORD T O  A 

I N S T R U C T I O N  I N S T R U C T I O N  

ERROR 0 
Figure Two 

Actions taken by the test interpreter 

: <name> CREATE <a new compiler> 

: <name> CREATE <a new compiler> 
;CODE <an inner interpreter in machine code> 

DOES> <an inner interpreter in Forth words> 
Figure Three 

Creating defining definitions 

FORTH Dimensions 14 Volume VI. NO. 1 



: MSG CREATE ( build the header) 
34 WORD C@ I +  ALLOT ( compile the message) 

(-That’s the compiler!) 
DOES> ( Here comes the interpreter) 
COUNT TYPE ; ( print the message.) 

( build the header) 
HERE OVER ERASE ( initialize the array to 0) 
ALLOT ( allocate array memory) 
DOES> ( end of compiler) 
SWAP 2* + ; 

: ARRAY CREATE 

( The inner interpreter returns) 
( t h e  address of an element) 
( in the array.) 

Figure Four 
Defining inner interpreters in high-level Forth 

DATA 
STACK 

RETURN 
STACK 

n 
LY 

d 
[ u  

D I C T I O N A R Y  

Figure Five 
The Forth Virtual Computer 

T E R R I N A L  
BUFFERS 

interpreter part of MSG or VECTOR is 
invoked to “interpret” the data stored in 
the parameter fields of the new defini- 
tions. In the cases of HELLO and ANSWER, 
strings compiled into the parameter fields 
are printed out on the terminal. In the 
case of VECTOR, the address of an ele- 
ment in the array is placed on the stack. 

I hope these examples illustrate the 
intended functions of a defining defini- 
tion: compiling new definitions and in- 
terpreting them when a new definition is 
invoked. When we program in Forth, 
normally we add new definitions to the 
Forth system using the pre-defined de- 
fining words like :, CODE, CONSTANT, 
VARIABLE, and VOCABULARY. This capa- 
bility, according to  Kim Harrisz, is 
“Forth extensibility of the first kind.” 
This capability, though extremely pow- 
erful, limits us to these pre-defined data 
structures. The ability to create new 
types of defining words which in turn 
generate new classes of commands and 
data structures is “Forth extensibility of 
the second kind.” This ability sets Forth 
well above any other existing high-level 
programming language, because it pro- 
vides us with a very simple tool to build 
customized compilers and interpreters 
for our specific applications. Many ex- 
amples have appeared in Forth literature 
based upon this compiler/ interpreter con- 
struction, like regular and cross assem- 
blers, meta-compilers, data-base sys- 
tems, file management, floating-point 
and extended-precision data structures. 

Virtual Forth Computer 
In the preceding paragraphs, we 

touched upon the function of EXECUTE 
and that it can invoke an inner interpre- 
ter to perform the actions desired of the 
command to be executed. How does 
EXECUTE do this kind of magic? How 
does the inner interpreter carry on from 
there? 

It is not an easy job to explain the 
internal actions in a Forth computer. I 
have seen lots of people bogged down in 
Chapter 9 of Starting Forth3 for months, 
not able to fully grasp the sequence of 
events in the exeuction of a high-level 
Forth command. Pointers are moved 
around and control is jumping from one 
level to another. Many times I myself got 
lost trying to trace the sequence for my 
students. It seemed to be a hopeless task. 

Volume VI, No 1 

1 
FORTH Dimensions 15 



FORML 
Forth Modification Laboratory 

presents 

3Wm - HONG KONG - CHINA 

A TECHNICAL CONFERENCE AND TOUR PROGRAM 
For Forth Interest Group members  and guests 

September 25, 1 984 - October 1 4, 1984 
$3085 per person 

Participate in the Forth Modification Laboratory Conference in Taiwan September 28th through 
30th, travel to Hong Kong for an international Forth Interest Group Conference scheduled 
October 3rd, and attend the Forth Modification Laboratory Conference and Tutorial at the Chiao 
Tung University in Shanghai October 8th through October 10th. Free days are scheduled for 
independent sig htseeing and shopping or relaxation. Optional tours are available for those not 
participating in the conference. 

A 20 day/l9 night trip to Taiwan, Hong Kong, and China departing September 25th from San 
Francisco, California, and arriving Taipei, Taiwan September 26th. The group will be staying at the 
Hotel Lai-Lai Sheraton or similar hotel depending on availability. Full American breakfast daily, 
afternoon sightseeing tour, and a Mongolia Barbeque on Sunday September 30th after the 
Conference. Arrival in Hong Kong October lst, staying at the Mandarin Hotel Hong Kong or 
similar. Three meals a day are included in China, Depart Shanghai October 1 1 th for two full days of 
sightseeing in Beijing (Peking). Accommodations will be at the Jianguo Hotel or similar. The group 
returns to San Francisco October 14th. An optional 3 day extension is available to visit Xjan which 
will include visits to sites of great archaeological and architectural interest at the remains of Ban 
Po.You will also visit the terracotta army of Qin Shi Hyangdi, over 6000 life size figures of warriors 
and horses lie buried here. 

TAIWAN, HONG KONG, AND CHINA 20 DAY/19 NIGHT TRIP 
TAIWAN ONLY 8 DAY/7 NIGHT TRIP 
XlAN OPTIONAL EXTENSION 3 DAY/2 NIGHT TRIP 
SINGLE ROOM SUPPLEMENT TAIWAN AND HONG KONG ONLY 

$3085 
$1 450 

$ 400 
$ 475 

Prices based on air fare as of April 1984 - Subject to changes. Hotel based on twin-bedded rooms or double 
rooms. Single rooms not available in China. Deposit required ten percent with balance of payment required July 
25, 1984. Space is limited, early reservations are recommended. 

For complete information write to: 
FORML, P.O. BOX 51351, PAL0 ALTO, CA 94303 

or telephone the FIG Hotline 41 5/962-8653 

FORTH Dimensions 16 Volume VI, No. 1 



~~ 

PRECEDENCE \ 

/ 
\ 

NAHE F I E L D  
O E L I M I T E R S  

SHUOGE NA 

E NSTRUCTION NFA PRIOR OF 

AOORESS OF 

I N T E R P R E T €  
INNER 

COUNT 

COUNT T= NAME F I E L D  

I + 
+ 
-I- 

j 

L I N K  F I E L D  

CODE F I E L D  

I 

, 
! 
P ARAIIETER 
F I E L D  

I 
1 

Figure Six 
Instructions Format 

EXECUTE: (cfa ---) 
MOV (SP),W 
INC SP Pop data stack. 
MOV (W),PC 

Code field address on data stack. 
Copy top of data stack, cfa, to w register. 

Copy the address of inner interpreter in the code field into 
PC. 
The inner interpreter will be executed next. W remains 
pointing to the cfa of the Forth word under processing. 

Figure Seven 
The execution of EXECUTE 

NEXT: IP points to the next word to be executed. 
Copy contents of IP, the cfa of the next word to be exe- 
cuted, to w register. 
Point IP to the word after the next word to continue the 
execution sequence. 
Execute the inner interpreter whose address is now in W, 
taken from the code field of the current word under 
processing. 

MOV (IP),W 

INC IP 

MOV (W),PC 

Figure Eight 
How NEXT operates 

The only way to  convey some sense of 
rationality is to bite the bullet and pre- 
sent the fundamental processes in the 
Forth virtual computer. It may not com- 
municate full understanding of the Forth 
system, but at  least it will not add to the 
f ee l ing  of c o n f u s i o n ,  c h a o s  a n d  
helplessness. 

The virtual Forth computer is a pro- 
gram loaded into the memory of a real 
computer. It partitions the computer 
memory into areas of specific function 
and enables the real computer to process 
Forth command streams. Figure five is a 
schematical representation of the func- 
tional parts in a virtual Forth computer. 
It consists of a dictionary, two stacks, a 
terminal input buffer and a number of 
disk buffers. 

The virtual Forth computer uses a set 
of registers to store the most vital infor- 
mation for control of the flow of execu- 
tion sequences. They are: 

SP Data Stack Pointer 
RP Return Stack Pointer 
IP  Interpretive Pointer 
w Current Word Pointer 
PC Program Counter 

The program counter PC and the return 
stack pointer R are usually registers in 
the host CPU. The data stack pointer SP, 
the interpretive pointer IP and the cur- 
rent word pointer W can reside in memory 
if the host CPU does not have enough 
registers. 

To express the functions precisely, I 
shall use a “universal assembler” with 
three instructions: 

MOV src,dest Move data from src to 

INC dest Increment contents of 

DEC dest Decrement contents of 

dest. 

dest. 

dest. 

Parentheses around the src or dest indi- 
ca t e  “ the  con ten t s  of.” a level of 
indirection. 

The dictionary is a linked list of word 
definitions. Each word definition con- 
sists of four fields, as shown in figure six. 
The name field and the link field allow 
definitions to be linked into a linear list 
which can be searched by the text inter- 
preter. The  code field contains the  
address of the inner interpreter for this 

Volume VI, No 1 17 FORTH Dimensions i 



definition and the parameter field con- 
tains necessary information specific to 
the task defined for this definition. Our 
attention will be concentrated in the 
code field and the parameter field. 

The Code Interpreter 

Where shall we start to explain the 
inner interpreters? The best place to start 
is probably the EXECUTE in the text inter- 
preter, which invokes an inner inter- 
preter to execute a command. We should 
note that when EXECUTE is executed, the 
code field address of the command to be 
executed is placed on the data stack by 
the text interpreter. See figure seven. 
EXECUTE moves the cfa into W register 
and jumps to the inner interpreter indi- 
rectly through w. Because the W register 
is still pointing to the code field of the 
current word, the inner interpreter can 
use the w register to access information 
contained in the parameter field of the 
current word for whatever purposes 
meant for the inner interpreter. Many 
Forth implementations increment the W 
register before jumping to the inner 
interpreter. They are called post-incre- 
menting inner interpreters. This is con- 
venient because the w register will then 
point squarely at the parameter field 
where information is to be retrieved. My 
“universal assembler” would be very 
messy if I had to increment W before the 
jump; therefore, I will let the inner 
interpreters do the incrementing if they 
need to do it. 

All inner interpreters must end their 
execution process with a code sequence 
named NEXT, which returns control to  
the text interpreter. If an inner interpre- 
ter is called by another high-level word, 
control will be returned to the calling 
high-level word by NEXT. The presump- 
tion of NEXT is that the address of the 
next word in the execution sequence is 
contained in the interpretive register IP, 
which is used by the address interpreter 
(allow me to get ahead of myself for a 
short moment), to scan a list of addresses 
as compiled in the parameter field of a 
colon definition. NEXT operates as shown 
in figure eight. . 

All words in the dictionary can be in- 
voked by EXECUTE if the code field 
address is pushed on the data stack, or by 

18 

NEXT if the code field address, compiled 
in the dictionary, is pointed to by the IP. 

I must emphasize this point: when a 
Forth word is executed, it is its inner 
interpreter which gets executed by the 
host computer. NEXT and EXECUTE get 
the address of the inner interpreter from 
the code field of the word definition. 

Let us take a closer look at the code 
definitions, which are defined in the 
machine code of the host computer. In a 
code definition, the host machine code is 
contained in the parameter field of the 
definition. What is the inner interpreter 
for a code definition? Look at the con- 
tents of its code field. Guess what? The 
code field is pointing right at the param- 
eter field, one cell after itself! Therefore, 
when EXECUTE or NEXT invoke this code 
definition, the machine code in the param- 
eter field is executed by the host. Each 
code definition thus contains its own 
inner interpreter. From this point of 
view, it should be very obvious why 
every code definition must end with the 
NEXT code sequence. Though it is advan- 
tageous to think of each code definition, 
with its own inner interpreter, as a class 
by itself, our general practice is to group 
all code definitions together as one class 
of Forth words. After all, they still share 
the same compiler, which should be 
called an assembler. We can assign to  
them a fictitious common inner interpre- 
ter, (.+2), a pointer to the parameter field, 
or the “code interpreter.” 

The Address Interpreter 
In a colon definition, the parameter 

field contains a list of code field 
addresses. The inner interpreter for this 
class of Forth words must be able to scan 
this list of addresses and execute them in 
the appropriate sequence. This inner 
interpreter should be named properly the 
“address interpreter,” in order not to be 
confused with other inner interpreters. 
In the fig-FORTH Model, this address 
interpreter is named DOCOL (figure nine). 
DOCOL uses the interpretive pointer IP in 
a way very similar to that in which the 
CPU uses the program counter PC to 
keep track of the execution sequence. IP 
scans through a list of code field addresses 
as the PC scans through a list of host 
machine instructions. If the code field 
address points to another colon defini- 
tion, the IP must be used to scan a new list 

Volume VI. No. 1 



DOCOL: 

DEC RP 
MOV IP,(RP) 

INC W 

MOV W,IP 

MOV (IP),W 
INC IP 
MOV (W),PC 

W register points to the code field of the current word 
being executed. 
Make room on the return stack. 
Push the address of the next word to be executed on the 
return stack, because IP will be used to scan the address 
list of the current word. 
Point w to the parameter field of the current word, at the 
head of the new address list. 
IP is pointing to the head of the new address list, ready 

Get the first code field address into W register. 
Move IP to the next address. 
Execute the first word in the address list of the colon 
definition. 

for NEXT. 

Figure Nine 
The fig-FORTH address interpreter 

EXIT: The return address is saved on the return stack. 
Restore IP from the return stack. 

This is the NEXT again. 

Return to the caller. 

MOV (RP),IP 
INC RP Pop the return stack. Unnest by one level. 
MOV (IP),W 
INC IP 
MOV (W),PC 

Figure Ten 
EXIT returns control to a calling definition 

DOCON: w register points to the code field of the constant. 
INC W Point w to the parameter field. 
DEC SP Make room on data stack. 
MOV (W),(SP) 
MOV (IP),W Constant function completed, 
INC IP get NEXT to move on. 
MOV (W),PC 

Push the contents of the parameter field onto the data stack. 

DOVAR: w register points to code field. 
INC W w points to the parameter field. 
DEC SP Prepare a push. 
MOV W,(SP) 

MOV (IP),W Call NEXT. 

Push the parameter field address onto the data stack, not 
its contents as in DOCON. 

INC IP 
MOV (W),PC 

Figure Eleven 
Interpreting constants and variables 

of addresses. The old address in IP is 
preserved on the return stack so that IP 
can be freed to scan the new list. The 
return stack is thus an extension of the IP 
register, allowing a colon definition to 
call other colon definitions, which can 
then call other colon definitions. The 
nesting of colon definition calls is limited 
only by the depth of the return stack 
allocated in the virtual Forth computer. 

At the end of a colon definition, con- 
trol must be returned to the calling defi- 
nition. The return address was saved on 
the return stack by DOCOL. The Forth 
word which returns control to the calling 
definition is EXIT (figure ten). EXECUTE 
and NEXT are analogous to the machine- 
code level CALL and RTN instructions, 
and DOCOL and EXIT are analogous to the 
SUBROUTINE and RETURN commands in 
Fortran or other high-level languages. 
They are the most important tools by 
which the virtual Forth computer finds 
its way through most of the Forth 
commands. 

Constant Interpreter and Variable 
Interpreter 

Code definitions and colon definitions 
are only two classes of Forth words 
among many other classes. In a regular 
Forth system, at least two more classes 
are provided: constants and variables. 
Their respective inner interpreters are 
DOCON (the constant interpreter) and 
DOVAR (the variable interpreter). Their 
functions as described by my universal 
assembler are shown in figure eleven. 

Constants and variables are very sim- 
ilar in their structures. There is only one 
cell reserved in their parameter fields, 
and the numeric value of the constant or 
variable is stored in this cell. The only 
difference in their respective inner inter- 
preters is that the constant interpreter 
pushes the contents of this cell onto the 
data stack while the variable interpreter 
pushes its address onto the stack. 

Because constants and variables are 
used very often in Forth, their interpre- 
ters are usually defined in host machine 
code. The defining words CONSTANT and 
VARIABLE are themselves defined with the 
CREATE . . . ;CODE construct as in figure 
twelve. 

Continued on page 35 

Volume VI, No 1 19 FORTH Dimensions 



Automatic Capitalization in Forth 
Jeffrey B. Lotspiech 
Thomas M .  Ruehle 
Boulder, Colorado 

Until recently computer programmers 
entered their programs in all capital let- 
ters as a matter of necessity; keypunches 
and teletypes simply did not provide 
lower-case letters. Technology has pro- 
gressed, but many programming lan- 
guages (and some programmers) have 
retained an upper-case mentality. This is 
unfortunate; because readers are accus- 
tomed to reading text that is predomi- 
nantly lower case, they read it more eas- 
ily. Many programmers recognize this 
and will tolerate some inconveniences in 
order to enter their comments in both 
upper case and lower case, even if their 
programming language requires all other 
statements to be in upper case. 

But it would be wrong to think that 
lower case belongs to comments only; 
variable names and action words can 
also benefit from both upper case and 
lower case, and especially from the visual 
contrast between lower case and upper 
case within a program. For example, our 
highest-level application programs in 
Forth typically consist of mnemonic 
high-level words nestled in IF ELSE THEN 
or looping control structures. Unfortu- 
nately, some stack management words 
usually creep in, even at the highest level; 
so the reader must suffer through an 
occasional DUP, SWAP, DROP or OVER. If 
the high-level, applications-oriented 
words are in lower case while the branch- 
ing and stack management words are in 
upper case, the reader is provided with 
one more visual clue to help him decipher 
what is going on-certainly not a replace- 
ment for the other visual clues of indent- 
ing and spacing, but instead a nice com- 
plement to them. In fact, case should be 
considered another tool in the profes- 
sional programmer’s toolbox to help 
him with one of his major goals: making 
his programs clear and understandable. 

Forth, of course, allows any charac- 
ters except the blank and the null to be 
used in names; so there are no inherent 
restrictions on lower-case names. Since 
all the nucleus words are capitalized, 

however, you can quickly wear out your 
shift key and your patience if you try to 
write a program that effectively uses 
lower case. Even if your computer sup- 
ports a CAPS LOCK key, remembering 
to turn that key on and off can be an 
annoyance and can even discourage 
proper commenting of code. 

A possible solution is to ignore the 
case of alphabetic characters by chang- 
ing WORD to fully capitalize every word it 
parses. Then you would enter your pro- 
gram entirely in lower case, and you 
would not worry about capital letters at 
all. This method is unsatisfactory because 
you lose the visual impact of having 
some words in upper case and some 
words in lower case. 

Our solution is to type all of the pro- 
gram in lower case, as before, but to have 
the compiler capitalize a word perman- 
ently if it is “appropriate” for that word. 
And it is “appropriate” to permanently 
change a word to capitals if the compiler 
cannot find it as it was typed, but can 
find it in its capitalized version. 

The screens in figures one through 
four show our implementation of this 
idea. The word re-FIND (figure two) is our 
new version of the standard nucleus 
word -FIND that, if necessary, will capital- 
ize a word and try to find it again. Specif- 
ically, if the first -FIND in re-FIND fails to 
find a word, then re-FIND: 

1 .  Backs up the input stream by one 
word using unWORD. 

2. Finds the new memory address of the 
input stream using INmemory. 

3. Capitalizes the input word in memory 
using CAPITALIZE. 

4. Sends -FIND to search for the newly 
capitalized word. 

5. Keeps the change permanently on 
disk using keep, if the new word is 
found. 
Perhaps the only thing about this proc- 

ess that is not completely straightfor- 
ward occurs in unWORD, whosejob it is to 
undo the action of the nucleus word 
WORD. WORD normally advances the in- 
put pointer IN past the trailing delimiter 

of the word it parses (a blank, when 
WORD is called by -FIND). Thus, unWORD 
adds one to the length of the word (found 
at HERE) to skip that delimiter. However, 
WORD (actually ENCLOSE called by WORD) 
treats an ASCII null as a special case 
delimiter. It will never skip an ASCII 
null under any circumstances. There- 
fore, if the word parsed was delimited by 
a null, unWORD would back up one char- 
acter too many. The precise solution to 
this problem is to have unWORD examine 
the character at IN and the character 
immediately before it, and if the charac- 
ter at IN is a null and the character before 
is not a blank, back up one character 
less. Our simpler solution is merely to 
make sure that IN does not go below zero, 
which is the only serious problem that 
could occur. (This forces the programmer 
to leave a blank after a closing double 
quotation mark or after a closing paren- 
thesis if the next word is delimited by a 
null and he wants to have it automati- 
cally capitalized. Because that blank 
should be left there for readability any- 
way, and because words on disk screens 
rarely end up delimited by a null in any 
case, this restriction is inconsequential.) 

The word reFlND can be used anyplace 
that -FIND is normally used, except in 
CREATE. The -FIND in CREATE expects nor 
to find its target word (the word being 
created); if you capitalized and tried 
again, every newly created word in the 
dictionary would end up capitalized. 
Actually, the only place we have used 
re-FIND is in INTERPRET. We call this new 
version of the interpreter interpret, and it 
is shown in figure three. [COMPILE] 
FORGET, and ’ (a tick) could also use 
re-FIND, but we are satisfied to require 
programmers using these words to type 
the word which follows in the correct 
case. 

The new interpreter runs more slowly, 
because some words it encounters will 
require two searches: one for the original 
version of the word and one for the capi- 
talized version. The first compilation of a 
screen permanently capitalizes those 
words that need to be capitalized. The 
only words that are not found in one 

I 

Volume VI. No 1 FORTH Dimensions 20 



: CAPITALIZE ( addr count - -  ) ( capitalizes a string ) 
OVER + SWAP DO 

I C@ DUP [ HEX ] 60 > OVER 7B < AND 
IF [ FF 20 - ] LITERAL AND ENDIF I C! 

LOOP ; DECIMAL 

: INmemory ( - -  addr ) ( address where input will come from ) 
BLK @ IF BLK @ BLOCK 

ELSE TIB @ ENDIF IN @ + ; 

: unWORD ( - -  count ) ( backs up input over last word ) 
IN @ DUP HERE C@ 1+ - ( back up word length plus 1 ) 
0 MAX DUP IN ! - ; ( but never past start of buf ) 

- -> 

Figure One 
Automatic capitalization using CAPITALIZE 

INmemory and unWORD 

: keep ( - -  ) ( makes change permanent) 
BLK @ IF UPDATE ENDIF ; 

: re-FIND ( flag -- [ pfa len ] flag ) ( capitalizing -FIND ) 
-FIND -DUP O= 
IF ( not found as is ) 

unWORD INmemory SWAP CAPITALIZE ( make uppercase ) 
-FIND DUP IF keep ENDIF ( keep if OK now ) 

ENDIF ; 
--> 

Figure Two 
Automatic capitalization using 

keep and re-FIND 

: interpret ( -- ) ( the lowercase equivalent of INTERPRET ) 
BEGIN re-FIND ( re-FIND only difference from IhXRPRET) 

IF ( FOUND, perhaps after CAPITALIZEing it ) 
STATE @ < 
IF CFA , ELSE CFA EXECUTE ENDIF 

ELSE HERE NUMBER DPL @ 1+ 
IF [COMPILE] DLITERAL 
ELSE DROP [COMPILE] LITERAL ENDIF 

ENDIF ?STACK AGAIN ; - -> 

Figure Three 
Automatic capitalization using interpret 

: ZAP ( oldpfa newpfa -- ) ( replaces word in nucleus ) 
CFA OVER ! ( "compile" nkwpfa into old 
r :s CFA 1 LITERAL OVER 2+ ! ( force ;S 
i i CFA 6 1 LITERAL SWAP CFA ! ; ( force DOCOL) 

INTERPRET interpret ZAP 

Figure Four 
ZAP-nucleus patching word 

search when the screen is re-compiled 
are literal numbers (which are not found 
in any search). Therefore, a literal num- 
ber takes twice as long to compile with 
our new interpreter as it takes with the 
standard interpreter. This could be fixed 
(for example, CAPITALIZE could check to 
see if it really capitalized anything), but 
we find it does not create enough of a 
problem in compilation time to concern 

In theory, we would re-compile our 
new version of the interpreter into the 
nucleus. However, like many Forth users, 
we do not have a Forth nucleus that we 
can directly boot up (we must cross- 
compile it from an IBM System/370 
host processor). So, we have invented a 
second word, ZAP, used for testing. It can 
quickly replace a selected word in the 
nucleus with a new word defined outside 
the nucleus. ZAP is shown in figure four. 
It takes the parameter field of the old 
word and compiles a two-word sequence 
into it: (new CFA, ;s). This has the effect 
of branching references to the old word 
in the nucleus with a new word defined 
outside the nucleus. ZAP stores the 
address of DOCOL in the code field of the 
old word, so that if the old word was not 
originally a colon definition, it becomes 
one after being zapped. Since ZAP re- 
writes the first four bytes of the parame- 
ter field of the old word, this field must 
be at least four bytes long. This criterion 
usually eliminates words defined with 

dates to be zapped. 
Notice that when the screen shown in 

figure four is loaded, INTERPRET will 
interpret a ZAP to change itself to its new 
version in the middle of its execution, 
and will resume executing with the new 
logic as if nothing had happened. To be 
honest, it is more a matter of luck than of 
design that this works (in fig-FORTH 
systems); however, it does indicate some 
of the power and usefulness of ZAP. We 
are also confident that any programmer 
who is serious about writing readable 
code (and has been using lower case 
toward this end) will find automatic cap- 
italization a welcome addition to the 
professional programmer's toolbox. 

us. 

USER, VARIABLE or CONSTANT as candi- 

21 FORTH Dimensions Volume VI, No. 1 



More Screens for the Apple 
Allen Anway 

Superior, Wisconsin 

After using an Apple fig-Forth public- 
domain disk by George B. Lyons and 
updated by Mark R. Abbott, I got an 
Apple IIe. Wouldn't it be nice to use the 
extra 16K memory (total 64K) for screen 
storage, thus freeing regular RAM? Ah, 
but it's bank switched over ROM and 
some routines use ROM. The solution is 
to download 1K blocks of the upper 16K 
into regular RAM (below $COOO; see 
memory map in figure one) at a fixed 1 K 
block. The following screens perform 
this automatically, even permitting over- 
writing and updating. 

I use the notation shown in figure two 
for commenting the block programs. 
Think of J as the square root of -1 for 
"imaginary" bank-switched RAM. The 
common Forth words USE, PREV, +BUF, 

BLOCK and FLUSH retain their original 
meanings, but with a little more appara- 
tus to download and upload. However, 
watch out for BANK. It is very specific. 

EMPTY-BUFFERS, DRO, DR1, WBUF,.BUFFER, 

Allen Anway is the Director of Instruc- 
tional Computing at the University of 
Wisconsin, Superior. 

SCR # 40 
0 ( SCREEN # 040 ) ( 1-19-84 D I S K  1 AA ) 
1 HEX ( ALLEN ANWAY UW-SUPERIOR ) 

2 
3 CODE BONl C08A LDA, C083  LDA, C 0 8 3  LDA, 
4 NEXT JMP, 
5 CODE BON2 C 0 8 2  LDA, C08B LDA, C08B LDA, 
6 NEXT JMP, 
7 CODE BOFF C 0 8 2  LDA, C08A LDA, NEXT JMP, 
8 
9 

) ( --- 

) ( --- 

) ( --- 
10 : BANK ( NA --- BAJ ) 1E AND DUP 8 < I F  
11 BONl 8 OR ELSE BON2 ENDIF  200 * COO0 
12 OR ; ( CONV NA s( TURN-ON J RAM 1 
13 
14 0 VARIABLE USE 0 VARIABLE PREV 
15 B380 CONSTANT BADD 
16 B782 CONSTANT F I R S T  B7A2 CONSTANT L I M I T  
17 
18 : +BUF ( NA --- NA'\FLAG ) 2+ DUE' L I M I T  
19 = I F  DROP F I R S T  ENDIF  DUP PREV @ - ; 
20 
21 : UPDATE ( --- ) PREV @ @ 8000 OR PREV 
22 @ ! ;  
23 --> 

SCR # 41 
0 ( SCREEN # 041 ) ( 1-19-84 D I S K  2 At4 ) 

1 
2 : EMPTY-BUFFERS ( --- ) F I R S T  DUP PREV ! 
3 DUP USE ! 2- L I M I T  OVER - ERASE i 
4 ( ALSO SETS BLOCK TERM TO %OOOO ) 

5 
) 6 : EBUFS EMPTY-BUFFERS i ( --- 

7 
) 0 OFFSET ! i ( --- 8 : DRO 
1 ( --- 9 : D R l  BLK/DR OFFSET ! i 

10 
11 : PR>UP ( --- 1 ( REG RAM TO J RAM 1 
12 BADD PREV @ BANK B/BUF CMOVE BOFF i 
13 
14 : PR<DN ( --- ) ( J RAM TO REG RAM 1 
15 PREV @ BANK BADD B/BUF CMOVE BOFF i 
16 
17 : WBUF ( NA --- ) ( >DISK, DE-UPDATE ) 
18 >R R BANK R @ 7FFF AND DUP R> ! 
19 0 R/W BOFF i 
20 
21 
22 
23 --> 

FORTH Dimensions 22 Volume VI, No. 1 



SCR # 
O (  
1 
2 :  
3 
4 
5 
6 
7 
8 :  
9 

10 
11 
I 2  
13 
14 
15 
16 
17 
18 : 
19 
20 

Inner Access Corporation 

42 
SCREEN W 042 1 ( 1-19-84 DISK 3 AA 1 

BUFFER ( BW --- BAJ 1 
USE I DUP >R BEGIN +BUF UNTIL USE ! 
R @ O< IF R WBUF ENDIF 
R ! ( B# INTO OLD USE ) 
R PREV ! R >  BANK 5 

BLOCK ( BW --- BA 1 
OFFSET @ + >R PREV @ DUP @ R - DUP + 
IF PR>UP 

BEGIN +BUF O= 
IF DROP R BUFFER R 1 R/W 

DUP @ R - DUP + O= UNTIL 
PREV @ ENDIF 

DUP PREV ! PR<DN ENDIF 
RDROP DROP BADD ; 

) --- FLUSH ( 
PR>UP PREV @ BEGIN DUP @ O< IF 
DUP WBUF ENDIF +BUF 0- UNTIL DROP ; 

M e m o r y  map: 

$8380 - B 7 7 F  BADD 

$8780 - B781 

S B 7 8 2  - 8761 F I R S T  

S B 7 A 2  - B7FF L I M I T  

S B 8 0 0  - EFFF 

bank2 bank1 

$13082 SCOBA 

*COB3 SCO8B 

*DO00 - D F F F  

SE000 - FFFF 

" p e r m a n e n t "  s ing l@ block area that i s  d o w n - l o a d e d  

SO000  block t e r m i n a t o r  

n a m e  address area of S20 bytes 

user va r iab le  area of S5E bytes, t h i s  is also UP 6! 

DOS area 

s w i t c h e s  for  bank selects 

enable ROM, w r i t e - p r o t e c t  RAM 

enable RAM, t w o  accesses enable r e a d / w r i t e  

ROM, b a n k - s w i t c h e d  RAM, RAM 

ROM, b a n k - s w i t c h e d  RAM 

Figure One 

I 
N A  n a m e  address ... address of n a m e  of block, see USE and PREV 

N n a m e  ... NA B n a m e  of b l o c k  = b l o c k Y . O R . 8 0 0 0  i f  updated 

Bh block address ... address of  b l o c k  contents, regular RAM, see BADD 

B A J  block-address ... address of b l o c k  a t  b a n k - s w i t c h e d  RAM 

BI) b lock  n u m b e r  ... 1 - 140 for  DRO, 141 - 280 for D R 1  

I Figure Two I 

Inner Access holds 
the key to your 
software solutions 

When in-house staff can't 
solve the problem, 
make us a part of your team. 
As specialists in custom designed 
software, we have the know-how 
to handle your application 
from start to finish. 

Call us for some straight talk 
about: 
I Process Control 
I Automated Design 
I Database Management 
I System Software & Utilities) 
I Engineering 
I Scientific Applications 
I Turn Kev Svstems 

PHONE (415) 591-8295 

Volume VI, No. 1 23 FORTH Dimensions 



Interactive Editing 
Wendall C. Gates 

Santa Cruz, California 

Tom Blakeslee’s article “Debugging 
From a Full-Screen Editor” in Forth 
Dimensions (Vj2) described a novel and 
effective way to use a screen editor. His 
word STEP allows the execution of one 
Forth word at a time from within the 
full-screen editor, with a display of the 
stack at each step; putting the required 
values on the stack is done before enter- 
ing the editor. 

This concept can be further expanded. 
First, the ability to manipulate stacks 
(and other operations) can be brought 
conveniently inside the editor. The nested 
INTERPRET technique used in STEP is 
expanded to input and execute one line 
of Forth, from a convenient location on 
the screen. 

A second desirable feature is for an 
aborted execution to return to the editor. 
With a simple nested INTERPRET as used 
in STEP, aborted execution results in 
writing the error message across the edit- 
ing screen and aborting out of the editor 
as well. One method of automatically 
returning into the editor is shown in the 
accompanying screens (written in fig- 
Forth). 

In screen #176, DO.FORTH moves the 
cursor to the bottom line of the monitor 
screen and clears the line; it then saves 
the current position in the editor and 
proceeds to accept one line of Forth, 
using QUERY. Execution is by EDJNTER- 
PRET except it also saves the return stack 
pointer into a variable ED.RPO and it uses 
ED.NUMBER instead of NUMBER. ED.NUM- 
BER (not shown) is NUMBER but with 
?ERROR replaced with ED.?ERROR. In 
turn, ED.?ERROR mirrors ?ERROR but 
with ERROR replaced by ED.ERROR which 
is shown in screen#173. ED.ERROR prints 
the name of the token which caused the 
problem followed by a “?” and then re- 
loads the return stack pointer with the 
address stored in ED.RPO instead of the 
original return stack origin. It then un- 
nests back into the editor. This method 
won’t recover from a system crash but it 
does minimize the inconvenience of 

typos, of entering hex numbers in deci- 
mal, and such. DO.FORTH is patched into 
the editor as a keyboard-executable 
command. 

Substituting ED.INTERPRET for INTER- 
PRET in Blakeslee’s word STEP produces 
a similar result. However, ED.ERROR must 
test for current cursor condition and 
move to the last line on the display screen 
if not there already -- otherwise the error 
message will be written across the editing 
screen. 

Legibly packing a listed screen with 
ID, editor instructions, executable Forth 
line and a stack display (in both hex and 
decimal) all on one 24 x 80 screen is a bit 
of a challenge. My arrangement is shown 
around screen #176 in figure one. The 
top five values (word values) on the 
computational stack are displayed and 
updated with each execution. The bot- 
tom line is the space for the executable 
Forth line and its response. This display 

arrangement requires replacing LIST with 
(what else?) ED.LIST which lacks the first 
CR of the usual version. 

I call this technique “interactive edit- 
ing.” Using i t  produces that same 
euphoric feeling of power and control 
that comes the first time one uses a full- 
screen editor instead of a line editor. 
Stepping through code, one token at a 
time, while using the one-line execution 
to lift loop indices, do  return stack oper- 
ations, check variables, etc., with the 
stack display keeping itself current, enor- 
mously simplifies both hardware and 
software debugging. The technique is 
also a marvelous teaching tool. Try 
interactive editing - you’ll like it! 

Wendall C. Gates is President of Ad- 
vanced Instrumentation Inc., where he 
supervises and participates in the hard- 
ware design and applications program- 
ming of instruments f o r  pollution con- 
trol and environmental monitoring. 

f E d i t i n g  Screen # 176 
0 \, A 1  Screen E d i t o r  -- execute  1 l i n e  of  FORTH WCG 2.15.84 I 
1 : @O.FORTH 
2 0 2;  GOTOXY CLREOL \ ccirsor t o  bo t tom l i n e  b c l e a r  i t  I 
f 11.1 3 ‘.R BLb’ .3 :.R \ save i n t e r p r e t i n g  l o c a t i o n  i n  e d i t o r  I 
4 0 IN ! n HLK ’ 
5 WERY E@.INTERPHET 5, i n p u t  and execute  1 l i n e  o f  FORTH 
6 E’ BLk F::. IN ! 1. qo bacl: t o  e d i t o r  
7 .CUR : 
8 
7 

11:’ 
11 
12 
1 .: 
14 
15 

\, i n i t i a l i z e  new i n t e r p r e t  mode 

‘,, r e s t o r e  cu rso r  p o s i t i o n  on d i s p l a y  I 

p = o p  ’‘f = open l i n e  ‘“W = erase screen 3 :  
‘N = down ‘ - C  = c l o s e  l i n e  .“-X = execute  word 2 :  
, F  = -- “.R = l n s e r t  5pc “T = 1 l i n e  FORTH 1 :  
‘.‘H = , ’ \  = bacl: t a b  ESC = e x i t  e d i t o r  10 : 
“D = @EL TAB = fwd t a b  ” K , ’ Y  = CLREOL, yankbacl. 
HEX A 1 2 3 4 5  . .  5 4  

Figure One 
The interactive editor at work 

~ 

FORTH Dimensions 24 Volume VI, No. 1 



SCR # 1'73 
(3 \ A 1  Screen E d i t o r  -- RP.!  ED.RP(3 ED.ERROR WCG 3.81.84 
1 HEX 
2 CODE RP.! 
3 1969 , A229 . (3982 I 2929 , DC C, \ TOS t o  r e t n  s t k  p o i n t e r  
4 \ coded f o r  1862 

\ s torage f o r  r e t n  s tack p o i n t e r  5 63 VARIABLE ED.RP0 
6 DECIMAL 
7 
8 : ED.ERROR 
9 CURRENT.LINE 15 = \ cursor  a t  bottom l i n e ?  

10 I F  8 23 GOTOXY THEN \ i f  not ,  pu t  i t  t h e r e  
11 HERE COUNT TYPE . "  ?" \ p r i n t  o f fend ing  name w i t h  ? 
12 ED.RPQ B R P . '  ; \ load r e t n  s t k  p o i n t e r  back t o  

\ prev ious  p o s i t i o n  i n  e d i t o r  13 
14 --::. 
15 

SCR 
(3 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 

# 175 
\ A 1  Screen E d i t o r  -- ED-INTERPRET 
: ED. INTERPRET 

WCG 2.20.8 

RP@ 2 - ED.RPO ' \ save r e t u r n  s tack p o i n t e r  
BEGIN 

-FIND I F  STATE Ca < I F  CFA . ELSE CFA EXECUTE THEN 
?STACk 
ELSE HERE ED.NUMBER DPL Ca 1+ 

I F  CCOMPILEI DLITERAL 
ELSE DROP CCOMPILEI L ITEReL  
THEN 

-STACK 
THEN 

AGAIN ; _ _  %, 

ED-INTERPRET i s  i d e n t i c a l  t o  INTERPRET. ercept  saves index of 
r e t u r n  stack. and uses ED.NUMBER ins tead of NUMBER. 

Beginner's Luck! 
Mr. Guy Kelly, of the San Diego FIG Chapter, will be teaching an introductory FORTH course in 
PC FIRING LINE/PC UNDERGROUND, starting with our second issue! Tell your friends!! 

What is PCFL/PCUG ? ? ? 

PCFL/PCUG is a new FREEWARE" disk magazine, designed for the IBM-PC with 128K RAM, 
and one double-sided drive. 

PCFL/PCUG is a technically oriented magazine with columns in Ada, Assembly, BASIC, C, 
FORTH, FORTRAN, LISP, Pascal, PC-DOS, and Hardware! Plenty of source code, fascinating 
demo programs, unique language columns, and fun for all is included. 

PCFL/PCUG is issued bi-monthly, with our second issue available May 15. 

PCFL/PCUG can be obtained by either: 

1) sending us two blank formatted DS/DD diskettes and a self-addressed, postage paid return 
mailer, or 

2) sending $12, payable to ABComputing. We will provide the double-sided diskettes, postage, 
and mail the issue you request to your home or business. 

Write: ABComputing, P.O. Box 5503, North Hollywood, CA 91616-5503. Or chat with the editor, 
Bill Salkin, at (818) 509-9002. 

. : m e  VI, No 1 25 FORTH Dimensions 



Parnas' it ti Structure 
Kurt W. Luoto 

Redwood City, California 

David Parnas proposes' a new control 
structure for the specification and imple- 
mentation of algorithms. It is general 
enough that it includes IF THEN, BEGIN 
UNTIL, BEGIN WHILE REPEAT and CASE- 
like structures as special cases. In many 
cases it can simplify the expression of an 
algorithm, often resulting in more effi- 
cient programs. Often a single instance 
of the structure can replace several of the 
more restricted structures mentioned 
above, or eliminate having to define 
extra variables to carry around termina- 
tion status in loops. The structure is use- 
ful for describing both deterministic and 
non-deterministic algorithms. Readers 
interested in the more formal aspects of 
this are encouraged to read this article. 

This article gives a practical adapta- 
tion of this structure to Forth and gives 
an example of its use. Parnas uses the 
notation it ti (short for iteration) for this 
structure, along with ALGOL-like nota- 
tion in his article. I have tried to use 
names more in the style of current Forth 
usage. One of the problems in thinking 
up names is that most of the good ones 
have already been taken, such as IF and 
REPEAT. I would be glad to see sugges- 
tions for improvements here. 

The Structure 
The structure is best introduced in 

graduated steps. The structure is CASE- 
like in appearance, the form being 

IT <case> <case> . . .<case> ENDIT 
(Although I refer to the individual clauses 
inside the structure as cases, this is not to 
be confused with the CASE structure.) 
Each case within the structure is either of 
the form 

<condition> IFF <body> BREAK 
or 
<condition> IFF <body> CONTINUE 

Figure one shows how a typical instance 
of the IT ENDIT structure might look. 
Here <condition> denotes any body of 
code. 

When the IT ENDIT structure is encoun- 
tered, the <condition> code of the first 
case is executed. If a true value is on the 

top of the stack when the IFF is encoun- 
tered, then the <body> of that case is 
executed. (IFF always removes the flag 
from the'top of the stack, just like the IF 
of an IF THEN structure.) If afalse value is 
on the top of the stack when the IFF is 
encountered, then execution passes to 
the next case, where the process is re- 
peated until the <condition> code for 
some case leaves a true value on the 
stack, whereupon the <body> of that 
case is executed. If no <condition> 
leaves true on the stack for any case, then 
execution passes to the code following 
ENDIT, i.e., the IT is terminated. 

When the body of a case is executed, 
where it goes next is determined by the 
word that terminates the case. For acase 
ending in BREAK, execution passes to the 
code following ENDIT, i.e. the IT is termi- 
nated. For a case ending in CONTINUE, 
execution passes to the code following IT, 
i.e. the IT is repeated. 

There are a couple of convenient con- 
ventions that I will use. The first is that 
the <condition> IFF portion of a case 
may be omitted, whereupon the body of 
the case will be executed uncondition- 
ally. Note that this only makes sense for 
the last case in anlT ENDIT structure. The 
other convention is that if the terminator 
for the last case is BREAK, it may be omit- 
ted, i.e. BREAK ENDIT is logically the 
same as ENDIT. In this implementation, 

this actually produces more efficient 
code. 

Given these words, you could define 
logical equivalents of the other struc- 
tures in terms of them as shown in screen 
175. In this sense, the other structures are 
special cases of IT ENDIT. However, you 
would not actually implement the others 
this way in this particular implementa- 
tion because the compile time would be 
longer and, for some of them, the code 
produced would be less efficient. 

COR and CAND 
While not part of the IT ENDIT structure 

per se, there are two very useful words 
that fit nicely into this implementation, 
COR and CAND (Conditional OR and 
Conditional AND). Normally, if two 
conditions must be tested for truth for a 
particular case in an IT ENDIT structure, 
the form would be 

<cond 1> <cond 2> AND IFF . . . 
But a problem arises if the second condi- 
tion is dependent on the first. For exam- 
ple, if the first condition tests that a par- 
ticular address is valid (e.g. non-zero) 
and the second tests the value stored at 
that address, it does not make sense to 
test the second condition if the first is not 
true. You could get around this by using. 

<cond 1> DUP IF <cond 2> 
AND THEN IFF.  . . 

IT 
<condition> IFF <body> BREAK 
<condition> IFF <body> CONTINUE 
<condition> IFF <body> CONTINUE 

. . 
<condition> IFF <body> BREAK 
<condition> IFF <body> CONTINUE 

ENDIT 

Figure One 
A typical IT ENDIT Structure 

Volume VI, No. 1 FORTH Dimensions 26 



instead. But the case could be more effi- 
ciently rewritten using CAND as 

<cond I >  CAND <cond 2> IFF . . . 
If, after <cond 1> is executed, a true 
value is left on the stack, execution pro- 
ceeds with <cond 2>, otherwise a branch 
is made to the next case, i.e. <cond 2> is 
not executed. 

The word COR behaves in complemen- 
tary fashion. In a case of the form 

<cond 1> COR <cond 2> IFF . . . 

if, after <cond I> is executed, a false 
value is left on the stack, execution pro- 
ceeds with <cond 2>, otherwise a branch 
is made to the body of the case imme- 
diately following IFF, i.e. <cond 2> is 
not executed. 

Both CAND and COR remove the flag 
from the top of the stack, just like the IF 
of an IF THEN structure. Any number of 
appearances of CAND and COR, in any 
order, may appear before an IFF within a 

IT 

. 
<cond 1> CAND <cond 2> IFF <body> BREAK 
<cond 1> CAND ccond 3> IFF <body> CONTINUE 
<cond 1> CAND <cond 4> IFF <body> CONTINUE 
<cond 1> CAND Ccond 5> IFF <body> BREAK 
<cond 1> CAND <cond 6> IFF <body> CONTINUE 

. 
ENDIT 

Figure Two 
Testing repeatedly for a common condition 

IT . 
ccond 1> IFF SUBCASES 

<cond 2> IFF <body> BREAK 
ccond 3> IFF <body> CONTINUE 
ccond 4> IFF <body> CONTINUE 
econd 5> IFF <body> BREAK 
<cond 6> IFF <body> CONTINUE 

ENDSUB . . 
ENDIT 

Figure Three 
The most efficient SUBCASE and ENDSUB 

case. CAND and COR provide a conve- 
nient way to deal with dependent condi- 
tions. They can also provide improved 
efficiency for independent conditions if 
the first condition is true (for COR) or 
false for (CAND) much more frequently 
than the second. 

Subcases 
Oftentimes it occurs that several cases 

have compound conditions with a com- 
mon condition between them, as shown 
in figure two. Here, it would be nice to be 
able to test the common condition only 
once. Since the Forth compiler typically 
cannot detect such repetitions, I have 
introduced the word-pair SUBCASES 
ENDSUB to provide a means of splitting 
up the body of a case into several sub- 
cases. Figure three shows how the exam- 
ple in figure two would be rewritten 
using these words. 

Each subcase looks like a case in the IT 
ENDIT. As at the IT ENDIT level, each con- 
dition code of each subcase is executed 
until one leaves a true value on the stack, 
whereupon the body of the subcase is 
executed. A subcase terminating in BREAK 
branches to the code following ENDIT 
(not ENDSUB),just as a normal case does. 
A subcase terminating in CONTINUE 
branches to the code following IT (not 
SUBCASES), just as a normal case does. If 
none of the conditions are true for any of 
the subcases, then control passes to the 
next case, i.e. the code after ENDSUB. 
Notice that ENDSUB terminates the 
(super-)case. You should not put a BREAK 
or CONTINUE after the ENDSUB since it 
will be interpreted as the next case, con- 
sisting of an unconditional branch to the 
end or beginning, respectively, of the IT 
ENDIT. 

I again use the convention that the 
<conditional> IFF in the last subcase in a 
list of subcases may be omitted. How- 
ever, each subcase should end in either 
BREAK or CONTINUE. 

Subcases may in turn have subcases. 

Other Words 
Screens 169 through 174 give an imple- 

mentation of IT ENDIT in VLFORTH by 
Gerald Gutt of ROLM Corporation. In 
this particular implementation, the se- 
quence IFF BREAK or  IFF CONTINUE (a 
case with a null body) would generate 
two successive branch statements, the 

. :une VI, No. 1 27 FORTH Dimensions 



first being a conditional one around the 
second. This is somewhat inefficient, so I 
have included the words IFF-BREAK and 
IFF-CONTINUE to use in these situations. 
They generate more efficient code, but 
are otherwise optional. Not all imple- 
mentations of IT ENDIT may need them. 

An Example 
Well-written Forth code tends to come 

in small, simple pieces so situations 
where this structure comes in handy are 
less frequent in Forth than in other 1,an- 
guages. However, the same thing could 
be said about case structures. I believe 
this structure has its value even in Forth 
and deserves a permanent place in the 
Forth repertoire. It is not that you can’t 
get by with only the other structures, but 
that IT ENDIT allows more natural expres- 
sion of many algorithms. I think the fol- 
lowing provides a good example. 

Suppose that somewhere in your code, 
for some obscure reason, you want to 
test whether a string contains two com- 
mas separated by one or more charac- 
ters. Or suppose you wanted to list all the 
words in the current vocabulary that 
have a particular number of characters 
and begin with three particular charac- 
ters. One way to solve these and similar 
problems is with pattern-matching tech- 
niques. At the heart of the solution 
would be a word that would take two 
arguments, the first being a string that 
we wish to test and the second being a 
special string called a “pattern” that the 
first string is to be tested against. The 
word would return a “match”(true value) 
or “no match” (false value) according to 
the result of the test. 

As a simple example, let our patterns 
be any string of ASCII characters. There 
are three special characters, - (dash), * 
(star) and ’ (quote). All other characters 
are normal characters. Normal charac- 
ters match themselves. The dash (-) 
matches any single character. The star 
(*) matches any string of characters 
(including the null string). The quote (3 
matches the character in the pattern fol- 
lowing the quote (this allows us to spec- 
ify dash, star and quote themselves as 
particular characters to be matched). A 
lone quote at the end of a pattern is 
ignored. 

So, for example, the pattern ABC 
would match the string ABC. The pat- 
tern CON---- would match any string 

Parnas’ it I I I ti Structure 

BL0C:K: 1 bY 

0 ( MISC:. HELPING WORDS VLFORTH KWL 20JAN84 
1 
2 : RCITB ( N l  N2 N3 -- N3 N1 N 1  ) ROT ROT ; 
3 
4 : HAC:K’ ( TD-ADDRESS BRANCH-ADDRESS -- ) 1 :  

5 ( THIS w m t !  RESOLVES A BRC\NCH AT THE AntiRESs ON 'rap OF THE 
6, ( STACK TO THE ADDRESS SECOND ON THF STACK. 
7 ( THIS  WORD I S  SYSTEM DEPENDENT. THIB  SYSTEM USES ARSOLCITE 
8 ( AtiDRESSES FOR BRANCHES. WSTEMF; CISINC; OFFSETS MIGHT HAVE 
‘3 ( a DEFINITION L.IKE THE FDLLOWING: 

10 ( : RACK!  SWAP OVER - SWAP ’ ; 
1 1  
12 : BAICKFILL ( TO-ADDRESS I. IST-ADDRESS -- ) 

13 ( THIS  WORD RESOLVES A LINKED-LIST OF BRANC:HES Ti1 AN ATIDR. 
1 4  BEGIN tllJP WHILE DUP (? > H  OVER SWAP BAICK’ 
15 R:, REPEAT IlROP DROP : -- ’> 

BLOW: 170 

VL.FORTH KWI. 20JAN84 ) 0 ( I T .  .ENDIT WORDS 
1 
2 : I T  ( -- I T-LOCAT ION END1 T-L I ST I T - I  TI# ) 

3 HERE (5 16 : IMMEDIATE 
4 ( YOU MAY ClSE ANY VALUE THAT DOES NOT CONFIJSE THE COMPILER ) 
5 ( I N  PLACE OF 15, 17, 18 AND 19 I N  THESE WCIRDS. THESE ARE ) 
C-. ( SYSTEMS WITH “COMPILER SECIJRITY“ ) 

7 

Y : ENTIIT ( IT-LOCATION ENDIT-LIST I T - I D #  im ) 
1 0 ( IT-LOC ENDIT-L1 !3  CAND-LIST I F F - I D #  -- ) 

1 1 ?CclMP DIJP 1E: = I F  UROP HERE SWAP BAC:KFILL. 15 THEN 
12 16 ?PAIRS HERE SWAP RAC’KFILL 1JRC:IP : IMMEDIATE 
13 
14 --:> 
15 

BLOCK: 171 

0 ( 

i 
2 :  
:3 
4 
5 
A 
7 
8 
Y 

10 : 
11 
12 
13 
1 4  
15 

I T .  .ENDIT WORDS VLFORTH KWL 2CLIAN84 ) 

CANU ( IT-LCIC ENDIT-LIST I T - I D #  OR ) 
( IT-LOC ENDIT-LIST CAND-LIST COR-LIST CAND-ID# ) 

( -- IT-LOC ENDIT-LIST CAND-L.IST CUR-L.IST CAND-ID# ) 
”COMP COMPILE OBRANCH DUP 17 = I F  

HERE ROT , SWAP ELSE 
16 ?PAIRS 0 HERE 0 , 17 THEN : IMMEDIATE 

COR ( IT-LOC ENDIT-LIST I T - I D #  OR ) 
( IT-LOC ENDIT-LIST CAND-LIST COR-LIST CAND-ID# ) 
( -- IT-LOC ENDIT-LIST CAND-LIST COR-LIST CANtI-ID# ) 

?COMP COMPILE O= COMPILE DBRANCH DLlP 1 7  = I F  
ROT HERE SWAP . ROTA ELSE 
16 ?PAIRS HERE 0 v 0 17 THEN ; IMMEDIATE --> 

I 

i 

L 

I 

FORTH Dimensions 28 Volume VI. No. 1 



BLCICK: 172 

0 ( I T .  .ENt i IT WCiRDS VLFCIRTH KWL 2CIJAN84 ) 

1 
’-’ L :  IFF ( IT-LOC ENDIT-LIST I T - I D #  OR ) 
3 ( IT-LOC ENDIT-I-IST CAND-LIST CUR-LIST CAND-ID# ) 

4 ( -- IT-LOC ENTI IT-LISl  C:AND-LIST I F F - I D #  ) 

5 CCUMPILEI CAND DROP HERE ROT BACKFILL 1 8  : IMMEDIATE 
4. 
7 : BREAK ( IT-LDCATICIN ENDIT-LIST I T - I I I #  OR ) 
8 ( IT-LOC ENDIT-LIST CFIND-LIST I F F - I t l #  ) 

( -- IT-LOCATION ENDIT-L.IST I T - I D #  ) 
1 0  ‘?COMP T,CIP l h  = I F  2+ 0 SWAP THEN 
11 18 ‘ TA IR !5  :>R CCIMPILE E8flNC:I-I HERE !SWAP . 
17 HERE R:’. B A I X F I L L  i h  : IMMFDIATE 
1 3 
14 --I>. 
15 

RLOC:K: f 7 3  

1 7 .  . FNt I IT  WCiRtlS VLFCIRTH KWL 20JAN84 ) 
C:ClNTINCIE ( 1T-LOC:FITICiN ENDIT-L I S T  I T - I D #  OR ) 

( IT-LO: ENClI T-LIST C:AND-LlST I F F - I D #  ) 

( -- IT-LOC: FNDIT-l.I!3T I T - I D #  ) 
.- - - h.IMP D I P  1 h = I F  2+ 0 SWAP ‘THEN 
18 ‘:’PAIR!? 5R COMPI1.E BRANCH OVER HERE 0 . BACK! 
HERE R? BACKFILL l h  IMMEnIATE 

S;CIBC:ASES ( IT-LOC: ENDIT-ILIST CAND-LIST TFF-ILI# ) 

( -- CAND-LIST SLIB-ID# IT-LOC ENDIT-L.1ST I T - I D #  ) 
.?I:I:IMP 18  w A I R S  RUTB 1-3 ROTB ib i IMMETIIATE 

ENtISl.lB ( C:AND-LIST SCIH-IlW IT-LOC ENDIT-LIST I T - I D #  ) 
( -- IT-LOC END1 T-LIST I T - I D #  ) 

T O M P  16 ‘>PAIRS ROT 19 T F I I R S  
ROT HERE SWAP BACKFILL 16 : IMMEDIATE -- :. 

BLIXE:  174 

(1) ( 

1 
2 :  
.3 
4 
5 
h 
7 
8 
9 :  

1 0 
1 1  
12 
13 
1 4  
15 

I T .  . FNDI T WORClS VLFDRTH KWL 2O~ lAN84  

IFF-C:ONT INUE 
( IT-LOC ENDIT-LIST I T - I U #  0 R 
( IT-LOC ENDIT-LIST CAND-LIST COR-LIST CAND-ID# 
( -- IT-LOC ENDIT-LIST I T - I D #  

C COMP I L.E I CCIR DROP HERE SWFIP BACKF I LL 
>R OVER R:> B W K F I L L  l h  : IMMEDIATE 

IFF-BREAK 
( IT-LOC ENDIT-LIST I T - I D #  0 R 
( IT-LOC ENTIIT-LIST C:AND-LIST C:UR-LIST CC)ND-IDW 
( -- IT-LOC ENDIT-LIST I T - I D #  

CCCIMPILEI C:OR DROP HERE SWAP BACKFILL 
OVER DClP IF  BEGIN DUP @ WH1L.E @ REPEAT ! 

ELSE ROT ZDROP THEN 16 : IMMEDIATE 

beginning with CON and having exactly 
seven characters. The pattern Z* would 
match any string beginning with Z. The 
pattern *,-*,* would match any string 
containing two commas separated by 
one or more characters. The string ’--- 
would match any three-character string 
beginning with a dash. You get the idea. 
More complicated systems of patterns 
can be made, but this example will suf- 
fice here. Think about how you would 
implement this using standard constructs. 

The word MATCH defined in screens 
176 through 178 takes two strings, each 
in the form of length-of-string and address- 
of-first-character, and returns a true 
(match) or false (no match) value. (The 
code can fit on one screen, but I have 
spread it out for better commenting and 
readability.) The algorithm I used keeps 
two pointers, initialized to the beginning 
of the pattern and the beginning of the 
string to be matched respectively. At 
each step or iteration in the algorithm, 
this series of conditions is tested: 

1)  If 1 have run out of both pattern and 
string (the pointers are at the end of 
both), then there is a match. Return true. 

2) Otherwise, if I have run out of pattern 
but I have not run out of a string, then 
there is a mismatch. “Retry”. 

3) Otherwise, if the next character of the 
pattern is a star (*) and the star is also the 
last character in the pattern, then there is 
a match. Return true. (This check is 
really not necessary but makes the code 
more efficient for this common case.) 

4) Otherwise, if the next character of the 
pattern is a star (*), then save the current 
string pointer and the pointer to the next 
character in the pattern. Go back to 1). 

5) Otherwise, if the next character is a 
quote (’) and it is the last character in the 
pattern, discard it by incrementing the 
pattern pointer. Go back to 1). 

6 )  Otherwise, if there is no more string 
left (but there is more pattern), then there 
is a mismatch. “Retry”. 

. : m e  VI NO 1 29 FORTH Dimensions 



7) Otherwise, if the next character in the 
pattern is a dash (-), or the next charac- 
ter of the pattern (or the one after the 
quote if the next pattern character is a 
quote) is the same as the next character 
of the string, then increment both point- 
ers and go back to 1). 

8) Otherwise, there is a mismatch. 
“Retry”. 

Actually there is another case at the 
beginning of the loop for handling part 
of the star’s function. Those cases that 
end in “Retry” leave a true value on top 
of the stack for this case to test. The 
others leave a false value, as does the 
initialization. A true value indicates that 
a mismatch has occurred since the last, if 
any, occurrence of a star in the pattern. 
In this case I need to reset the string and 
pattern pointers to the values that were 
saved at the last star occurrence, incre- 
ment the string pointer by one, save the 
new pointers and try matching again. If 
there was no star in the pattern pre- 
viously, or if the saved string pointer is 
already at the end of the string, then the 
string definitely does not match the pat- 
tern and a false value is returned. 

The word MLIST, defined in screen 179, 
takes a word from the input stream, and, 
treating it as a pattern, displays all the 
words in the current vocabulary whose 
names match that pattern. Its implemen- 
tation may vary from system to system, 
depending on how you get from LFAs to 
NFAs, etc. 

Summary 
I have given a practical Forth imple- 

mentation of Parnas’ it ti structure and 
an example of its use. I hope this article 
has given some idea of the usefulness of 
Parnas’ structure and will encourage 
further discussion. I have not covered all 
aspects of this structure here, such as 
implementations of the init predicate 
mentioned by Parnas in his article. This 
would be a word used within the body of 
an IT ENDIT structure that takes no argu- 
ments and returns a true value on the 
first iteration and a false value thereafter. 

BLOCK: 175 

0 ( HYPOTHETICAL D E F I N I T I O N S  VLFORTH KWL 2 0 J A N 8 4  ) 
1 : I F  CCOMPILEI I T  CCOMPILEI IFF : IMMEDIATE 
2 : E L S E  CCOMPILEI BREAK : IMMEDIATE 
3 : THEN CCOMPILEI  E N I I I T  : IMMEDIATE 
4 : B E G I N  CCOMPILEI I T  : IMMEDIATE 
5 : WHILE COMPILE O= CCOMPILEI IFF CC:l~lMPII.El BREAK : 
h IMMEDIATE 
7 : REPEAT CCOMPll.El CONTINUE CC:OMPILEl E N D I T  : IMMFDIATCT 
8 : U N T I L  COMPILE O= CCOMPILEI IFF CCnMPIL.El C:ClNTINUE 
Y C COMPI L.E 1 END I T  : IMMEDIATE 
10 : AGAIN CCOMPILEI CONTINUE CCOMPII.Fl  F N D I T  : IMMELIIATF 
1 1  : INCASE CCOMPIL.EI I T  : IMMEDIATE 
12 : OF ClIlMPILE OVER COMPILE = I I ~ O M P I L E I  IFF 

COMPILE DROP : IMMFDIPTE 13 
1 4  
15 

BLOCK 

0 
1 
2 
3 
4 
5 
4 
7 
a 
a 

1 0 
11 
12 
13 
14 

ENDOF CCOMPILEI BREAK : IMMEDIATE 
ENDCASE I C O M P I L E I  E N D I T  : IMMEDIATE 

17h 

PATTERN MATCHING WORU VLFORTH KWL 2 O J A N 8 4  ) 
MATCH ( STR-ADDR STR-CNT PAT-AISDR PAT-CNT -- F L A G  ) 

( CONVERT ADDRESSES AND COUNTS I N T O  FORM LISABLE FOR SEARCH ) 

R-> SWAP :,R 0 0 R> R >  
OVER + 1 - SWAP >R >.R OVER + 1 - SWAP 

( STACK: STR-LIM PAT-L IM 0 0 STR-ADDR PAT-ADDR ) 

( LEAVE A ZERO IN c m m  TO SKIP ”RFTRY” (:as€ ) o 
I T  

CHECK FOR “RETRY” CASE ) 

IFF SUBCfiSES 
3 P I C K  O= COR h P I C K  3 P I C K  LI< IFF 0 BREAK 
2DROP SWAP l +  SWAP 2DUP 0 C:ONTINUE ENDSLIB 

15 --> 

BLOC:K: 177 

r) ( PATTERN MATCHING WORD VLFCIRTH KWL 2 0 J A N 8 4  ) 

1 
2 ( CHECK FOR NO MClKE PATTERN L E F T  ) 
3 5 PICK OVER ILK IFF SIJBCASES 
4 C, P I C K  :3 P I C K  ILK IFF 1 BREAK 
s 1 CONTINLIE ENDSCIB 
b 
7 CHECK FOR STAR I N  THF PATTERN ) 
8 DUP CC A S C I I  9 = IFF SLIBCASES 
9 5 P I C K  OVER = It-F 1 BREAK 

1 0 I+ ROT nmr ROT rwiP ZDUP o CONTINUE ENDSI-IB 
il. 
12 ( IGNORE A LONE S I N G L E  QLlClTE AT THE END OF PATTERN ) 
13 DUP CC A S C I I  ‘ = CAND 
14 5 P I C K  OVER = J F F  1 +  0 CONTINUE 
15 --> 

FORTH Dimensions 30 Volume VI, No. 1 



1 
2 
3 
4 
5 
h 
7 
8 
v 

1 0 
1 1  
12 
13 
1 4  
15 

RLClCk 

0 
1 

BLOCK: 17.9 

O ( PATTERN MATCHING WORD VLFORTH KWL 20JAN84  ) 

( CHECK FOR MORE STRING ) 
h PICK 3 P I C K  Ur: IFF 1 CONTINUE 

( CHECE FOR DASH I N  PATTERN ) 
DUP CC A S C I I  - = COR 

( I F  NO DASH, CHECK FOR SINGLE WlJClTE I N  PATTERN ) 
DL!P CC ASC:I I ’ = I F  1+ THEN 

( CHEC:K PATTERN CHAR. AGAINST STRING C:HAR. ) 
OVER CC OVER CC = IFF 1+ SWAP l +  SWAP 0 C:ONTINUE 

( NONE OF THE AHOVE CASES. GO RETRY 1 
1 CONTINUE 

ENDIT  ( LEAVE FLAG ONLY ) 3R 2DROP ZDROP ZDROP R:> : 

179 

1. I ST VOCAHIULARY MATCHING PATTERN VLFORTH KWL 20JAN84  ) 

2 HEX 

4 : M L I S T  ( -- ) 

5 ( TAKES A WORD FROM INPUT, TREATS I T  AS A PATTERN, AND ) 

h ( SEARCHES FOR MATCHING VOCABULARY NAMES. ) 
7 C:R RI. WORD DROP CONTEXT C C 
8 BEGIN DUP NFA COUNT 1F AND HERE CClUNT MATCH 
9 I F  DUP NFA . I D  SPAC:E THEN 

1 0 C LILIP O= U N T I L  
1 1  ISHOP : 
12 
13 DECIMAL 
1 4  
15 

I have also not covered extensions of this 
to DO LOOP structures. Interested read- 
ers can easily implement these. 

My special thanks to ROLM Corpo- 
ration for use of their facilities in prepar- 
ing this article. 

References 
1. Parnas, David L. “A Generalized Con- 

trol Structure and Its Formal Defini- 
tion.” Communications of the ACM 
26,8 (August 1983), 572-581. 

Kurt W. Luoto is a programmer in 
Large Systems Engineering at ROLM 
Corporation. He heard of Forth S “auda- 
cious c1aims”in 1980, found them to be 
true and has maintained an interest ever 
since. 

Letters (Continued from page 7) 

A quick scan of this issue reveals sev- 
eral different type sizes for the presenta- 
tion of screens. It is recognized that space 
in Forth Dimensions is at a premium and 
certainly smaller type, hopefully, means 
more articles.However, please try to stand- 
ardize on a readable type size. 

My thanks to the many contributors 
to Forth Dimensions for their continu- 
ing collection of informative articles. 

Regards, 

R.I. Demrow 
P.O. Box 158 Blv. Sta. 
Andover, Massachussetts 01810 

Editor S reply: We do, indeed, apolo- 
gize for the inconvenience which resulted 
from last-minuteproduction of the men- 
tioned pages. We are using a new pro- 
duction procedure which will result in 
gradual but noticeable improvements in 
our format. Reader feedback is solicited, 
as always. 

iolume VI. No. 1 31 FORTH Dimensions 



Break Through the 
64K Barrier! 

FORTH-32'" lets you use up to one megabyte 
of memory for programming. A Complete 

Development System! Fully Compatible 
Software and 8087 Floating Point Extensions. 

303 Williams Ave. 
Huntsville, AL 35801 

(205) 533-9405 800-558-8088 

Now available for the IBM PC, PC-XT, COMPAQ, COLUMBIA MPC, 
and other PC compatibles! 

IBM. COMPAQ, MPC. and FORTH-32 are trademarks of IBM, COMPAQ, Columbia Data Products, and Quest Research, respectively. 

Volume VI, No. 1 FORTH Dimensions 32 



Anonymous Variables 
LRonard Morgenstern 

Moraga, California 

In Forth, the stack is the usual medium 
for passing parameters and storing inter- 
mediate results. When there are more 
than one or two of these, it can take a lot 
of programming merely to juggle the 
stack. Long strings of ROT, SWAP, >R and 
R> commands are a warning that the 
stack is being overused and that the 
situation might be better handled by 
means of an auxiliary variable or work 
area. The simplest way to make such an 
auxiliary is the obvious one: create a VAR- 
IABLE and extend it, if desired, into a 
n ork area by means of the word ALLOT. 
This has the disadvantage that danger- 
I)US conflicts can occur unless one is very 
careful in assigning names. Also, each 
luch variable consumes space, not only 
for the data, but also for the name, link 
and code fields. A way to circumvent the 
problem is presented here using anony- 
mous variables, which are variables that 
have no link or name field. 

Definitions 
Anonymous variables require only 

three definitions: ANON/, ANON and MAKE- 
ANON. Two other words, ANON+ and 
STORESTACK are useful auxiliaries. These 
are defined in screen 100. ANON/ is an 
ordinary variable. 

MAKEANON creates a new anonymous 
.. ariable by storing HERE in ANON/ and 
then appending the CFA of the word 
VARIABLE to the end of the dictionary, 
followed by a two-byte work area with 
the initial value of zero. In this way a 
i ariable has been created without a 
name or link field. Each time MAKEANON 
.s invoked, all previous anonymous vari- 
ables become inaccessible. Previously 
compiled references are unchanged. 
There is a similarity to local variables in 
Fortran and other high-level languages. 
U ork areas longer than two bytes may 
x created by following MAKEANON with 
an ALLOT command. 

ANON is the “name” of the latest anon- 
:% mous variable, which the programmer 
:an use as if it were an ordinary variable. 
During compilation, the CFA of the 

latest anonymous variable is compiled. 
When not compiling, the PFA of the 
latest anonymous variable is put on the 
top of the stack. 

ANON+ is used to refer to extensions of 
the original work area. Thus [ 2 ] ANON+ 
refers to the same address as 2 ANON+ 
with the advantage of faster execution 
time and less use of memory. The 
brackets are necessary during compila- 
tion to prevent the value 2 from itself 
being compiled. ANON+ adds the offset to 
the address contained in ANON/ and, 
depending on the value of STATE, com- 
piles the result as a literal or leaves it on 
the stack. 

STORESTACK is a word that can be used 
in conjunction with ANON for storing 
parameters, Assuming that the most 
recent anonymous variable has been 
extended into a work area by means of 
the word ALLOT, ANON n STORESTACK 
will move the top n stack items into the 
work area. The value originally at the 
top of the stack is addressed by ANON, the 
next by [ 2 1 ANON+, etc. See example in 
screen 101. 

Discussion and Examples 
I create an anonymous variable every 

time I need a variable or work area that 
will be used by only one word or a small 
group of consecutively defined words. 
Words that will be needed throughout 
the program must be defined in the usual 
way. Although it can be argued that 
anonymous variables do nothing that 
cannot be done by ordinary variables, I 
find them very convenient and use half a 
dozen or so in an average program. 

With ordinary variables, it is easy to 
inadvertently assign a name that has 
already been used, resulting in a hard-to- 
find bug (which happened to me, after 
which I devised the system presented 
here). The danger is especially severe 
when the program is being assembled in 
segments. Anonymous variables elimi- 
nate the need to search listings to deter- 
mine whether a variable has been pre- 
viously named. Of course, one could 
define an ordinary variable named TEMP 
and re-define it as many times as one 

wishes, but the resulting error messages 
are annoying and distract one’s attention 
from real errors during compilation. 

Anonymous variables entail little or 
no cost in execution speed and memory. 
The bytes used in defining the system are 
partly offset by the savings from the 
omission of the name and link fields. 

There are no limitations to anony- 
mous variables that do not also apply to 
ordinary variables. For example, they 
cannot be used in recursive situations. 
The stack must be used, however com- 
plex it may be. 

Example One: DO LOOPS 
An example of a situation in which an 

anonymous variable can be used to 
advantage is in the frequently-occurring 
construct, 

DO . . . IF . . . LEAVE ENDIF . . . LOOP 

Suppose it is desired to leave a flag on 
top of the stack, after exit from the loop, 
to indicate whether exit has occurred by 
exhaustion of the loop or via the LEAVE 
command. The flag will be zero if the 
former and one if the latter. This can be 
accomplished in two ways: putting a var- 
iable on the stack or using an auxiliary 
variable. The first is shown in figure one 
as method one. One puts a zero on the 
stack before entering the loop and rotates 
it so that it is below the loop limits. It is 
incremented if exit is via LEAVE. Method 
one increases the depth of the stack 
throughout the whole loop, a nuisance if 
the stack is already rather deep to start 
with. In that case, an auxiliary variable is 
superior (method two). 

Example Two: Storing Parameters 
When a word needs a lot of parame- 

ters, it is often better to move them to a 
work area than to leave them on the 
stack. Anonymous variables simplify this 
process. An example is given in screen 
101. An eight-byte anonymous work 
area is created. Next, TESTWORD is de- 
fined, which puts four numbers on the 

FORTH Dimensions 
3 JrneVI No 1 33 



Multiuser/Multitasking 
for 8080,280, 808.6 

Industrial b-4 
Strength 

TaskFORTH,. 
The First 

Professional Quality 
Full Feature FORTH 

System at a micro price* 

LOADS OF TIME SAVING 
PROFESSIONAL FEATURES: 

* Unlimited number of tasks 
* Multiple thread dictionary, 

superfast compilation 

6 Novice Programmer 
Protection PackageTM 

* Diagnostic tools, quick and 
simple debugging 

* Starting FORTH, FORTH-79, 
FORTH-83 compatible 

* Screen and serial editor, 
easy program generation 

* Hierarchical file system with 
data base management 

Starter package $250 Full package 5395 Single 
user and commercial licenses available 

If you are an experienced 
FORTH programmer, this is the 
one you have been waiting for! 
If you are a beginning FORTH 
programmer, this will get you 
started right, and quickly too! 

Available on 8 inch disk 
under CPlM 2.2 or greater 

also 
various 5%” formats 

and other operating systems 

FULLY WARRANTIED, 
DOCUMENTED AND 

SUPPORTED 

1 INQUIRES 

Shaw Laboratories, Ltd. 
24301 Southland Drive, #216 

Hayward, California 94545 
(41 5) 276-5953 

stack, and stores them in the work area. 
The top of the stack goes into ANON, the 
next into ANON+2, etc. Finally, the second 
item is fetched back to  the top of the 
stack by the sequence [ 2 ] ANON+ @. 
After execution of TESTWORD, the value 
2 is on the top of the stack. 

Leonard Morgenstern has used Forth 
forfive years andstill regards himselfas 
a student. He is apathologist with three 
grown children, none of whom have any 
interest in computers. 

Method One (Satisfactory in simple 
situations.) 

0 ROT ROT 
DO . . .  
I F . .  . 1+ LEAVE 
ENDIF. . . 
LOOP 

Method Two (Superior if stack is 
complex.) 

0 ANON ! 
D O . .  . I F . .  . 1 ANON ! LEAVE 
ENDIF..  . LOOP ANON @ 

Figure One 
Leaving flag on stack to indicate 

whether exit from DO loop has been via 
LEAVE command or by exhaustion of 

loop 

( SCREEN 100 ANONYMOUS VARIABLES ) 

0 VARIABLE ANON/ 
: MAKEANON HERE ANON/ ! ANON/ CFA Ce 0 t ; 
: ANON ANON/ @ STATE I IF t ELSE EXECUTE ENDIF ; IMMEDIATE 

: ANON+ ANON/ @ EXECUTE + 

: STURESTACK 2 * OVER + SWAP DO I ! 2 +LOOP ; 
STATE @ IF CCOMPILEI LITERAL ENDIF ; IMMEDIATE 

) SCREEN 101 ANONYMOUS VARIABLES EXAMPLE 

‘1AKEANON 6 ALLOT 
: TESTWORD 4 3 2 i ANON 4 STORESTACK C 2 1 ANON+ d i 

FORTH Dimensions Volume VI. No. 1 34 



Interpreters (Continued from page 19) 

High-Level Inner Interpreters 
It is preferred that inner interpreters 

be defined in host machine code because 
they are expected to be called very often 
and it is desirable that they execute at 
the highest possible speed. However, 
machine code inner interpreters are not 
transportable between different CPUs, 
and it is not easy to program them if the 
interpreter gets complicated. Forth al- 
lows us to write inner interpreters in 
high-level code, similar to colon defini- 
tions using the CREATE.. . DOES> con- 
struct. We’ve seen two examples, MSG 
and ARRAY. To implement inner interpre- 
ters in high level, we have to go through 
another level of calling. Let’s use the 
above two examples to illustrate how the 
high-level inner interpreters are imple- 
mented and executed. 

In all the words defined by MSG, the 
code field contains a pointer to the 
machine code routine DOMSG. In arrays 
defined by ARRAY, the code field contains 
a pointer to DOARRAY. The code of 
DOMSG and DOARRAY looks like figure 
thirteen. 

I assume in this “universal assembly 
code” that CALL first pushes the next 
address of the return stack, as most 
modern CPUs would, before jumping to 
the special routine DODOES. DODOES 
rearranges the registers so that the par- 
ameter field address of the current word 
using the high-level interpreter is pushed 
onto the data stack, IP is saved on the 
return stack, and the address after CALL 
DODOES, temporarily passed to the return 
stack, is copied into the IP register. Only 
then can the high-level interpreter be 
activated to interpret the information 
stored in the parameter field of the cur- 
rent word. While the machine-code inner 
interpreter gets the code field address 
through the w register, the high-level 
inner interpreter must get the same infor- 
mation through the data stack, because 
high-level words cannot access the W 
register directly. 

Interplay Between Text and Inner 
Interpreters 

Now that we have learned the func- 
tions of the text interpreter and of the 

Continued on page 37 

:CONSTANT ( n ---) 
CREATE 

;CODE 

<code of DOCON> 

Create an entry in the dictionary 
and compile the constant value in the parameter field. 
End of the constant compiler and beginning of the con- 
stant interpreter. 
The constant interpreter. 

: VARIABLE ( ---) 
CREATE Create a dictionary entry. 
2 ALLOT Allocate parameter field. 
;CODE 
<code of DOVAR> Variable interpreter. 

Figure Twelve 
Creating CONSTANT and VARIABLE 

DOMSG: 
CALL DODOES 

COUNT 
TYPE 

DO ARRAY: 
CALL DODOES 

SWAP 
2* 
i 

DODOES: 

INC W 
DEC S P  
MOV W,(SP) 

MOV (RP),W 

MOV IP,(RP) 

MOV (W),PC 

W register points to  the code field of the message string. 
Jump to a subroutine DODOES after pushing the next 
address on the return stack. 
Pfa is now on data stack. 
Print the string. 

w points to code field of the array word defined by ARRAY. 

Push array base address on  da ta  stack. Star t  array 
interpreter. 
Swap array offset to top of stack. 
Byte to  cell conversion 
Add to  array base address, pfa. 

w points to code field of the defined word. RP points to the 
high-level interpreter after CALL DODOES. 

Point w to  parameter field. 
Make room on the data stack. 
Push pfa of current word onto the data stack, to be used 
by the high-level interpreter. 
Copy the code field address of the first high-level code in 
the interpreter to  W for execution. 
Save the IP pointer on the return stack, so IP can be used 
by the high-level interpreter. 
Start executing the high-level interpreter. 

Figure Thirteen 
Code for DOMSG and DOARRAY 

FORTH Dimensions Volume VI. No. 1 35 



Forth List Handling 
Birger Olofsson 

Linkoping, Sweden 

A list structure is a very useful tool 
when building datastructures of variable 
size, such as queues and stacks. Espe- 
cially when data have to be searched or 
sorted, list structures give the advantage 
of both high speed and easy management. 

The reason for this is that the stored 
data can be kept fixed in memory while 
only pointers to the data records have to 
be managed during moving or sorting. A 
list consists of one or several list elements 
where each element contains a pointer to 
the next element in the list (figure one). 

The first two bytes of the list element is 
the link field containing a pointer to the 
next element. If this field is zero (null), it 
marks the end of the list (eol). The rest of 
the element is allocated for data storage. 

When creating this data structure, we 
first have to reserve memory space for 
the individual list elements. Then the dif- 
ferent elements are linked together to 
constitute a free list. When we need an 
element to operate on, we take it from 
the free list; and when it is no longer 
needed, it is returned to the free list. 

Let us assume that such a list can be 
created by 

n m CREATE-LIST<name> 

where n determines the number of list 
elements to be created and m is the 
number of bytes to be allotted for data 
storage. The definition of CREATE-LIST 
can be found on screen #l. 

CREATE-LIST is a 'defining word that 
will compile a free list <name> to the 
Forth dictionary. When <name> is exe- 
cuted it will only return its PFA to the 
stack. This PFA is, however, pointing at 
the first element in the list. 

Variables also return their PFAs to 
the stack at execution time. This means 
that we can obviously use ordinary vari- 
ables as lists. We simply let the value of a 
variable be a pointer to the first element 
in the list. A variable with the value zero 
would now represent a list which is cur- 
rently empty. 

The next step is to create tools for 
management of the individual list ele- 

ments. We must be able to take an ele- 
ment from a list and deposit it at the top 
or bottom of another list. Furthermore, 
we must be able to  keep track of the 
number of list elements contained in a 
list. This can be done with the following 
words, definitions for which are found in 
screens #2 - 3. 

turned to the stack. The element is 
removed from the list. 

PUT ( le list --- ) 

PUT expects the address of a list element 
(le) and the PFA of a list on the stack. 
After execution, leis the new top element 
of the list. 

GET ( list --- iel ) 
APPEND ( le list --- ) 

GET expects a PFA on the stack. The 
address of the first element (lel) is re- Expects a list element and PFA of a list 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
1 0  
11 
1 2  
13 
1 4  
15 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
1 0  
11 
12 
13  
1 4  
15 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
1 0  
11 
1 2  
1 3  
1 4  
15 

( F o r t h  l i s t  s t r u c t u r e  

: CREATE-LIST CREATE 
HEX 

HERE 2+ , 
SWAP 1 DO 
HERE OVER 2+ + , 
DUP ALLOT 
LOOP 
0 , ALLOT 
DOES> ; 

-- > 

scrtl  BO 8Feb84 F o r t h 7 9  1 

create a new word i n  t h e  d i c t i o n a r y  1 
l e t  PFA p o i n t  a t  l i n k  f i e l d  o f  l i s t  ) 

( l o o p  l i m i t s  are n och  1 ) 
( c o m p i l e  p o i n t e r  t o  n e x t  e l e m e n t  
( a l l o t  m b y t e s  1 
( r e p e a t  n-1 times ) 
( l e t  l a s t  e l e m e n t  p o i n t  a t  N I L  ) 

( F o r t h  l i s t  s t r u c t u r e  scrX2 BO 8Feb84 F o r t h 7 9  1 

( l i s t  --- l e l  ) 
: GET DUP @ DUP @ ( l i s t  l e l  l e 2  ) 

ROT ! ; ( le l  r e m a i n s  ) 

( l e  l i s t  --- ) 

: PUT DUP @ 3 PICK 
! ( l i s t  l e  ) ! : 

( l e  l i s t  --- ) 
: APPEND OVER 0 SWAP ! 

BEGIN DUP @ WHILE 
@ REPEAT ! ; 

--> 

l e  l e l  l i s t  l e  1 
s t a c k  empty 1 

l e t  l e  p o i n t  a t  N I L  ) 
f i n d  l a s t  e l e m e n t  ) 
i n s t a l l  l e  as  l a s t  e l emen t  ) 

( F o r t h  l i s t  s t r u c t u r e  s c r X 3  BO 8Feb84 F o r t h 7 9  1 

( list --- n ) 
: # L I S T  0 BEGIN OVER @ WHILE 1+ ( c o u n t  e l e m e n t s  1 

SWAP @ SWAP REPEAT ( u n t i l  eol ) 
SWAP DROP : ( s a v e  n on  s t a c k  1 

( l i s t  --- l e  ) 
: LAST BEGIN DUP @ WHILE @ REPEAT 

( l e  list --- ) 
: D E L I S T  BEGIN DUP @ ?DUP WHILE 

3 PICK = IF GET 2DROP E X I T  

REPEAT 0 ERROR ; 
ELSE @ THEN 

E X I T  

s e a r c h  for le ) 
f o u n d  ) 
n e x t  l e  ) 
n o t  f o u n d  ) 

FORTH Dimensions 36 Volume VI, No. 1 



on the stack. After execution, le is the 
last element of the list. 

#LIST ( list -- n ) 

Expects the PFA of a list on top of the 
stack. Returns the number of list ele- 
ments contained in the list. 

LAST ( list -- le ) 

Expects the PFA of a list on the stack. 
Returns the address of the last element in 
the list. The list element is not removed 
from the list. 

DELIST ( le fist --- ) 
Expects a list element and the PFA of a 
list on the stack. Deletes le from the list. 
If the list element cannot be found in the 
list, an error message (“#O not found’? is 
issued. 

Now we have created the necessary 
tools for list management. What’s miss- 
ing is an instrument that facilitates posi- 
tioning within a list element. This can, of 
course, easily be done by adding an 
offset to the start address of the list ele- 
ment. By designing another defining 
word this can be done in a manner 
resembling the record structure of Pascal. 

RECORD 

<name> ( n -- ) compiling 
<name> (addr - addr+n ) executing 

At compile time, <name> is created 
in the dictionary and the number n on 
the stack is compiled into its PFA. At 
execution time, the offset n is added to 
the address on the stack. The definition 
1s: 

: RECORD CREATE 
, DOES > @ + j 

We finish our discussion by giving a 
few examples of how the list structure 
can be used. If, for some application, we 
need twenty list elements where each 
element is supposed to contain sixty- 
four bytes of information, we write: 

20 64 CREATE-LIST FREELIST 

We also need a list SUBl for data stor- 
age. This list is created as an ordinary 
variable. 

VARIABLE SUB10 SUBl ! ( list iS empty 
FREELIST GET SUBl PUT 
FREEUST GET SUBl APPEND 

We now have taken two elements fron 
the free list and put them in the sam 
order in the sub-list. The sub-list no\ 
contains two elements: 

SUBl #LIST. 
2 ok 

To get to the data field of the elemen 
we may create a data pointer. 

2 RECORD DATA (create pointer ti 
data field ) 

The use of the list structure is now 
perhaps, obvious. The only importan 
thing is to keep track of the elements sl 
that they are not lost. After processing 
the elements must be returned to the fre 
list. 

-1 2 rn bytes of data storage 

pointer to next list element 

Figure One 

Interpreters (Continuedfrom page 35) 

many inner interpreters, a question re- 
mains: What’s the significance of separ- 
ating the functions of the inner interpre- 
ters from those of the text interpreter?” 

Before we answer this question, let us 
digress for the moment to what a typical 
interpreter, like that of BASIC, has to do 
to get its job done. When a line of com- 
mands or code is typed into the terminal, 
the BASIC interpreter must first subject 
this line of commands to a syntax analy- 
sis (according to a set of rather compli- 
cated syntax rules) to determine what 
actions will take place. It must determine 
whether a line number is present or not. 
Without a line number, it will expect 
direct commands; otherwise, it will trans- 
late the line to a form suitable for inter- 
nal storage. It has to separate all the 
keywords in the line because the key- 
words represent functions built in the 
BASIC system. It has to assign values to 
variables and evaluate expressions accord- 
ing to rules associates with the keywords 
detected, etc., etc. 

The compiled languages, like Fortran, 
are even worse. The compiler has to 
detect all the keywords, assigned or 
unassigned variables, analyze syntax, 
determine functions, etc., before it can 
generate any code. The complexity in 
syntax and semantics in the Fortran Ian- 
guage makes it impossible for us mortal 
souls to understand the contents of a 
Fortran compiler, not to mention chang- 
ing it. 

How, then, can the text interpreter in 
Forth be so simple? 

The reason is that the Forth text inter- 
preter does not have to do any syntax 
analysis of the lines of commands given 
to it, because there is no syntax to be 
analyzed! All the text interpreter has to 
do is parse out words from the command 
line and search the dictionary to find the 
commands. It does not have to know 
anything about the commands, whether 
they are constants, variables, colon 
words, or code words. It just has to find 
the word in the dictionary and turn the 
code-filled address over to the inner 
interpreter pointed to by the contents of 

FORTH Dimensions Volume VI. No. 1 37 



80801280 FIG-FORTH for CPIM & CDOS systems 
FULL-SCREEN EDITOR for DISK & MEMORY 

$50 saves you keying the FIG FORTH model and many published FIG FORTH screens onto diskette and 
debugging them. You receive TWO diskettes (see below for formats available). The first disk is readable by 
Digital Research CP/M or Cromemco CDOS and contains 8080 source I keyed from the published listings of 
the FORTH INTEREST GROUP (FIG) plus a translated, enhanced version in ZILOG 280 mnemonics. This 
disk also contains executable FORTH.COM files for Z80 & 8080 processors and a special one for Cromemco 
3102 terminals. 

The 2nd disk contains FORTH readable screens including an extensive FULL-SCREEN EDITOR FOR 
DISK & MEMORY. This editor is a powerful FORTH software development tool featuring detailed terminal 
profile descriptions with full cursor function, full and partial LINE-HOLD LINE-REPLACE and LINE- 
OVERLAY functions plus line insert/delete, character insert/delete, HEX character display/update and 
drive-track-sector display. The EDITOR may also be used to VIEW AND MODIFY MEMORY (a feature not 
available on any other full screen editor we know of.) This disk also has formatted memoryand I/O port dump 
words and many items published in FORTH DIMENSIONS, including a FORTH TRACE utility, a model data 
base handler, an 8080 ASSEMBLER and a recursive decompiler. 

The disks are packaged in a ring binder along with a complete listing of the FULL-SCREEN EDITOR and a 
copy of the FIG-FORTH INSTALLATION MANUAL (the language model of FIG-FORTH, a complete glossary, 
memory map, installation instructions and the FIG line editor listing and instructions). 

This entire work is placed in the public domain in the manner and spirit of the work upon which it is based. 
Copies may be distributed when proper notices are included. 

0 FIG-FORTH & Full Screen EDITOR package 
USA Foreign 

AIR 
Minimum system requirements: 
80x24 video screen w/ cursor addressability 
8080 or 280 or compatible cpu 
CP/M or compatible operating system w/ 32K or more user RAM 
Select disk format below, (soft sectored only). ................................... $50 $65 
0 8" SSSD for CP/M (Single Side, Single Density) 

Cromemco CDOS formats, Single Side, S/D Density 
0 8" SSSD 0 8" SSDD 0 5'h"SSSD 0 5'h"SSDD 

Cromemco CDOS formats, Double Side, S/D Density 
0 8" DSSD 0 8" DSDD 0 5%" DSSD 0 5%" DSDD 

Other formats are being considered, tell us your needs. 
0 Printed Z80 Assembly listing w/ xref (Zilog mnemonics) ............................ $15 $18 
0 Printed 8080 Assembly listing ..................................................... $15 $18 

TOTAL $- - 
Price includes postage. No purchase orders without check. Arizona residents add sales tax. Make check 

or money order in US Funds on US bank, payable to: 
Dennis Wilson c/o 
Aristotelian Logicians 
2631 East Pinchot Avenue 
Phoenix, AZ 85016 
(602) 956-7678 

FORTH Dimensions 38 Volume VI. No. 1 



John D. Hall 
Oakland, California 

We have four new chapters. That makes 

Tucson FIG chapter 
Tucson, Arizona 

Southeast Florida FIG Chapter 
Miami, Florida 

Central Illinois FIG Chapter 
Urbana, Illinois 

Berkeley FIG Chapter 
Berkeley, California 

fifty! 

Orange County FIG Chapter 

December 7, Wil Baden conducted a 
contest on who could write a definition 
of DIGIT in the fewest number of words. 

(Okay guys, what is it?) Wil then reported 
on his trip to FORML. January 4, Jim 
Flournoy spoke about his trip to Sweden 
and his meeting with members of the 
Forth community. Noshir Jesung spoke 
about a System Index which he and Wil 
Baden implemented in the F83 model. 
January 25, Art Horne demonstrated his 
Rockwell single-board development sys- 
tem. The system included four disk 
drives, CRT and keyboard. He sells the 
boards in small volume for Rockwell. 
Wil Baden presented a simple file system 
for the F83 model. Elections were held 
and the results were Noshir Jesung re- 
elected President, Bob Wada as Vice- 
President, Roland Koluvek as Secretary 
and Bob Snook as Treasurer. February 
1, D.E. Legan presented a paper on VIC 
modem screens. He has been using his 
VIC to communicate with an IBM 
mainframe. 

Taipei FIG Chapter Activities 

September 24, 1983 
13:OO Forth Fundamentals I, Mr. Chin- 
tan Cheng 
14:OO Digital Filter Design, Mr. Ming- 
sun 0-yang 
15:OO 6522 Interrupts, D / A  Converter, 
Mr. Yu-chu Lin 
1600 FIG business meeting 

October 22, 1983 
13:OO Forth Fundamentals 11, Mr. Son- 
tang Shiu 
1490 DBMS Concepts, Mr. Rei-se Chen 
15:OO AIM-65 With a Four-Channel 
Gamma Spectrometer, Mr. Ke Hwang 
16:OO FIG business meeting 

November 26, 1983 
13:30 Forth Fundamentals 111, Mr. 
Song-li Chu 

the code field. The inner interpreters will 
take care of the rest, carry out all the 
work designed into the word definitions. 

The inner interpreters form an insulat- 
ing layer, hiding the complexities of a 
real computer under it and presenting to 
the text interpreter, and to the final 
users, a simple, uniform and yet very 
powerful interface. Not only can the user 
use the inner interpreters provided in a 
regular Forth system to define new com- 
mands, he is also provided with all the 
tools to build new compiler/ interpreters 
which can be used to build specialized 
commands and data structures best suited 
for his own applications. 

Code fields and the associated inner 
interpreters are the sole inventions Mr. 
Charles Moore brought us in Forth. 
Stacks, the dictionary, indirect threaded 
code and virtual memory were all well- 
developed techniques before Forth was 
invented. Using the code field to identify 
a specific interpreter to execute a particu- 
lar command was not obvious or consi- 
dered useful prior to that time. The code 

field sets Forth apart from any other 
type of language or programming con- 
structs, and it is the most unique feature 
in Forth or Forth-like systems. Many of 
the attributes associated with the Forth 
language, such as compactness, simplic- 
ity and extensibility, can only be realized 
with the use of the code field. 

This concept of compiler/ interpreter 
pairs very neatly ties up many loose ends 
in the understanding of the Forth com- 
puter, such as the code fields, the nested 
execution of Forth words and the very 
confusing idea of defining words. This 
article presents my personal view on this 
many-spotted Forth beast. I hope this 
discussion can shed some light for the 
newcomers to this language. 

References 
1. L. Baker, M. Derick, Pocket Guide to 

Forth, Addison-Wesley, 1983, p.4. 
2. K. Harris, “Forth Extensibility”, Byte, 

Vol. 5, No. 8, 1980, p. 164 
3. L. Brodie, Starting Forth, Prentice- 

Hall, 1981, p. 215. 

FORTH Dimensions Volume VI, No. 1 39 



14:30 Bit-Slice Microprocessors, Mr. 
Chi-yi Liu 
15:30 Micromotion Apple Forth-79 
Internals, Mr. Sam Chen 
16:30 FIG business meeting 

December 24, 1983 
13:30 Forth Fundamentals IV: Diction- 
ary, Vocabulary and Definitions, Mr. 
Ching-lun Lee 
14:30 Digital Communications, Mr. Yu- 
sen Tzai 
15:30 A/ D Converter Applications, Mr. 
Sing-tan Cheng 
16:30 FIG business meeting 
January 28, 1984 
13:30 Forth Fundamentals V: User Var- 
iables, Mr. Chi-liu Kan 
14:30 Data Transfer Between Apple IIs, 
Mr. Yi-seu Wei 
15:30 Forth for a TTL IC Tester, Mr. 
Sui-shan Lan 
16:30 FIG business meeting 

Kansas City FIG Chapter 
February 23, nine people attended the 

last meeting. Les Lovesee gave an excel- 

lent demonstration of a meta-compiler. 
This prompted discussion about Forth 
and it was decided to continue an open 
forum on Forth at the next meeting. The 
group received their first order from 
Mountain View Press. It was a complete 
success. A new order has been started. 

Syracuse FIG Chapter 
December 14, 1) Introduction of at- 

tendees. 2) Established a permanent meet- 
ing time (3rd Wednesday, 7:30 p.m.), 
place varies. 3) Gave out phone numbers 
for local public access bulletin boards. 4) 
Made a list of topics to be covered in 
future meetings. 5 )  Adjourned for casual 
use of Forth on two systems brought to 
the meeting by Mark Manning and Bill 
Carlson. 

January 18, the group developed a 
meeting format to be followed in the 
future. It will be a two-hour meeting with 
a short business meeting, half-hour tutor- 
ial, half-hour special topic and then a 
new set of hardware demos of Forth. 
Elections will be held in February. 

February 15th minutes of the Syra- 
cuse FIG Chapter: 

1. The minutes of 1 / 18/ 84 were read and 
approved. 
2. Treasurer reported $50 in bank and 
another $15 in dues collected. 
3. It was decided to elect the officers until 
September 1984 and every September 
thereafter, and that the initial slate should 
have a President, Vice-president, Secre- 
tary/ Treasurer, Program Chairman, Pub- 
lic Relations/ Membership Chairman and 
a Demo Chairman. 
4. The following were elected: 
President: John DeMar, 456-2237 days 
Vice-president: Brad McLean, 437-1375 
Secty./Treas.: Dick Corner, 456-7436 
days 
Prog. Chair.: Hank Fay, 446-4600 
Demo. Chair.: Dick Sutliff, 478-093 1 
Pub. Rel./ Memb. Chair.: Alan Rowoth, 

5. Held tutorial on Chapter One of Bro- 
die by Dick Corner. 
6. Hardware demo of C64 by Hank Fay. 
7. CompuServe demo by John DeMar. 

474-4800 

John D. Hall is the National Chapter 
Coordinator for the Forth Interest 
Group. 

FORTH Dimensions 40 Volume VI. No. 1 



When you make the best computer system there is- 
you can offer the best warranty there is. 

~ 

For ten years CompuPro has led the way in science and industry-from components for the Space 
Shuttle program to components for IBM to test their components. Now we’ve put that performance and 
reliability into computer systems for business. 

365 DAYS-A FULL YEAR CompuPro’s business systems- the 
expandable System 816‘” and the new multi-user CompuPro 10’“- 
are designed to give you unfailing performance 365 days a 
year. And we’re guaranteeing it! 

If anything goes wrong with 
your System 816 or 
CompuPro 10 within one full 
year of purchase date, we 
provide on-site service- 
within 24 hours-through the nationwide 
capabilities of Xerox AmericareTM * 

365 DAYS-WE COME TO YOU. 

UP TO FOUR TIMES THE WARRANTY OF MOST COMPUTER SYSTEMS. But . . . with the quality and 
reliability we’ve built into the System 816 and CompuPro 10-we’re betting the only call you’ll ever need to 
make is this one: 

For business, scientific and industrial computing solutions, call (415) 786-0909 ext. 206 
for the location of the Full Service CompuPro System Center nearest you. 

A GODBOUT COMPANY 

3506 Breakwater Court, Hayward, CA 94545 

System 816 and CompuPro 10 are trademarks of CompuPro Americare IS a trademark of Xerox Corporation 
System 816 front panel design shown is available from Full Service CompuPro System Centers only Prices and specifications sublect lo change without notice 

‘365 Day Limited Warranty Optional 24. and 36 month programs available Service calls wilhin 24 hours limited to work days and locations within IOOmile radius of Xerox service center 
01984 CompuPro 

Volume VI. No. I 41 FORTH Dimensions 





FOREIGN 

AUSTRALIA 

Melbourne Chapter 
Monthly, 1st Fri., 8 p.m. 
Contact: Lance Collins 
65 Martin Road 
Glen Iris. Victoria 3146 
03 i 29-2600 

Sydney Chapter 
Monthly, 2nd Fri., 7 p.m. 
John Goodsell Bldg., 
Rm. LG19 
Univ. of New South Wales 
Sydney 
Contact: Peter Tregeagle 
10 Binda Rd., Yowie Bay 
02/ 524-7490 

BELGIUM 

Belgium Chapter 
Monthly, 4th Wed., 20:00h 
Contact: Luk Van Loock 
Lariksdreff 20 
2120 Schoten 
0316584343 

. CANADA 

Nova Scotia Chapter 
Contact: Howard HaraNitz 
227 Ridge Valley Rd. 
Halifax, Nova Scotia B3P 2E5 
902/ 542-78 12 

Southern Ontario Chapter 
Monthly, 1st Sat., 2 p.m. 
General Sciences Bldg. 
Rm 312 
McMaster University 
Contact: Dr. N. Solntseff 
Unit for Computer Science 
McMaster University 
Hamilton, Ontario L8S 4KI 
4161525-9140 ext. 2065 

. COLOMBIA 

Colombia Chapter 
Contact: Luis Javier Parra B 
Aptdo. Aereo 100394 
Bogota 
114-0345 

ENGLAND 

Forth Interest Group - U.K. 
Monthly, 1st Thurs., 7 p.m. 
Bradden Old Rectory 
Towchester, Northamptonshire 
"12 8ED 
Contact: Keith Goldie-Morrison 
15 St. Albans Mansion 
Kensington Court Place 
London W8 5QH 

FRANCE 

French Language Chapter 
Contact: Jean-Daniel Dodin 
77 rue du Cagire 
31 100 Toulouse 
(16-61) 44.03.06 

IRELAND 

Irish Chapter 
Contact: Hugh Dobbs 
Newton School 
Waterford 
051 175757 
051 / 74124 

ITALY 

FIG Italia 
Contact: Marco Tausel 
Via Gerolamo Forni 48 
20161 Milano 
02/645-8688 

SWITZERLAND 

Swiss Chapter 
Contact: Max Hugelshofer 
ERN1 & Co. Elektro-Industfie 
Stationsstrasse 
8306 Bruttisellen 
01/833-3333 

REPUBLIC OF CHINA 

R.O.C. 
Contact: J.N. Tsou 
Forth Information Technology 

Taipei 
P.O. BOX 53-200 

G2/ 331-1 3 16 

SPECIAL GROUPS 
Apple Corps FORTH 
Users Chapter 
Twice Monthly, 1st & 
3rd Tues., 7:30 p.m. 
1515 Sloat Boulevard, #2 
San Francisco, CA 
Call Robert Dudley Ackerman 
4 151 626-6295 

Baton Rouge Atari Chapter 
Call Chris Zielewski 
504/ 292- 19 10 

Detroit Atari Chapter 
Monthly, 4th Wed. 
Call Tom Chrapkiewicz 
3 131524-21 00 

FIGGRAPH 
Call Howard Pearlmutter 
408i425-8700 

ADVERTISE IN 

SE PTE M B E R 

I&.Dobb's Journal 

SPECIAL 

ISSUE 

SEPTEMBER SPACE 
RESERVATION DEADLl NE 

July 5, '84 

MATE R I ALS DEADLINE 

July 12, '84 

CONTACT: 
Walter Andrzejewski 

Alice Hinton 

(41 5) 424 - 0600 

DR. DOBB'S JOURNAL 
2464 Embarcadero Way 

Palo Alto, CA 94303 

FORTH Dimensions 
Volume VI, No. 1 43 



FORTH INTEREST GROUP 

MAIL ORDER 
FORnGN 

USA AIR 

DMembenhip in FORTH Interest Group and 
Volume V of FORTH DIMENSIONS 

$15 $27 

9 6 a c k  Volumes of FORTH DIMENSIONS. Price per each. $15 $18 
~~ 

IJI On Or11 0 1" 
nfia-FORTH Installation Manual. containina the lanauaae model u -  

of fig-FORTH, a complete glo&ary, memiry map and installation instructions 
$15 618 

UAssembly Language Source Listings of fig-FORTH for specific 
and machines. The above manual is required for installation. 

0 1 8 0 2  0 6 5 0 2  0 6 8 0 0  0 6 8 0 9  O V A X  0 2 8 0  
rJ3oso O8086/8088 0 9 9 0 0  OAPPLE I1 OECLIPsE OIBM PC 
GPACE JNOVA U P W - 1 1  G 6 8 0 0 0  OALPHA MICRO 

Check appropriate box(es). Rice par each. $15 $18 

a " S t a r t i n g  FORTH, by Brodie .  BEST book on FORTH. (Paperback) $18 
0 " S t a r t i n g  FORTH" by Brodie. (Hard Cover) $23 

PROCEEDINGS: FOWL (FORTH Modif icat ion Conference) 
1980, $25USA/$35Foreign ,z 1981, Two Vol., $4OUSA/$55Foreign 
1982, $25USA/$35Foreign 

ROCHESTER FORTH Conference a 1981, $25USA/$35Foreign 
1 7  1982, $25USA/$35Foreign 
17 1983, $25USA/$35Foreign T o t a l  $ 

1 1  STANDARD: FORTH-79, cj FORTH-83. $15UStv$18Foreign EACH. T o t a l  $ 
$25 $35 

- 
;II K i t t  Peak Primer, by Stevens.  
- 1 MAGAZINES ABOUT FORTH: BYTE Repr in ts  8/80-4/81 

Poplar  Computing, 9/83 $r50USA/$5Foreign EACH. T o t a l  $ 
- 1 D r  Dobb's J r n l ,  3 9/81, :'- 9/82, 9/83 

2 FIG T-sh i r t s :  1 2  S m a l l  j - 7  Medium 2 Large X-Large $10 $12 
P o s t e r ,  BYTE Cover 8/80, $ 3  $ 5  

aFORTH Programmer's Reference Card. I f  ordered s e p a r a t e l y ,  send 
a stamped, s e l f  addressed envelope.  Free 

TOTAL $ 

NAME MS /APT 

ORGANIZATION PHONE( ) 

ADDRESS 
CITY STATE ZIP COUNTRY 

VISA# MASTERCARDC 

Card Expi ra t ion  Date 
(Minimum of $15.00 on Charge Cards) 

Make check o r  money order  i n  US Funds on US Bank, payable  to:  FIG. 
pos tage .  No purchase o r d e r s  without  check. C a l i f o r n i a  r e s i d e n t s  add s a l e s  tax. 10/83 

A l l  p r i c e s  i n c l u d e  

FORTH INTEREST GROUP*PO BOX l l O S + S A N  CARLOS, CA 94070 

BULK RATE FORTH INTEREST GROUP U S  POSTAGE 

PO. Box 1105 Permit No 3107 

San Carlos, CA 94070 San Jose CA 

$22 
$28 

Address Correction Requested 


