

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #1

VU2 185.324

Compilation Techniques for VLIW Architectures

Dietmar Ebner ebner@complang.tuwien.ac.at

Florian Brandner brandner@complang.tuwien.ac.at

http://complang.tuwien.ac.at/cd/vliw

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #2

Last Lectures (1)

� Instruction Scheduling

� List Scheduling
� forward

� backward

� Alternative Approaches

� Resource Models
� Reservation tables

� Finite state automata

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #3

Last Lectures (2)

� Scheduling for VLIW architectures

� Trace Scheduling

� Trace Selection

� Handling Loops

� Code Motion / Compensation Code

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #4

In Today's Lecture

� Different Types of
Regions

� Superblocks

� Hyperblocks

� Treegions

� Region Enlargement
Techniques

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #5

Phases of an ILP Oriented Compiler

High Level Optimizer

C C++ Java

Code Generator (BURS)

Low Level Optimizer

Region Scheduler
Target

Machine
Description

Alias
Information
Database

Assembly Printer

Front-End

Middle-End

Back-End

LLIR

Opt. LLIR

Sched. LLIR
Assembly
Code

Opt. HLIR

HLIR

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #6

Instruction Scheduling

� Most fundamental ILP-oriented phase

� VLIW Scheduling

� Identify and group operations that can be executed
in parallel

� Minimize schedule length

� Obey data dependencies and resource limitations

� Cyclic vs. acyclic scheduling

� Phase ordering issues

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #7

Classification

Regime

CycleOperation

Search Strategy

ExhaustiveGreedy Backtracking

Flow Analysis

GraphLinear

Region Shape

CyclicAcyclic

Super-/Hyperblocks Traces DAGBlocks

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #8

Scheduling Phases

� �Global� scheduling is too complex in general

� Basic blocks do not offer sufficient amounts of
ILP for wide-issue machines

� VLIW architectures often include hardware
support

� Phase Ordering

� Region formation

� Schedule compaction

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #9

Schedule Compaction

� List scheduling widely used in practice

� Operates on the data dependence graph

1. Select and schedule a ready node from the DDG

2. Repeat until the DDG is empty

� A node is available if all predecessors in the
DDG have already been scheduled

� A node is ready if it is available, and all
hardware constraints are met

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #10

List Scheduling - Limitations

� How to select from the list of ready nodes?

� List Schedulers often tend to be too greedy

� Operations that occupy a resource for multiple
cycles might be scheduled too early, preventing
subsequent critical instructions to become ready

� Operations scheduled too early might
unnecessarily increase register pressure

A B C

D E

2 2 2 2

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #11

Region Selection

� Iterative trace growing using the mutual most
likely strategy

� Stops, whenever no mutual most likely blocks
can be found or a backedge is encoured

A

B

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #12

Traces

� Definition

� Linear sequence of blocks with possibly multiple
entrances and exits
B

0
, B

1
, ..., B

n

� Formal Properties

(1)Each basic block is a predecessor of the next on the list

(2)For any i and k, there is no path B
i
 -> B

k
-> B

i
, except for

those passing through B
0

� Does not prohibit forward branches or control flow
leaving and re-entering the region!

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #13

Example Trace

B1

B6

B3

B5B2

B4

10

70 30

3070

20

80

10

90

B1

B6

B3

B5B2

B4

10

70 30

3070

20

80

10

90

B1, B2, B3, B6, B4

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #14

Compensation Code

� What happens if we move instructions across
join/split points

� Preserve all paths from the original code
sequence in the transformed control flow after
scheduling

� Compensation code drastically complicates
trace based schedulers

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #15

Compensation Scenarios

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #16

Superblocks

� Superblocks are traces without side entrances

� Single-Entry Multiple-Exit (SEME)

� Formal Properties

(1)Each basic block is a predecessor of the next on the list

(2)For any i and k, there is no path B
i
 -> B

k
-> B

i
, except for

those passing through B
0

(3)There may be no branches into a block in the

region, except to B
0

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #17

Tail Duplication

� Additional restrictions facilitate superblock
schedulers

� Stopping trace formation at every join point is �
at the first glance � a severe restriction

� Tail duplication can be used to create a copy of
the rest of the trace

� Tail duplication can be seen as a form of
�compensation code� that is created before the
schedule compaction phase

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #18

Superblock Formation

B1

B6

B3

B5B2

B4

10

70 30

3070

20

80

10

90

B1

B6

B3

B5B2

B4

10

70 30

3070

14

56

5.6

50.4

B3'

B4'

6

20

24

4.4
39.6

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #19

Experimental Results

Hwu et al. The Superblock: An Effective Technique for VLIW and Superscalar Compilation

IMPACT-I Compiler, SPARCstation-II

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #20

Performance Improvement

Performance improvement for a k-issue processor in comparison to a scalar base
processor model.

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #21

Effect of Speculation

Restricted Percolation: no support for disregarding exceptions for load, store, divide,
and floating point instructions. Non-trapping versions of those instructions are included
in the �General Percolation� model.

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #22

Code Size Expansion

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #23

Hyperblock

� SEME regions with internal control flow

� Relaxed variant of superblocks

� Employ predication to fold multiple control
paths into a single superblock

� Allows to create traces with higher execution
probability

� Removes side exits and its schedule constraints

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #24

Hyperblock Example

B1

B6

B3

B5B2

B4

10

70 30

3070

20

80

10

90

B1

B6

B3

B2,B5

B4

10

20

80

8

72
B4'

20

2
18

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #25

Treegions

� Tree of basic blocks within the CFG

� List of blocks B
0
, B

1
, ..., B

n
such that each B

j
 except

for B
0
has exactly one predecessor B

i
with i < j

� Any path through the treegion yields a superblock

� Tail duplication is used to enlarge treegions just like in
the superblock case

� Often referred as �non-linear regions� (c.f. �linear
regions� for traces, superblocks)

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #26

Treegion Example

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #27

Region Comparison

Trace

Year Proposed 1979 1988 1992 1997

Policy at splits both ways

Policy at joins continue stop stop stop

loop unrolling

Superblock Hyperblock Treegion

one way, most
likely

one way, most
likely

predicate when
possible

Policy at
backedges

unrolled loops
regarded as
essential
feature

stop, but apply
region
enlargment
techniques

stop, but apply
region
enlargment
techniques

stop, but apply
region
enlargment
techniques

Proposed
measures to
increase region
size

tail duplication,
peeling,
unrolling, and
target
expansion

predication for
rejoins, tail
duplication for
unpredicated
splits, peeling,
unrolling, and
target
expansion

tail duplication,
peeling,
unrolling, and
target
expansion

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #28

Region Enlargement

� Can be used to trade code size for performance

� Make extra copies of highly iterated code

� Most common techniques

� Loop unrolling

� Loop peeling

� Branch target expansion

� (reverse) if-conversion (hyperblocks)

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #29

Loop Unrolling

� Duplicate a loop body several times

� preconditioning / postconditioning to handle trip
counts mod n

� preconditioning is not possible for data dependent
loop exits

� Small loops are often completely unrolled

� Can be performed both before and after region
formation

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #30

Loop Unrolling: Increasing
Parallelism

if(i>N) goto E;

<<body(i)>>

for(int i=0; i<=N; ++i) { <<body>> }

i=0;
L:

E: i++;

 goto L;

i++;

if(i>N) goto E;

<<body(i)>>

i++;

if(i>N) goto E;

<<body(i)>>

i++;

if(i>N) goto E;

<<body(i)>>

if(i>N) goto E;

<<body(i)>>

L:

E: i=i3+1;

 goto L;

i1=i+1;

if(i1>N) goto E;

<<body(i1)>>

i2=i1+1;

if(i2>N) goto E;

<<body(i2)>>

i3=i2+1;

if(i3>N) goto E;

<<body(i3)>>

if(i>N) goto E;

<<body(i)>>

L:

E: i=i+4;

 goto L;

i1=i+1;

if(i1>N) goto E;

<<body(i1)>>

i2=i+2;

if(i2>N) goto E;

<<body(i2)>>

i3=i+4;

if(i3>N) goto E;

<<body(i3)>>

Renaming: Copy Propagation:

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #31

Loop Peeling

B1

B2

10

10

10

B1

B2

10

10

0

B1'

B2'

10
B1''

B2''

10

0 0

�Peel off� a small number of
iterations from the loop

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #32

Target Expansion

B1

B2

80

B3

B4

70

90

20

B1

B2

80

B3

B4

90

20

B3'

B4'
10

10

70

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #33

Dependence Removing
Optimizations

� Eliminate data dependencies among
instructions within frequently executed regions

� Register Renaming

� Operation Migration

� Induction Variable Expansion

� Accumulator Variable Expansion

� Operation Combining

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #34

Register Renaming

� Eliminates anti- and output-dependencies by
assigning unique registers to different
definitions of the same register.

� Important within individual bodies of an unrolled
loop

R1 = load[a]
R1 = R1 + c
store a, R1
R1 = load[a+1]
R1 = R1 + c
store a+1, R1

R1 = load[a]
R1 = R1 + c
store a, R1

R2 = load[a+1]
R2 = R2 + c
store a+1, R2

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #35

Operation Migration

� Moves an instruction from a region where its
result is not used to less frequently used
regions

� A copy has to be placed at the target region of
each exit where the defined variable is live

� All of the data dependencies associated with
that instruction can be eliminated from the
region

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #36

Induction Variable Expansion

� Eliminates redefinitions of induction variables
within an unrolled loop

� Each definition of the induction variable is given
a new register

� Patch code has to be inserted if the induction
variable is used outside the region to recover
the proper value

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #37

Accumulator Variable Expansion

� Accumulation operations often define the
critical path within loops

� Very similar to induction variable expansion

� Replaces each definition of an accumulator
variable with a new register

� Requires additional initialization in the
preheader and code that accumulates the
partial results at region exits

� Often unsafe for floating point operations

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #38

Operation Combining

� Eliminates flow dependencies among pairs of
instructions with the same precedence and with
a compile-time source operand

� Often arise between address calculations and
memory access instructions

p = a + 1
R1 = load[p]
q = p + 1
R2 = load[q]

p = a + 1
R1 = load[p]

q = a + 2
R2 = load[q]

05/27/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #39

Outlook

� Cyclic Scheduling

� Software Pipelining

� Modulo Scheduling

� Data- / Control Speculation

� Predicated Execution

