

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #1

VU2 185.324

Compilation Techniques for VLIW Architectures

Dietmar Ebner ebner@complang.tuwien.ac.at

Florian Brandner brandner@complang.tuwien.ac.at

http://complang.tuwien.ac.at/cd/vliw

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #2

Last Lectures (1)

� Code layout techniques

� Basic block placement

� Function placement

� Cache-line coloring

� Instruction selection

� Transform the high-level IR to low-level IR

� Optimize for size and speed

� Scope: Expression, Statement, Block/Function

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #3

Last Lectures (2)

� Tree pattern matching

� Two-phase approach (label & reduce)

� DAG based

� Generally NP complete

� Solved using heuristics, linear programming (LP)

� Function global

� Large problem size

� Solved using heuristics, or LP

� Quadratic optimization (PBQP)

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #4

In Today's Lecture

� List Scheduling

� Forward

� Backward/Delay Slots

� Resource Models

� Reservation Tables

� Automatons

� Trace Scheduling

� Trace formation

� Compensation code

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #5

Assignments

� Small error in the makefile for example 1

� Causes the decoder to use the floating-point IDCT

� Should have used the integer based IDCT

� Please download the corrected makefile from
our homepage

http://www.complang.tuwien.ac.at/cd/vliw

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #6

Phases of an ILP Oriented Compiler

High Level Optimizer

C C++ Java

Code Generator (BURS)

Low Level Optimizer

Region Scheduler
Target

Machine
Description

Alias
Information
Database

Assembly Printer

Front-End

Middle-End

Back-End

LLIR

Opt. LLIR

Sched. LLIR
Assembly
Code

Opt. HLIR

HLIR

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #7

Instruction Scheduling

� Reorder instructions to

� Minimize the execution time

� Maximize the utilization of computational resources

� Data dependencies need to be preserved

� For VLIWs

� Essential for correct code & high performance

� Often combined with instruction bundling

� Accounting for clusters

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #8

Phase Ordering

� Interacts heavily with other optimizations

� Cluster Assignment

� Limits freedom of the scheduler

� Register allocation (RA)

� Before scheduling

� May limit freedom of the scheduler

� Introduces false dependencies

� After scheduling

� Scheduling may increase register pressure

� May lead to spilling

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #9

Scheduling and Clusters

� Clustering adds significant complexity to
scheduling

� Usually done beforehand

� Resembles a min-cut problem

� But different constraints

� Do not minimize the moves, but execution time

� A promising approach

� Color the DDG and find partial connected
components (PCC)

� Iterative refinement by reassigning PCCs

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #10

Scheduling and Register Allocation

� Typically schedule pre & post RA

� Integrated Prepass Scheduling

� Two scheduling modes

� CSR: Schedule to minimize register usage

� CSP: Schedule to minimize pipeline delays

� Estimate the current register usage

� Integrated techniques

� Solve both problems simultaneously

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #11

Scheduling Outline

Visit each basic block of a function

1. Load a model of the architecture

� Functional units

� Encoding constraints

� Pipeline information

2. Calculate the data dependence graph

3. Reorder the instructions

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #12

List Scheduling

� Operates on the data dependence graph

1. Select a ready node of the DDG

2. Schedule the associated instruction

3. Remove the node from the DDG

4. Repeat until the DDG is empty

� A node is available if all predecessors in the
DDG already have been scheduled

� A node is ready if it is available, and all latency
constraints are met

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #13

Ready Queue

� Selection of the next ready node to be
scheduled is crucial

� Store ready nodes in a priority queue

� Important priority criteria

� Instruction latency and type

� Longest path to a root node of the DDG

� Number of predecessors in the DDG

� etc.

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #14

Example: List Scheduling (1)

(0) i = 0;

(1) sum = 0;

(2) L: t1 = i * 4

(3) i = i + 1;

(4) b1 = i < n;

(5) t2 = ld[&a + t1];

(6) sum = sum + t2;

(7) if (b1) goto L

(8) return

2

5

6

7

3

4

Avail. nodes

Sched. nodes

1 0

2 1

2

Ready nodes

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #15

Example: List Scheduling (2)

(0) i = 0;

(1) sum = 0;

(2) L: t1 = i * 4

(3) i = i + 1;

(4) b1 = i < n;

(5) t2 = ld[&a + t1];

(6) sum = sum + t2;

(7) if (b1) goto L

(8) return

2

5

6

7

3

4

Schedule: 2

1 0

2 1

2

Avail. nodes

Sched. nodes

Ready nodes

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #16

Example: List Scheduling (3)

(0) i = 0;

(1) sum = 0;

(2) L: t1 = i * 4

(3) i = i + 1;

(4) b1 = i < n;

(5) t2 = ld[&a + t1];

(6) sum = sum + t2;

(7) if (b1) goto L

(8) return

2

5

6

7

3

4

Schedule: 2-5

1 0

2 1

2

Avail. nodes

Sched. nodes

Ready nodes

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #17

Example: List Scheduling (4)

(0) i = 0;

(1) sum = 0;

(2) L: t1 = i * 4

(3) i = i + 1;

(4) b1 = i < n;

(5) t2 = ld[&a + t1];

(6) sum = sum + t2;

(7) if (b1) goto L

(8) return

2

5

6

7

3

4

Schedule: 2-5-3 Avail. nodes

Sched. nodes

Ready nodes

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #18

Example: List Scheduling (5)

(0) i = 0;

(1) sum = 0;

(2) L: t1 = i * 4

(3) i = i + 1;

(4) b1 = i < n;

(5) t2 = ld[&a + t1];

(6) sum = sum + t2;

(7) if (b1) goto L

(8) return

2

5

6

7

3

4

Final schedule: 2-5-3-4-6-7

1 0

2 1

2

Avail. nodes

Sched. nodes

Ready nodes

Some steps skipped!

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #19

Forward vs. Backward Scheduling

� The DDG can be processed in both directions

� Backward scheduling

� Allows to handles (branch/load) delay slots naturally

� Different handling of pipeline stalls

� Once a stall is recognized the instruction that actually
stalls has already been scheduled

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #20

Example: Backward Scheduling (1)

(0) i = 0;

(1) sum = 0;

(2) L: t1 = i * 4

(3) i = i + 1;

(4) b1 = i < n;

(5) t2 = ld[&a + t1];

(6) sum = sum + t2;

(7) if (b1) goto L

(8) return

2

5

6

7

3

4

1 0

2 1

2
-1

Assuming one branch delay slots!

-1
-1

-1

Avail. nodes

Sched. nodes

Ready nodes

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #21

Example: Backward Scheduling (2)

(0) i = 0;

(1) sum = 0;

(2) L: t1 = i * 4

(3) i = i + 1;

(4) b1 = i < n;

(5) t2 = ld[&a + t1];

(6) sum = sum + t2;

(7) if (b1) goto L

(8) return

2

5

6

7

3

4

1 0

2 1

2
-1

Assuming one branch delay slots!

-1
-1

-1

Avail. nodes

Sched. nodes

Ready nodes

Schedule: 6

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #22

Example: Backward Scheduling (3)

(0) i = 0;

(1) sum = 0;

(2) L: t1 = i * 4

(3) i = i + 1;

(4) b1 = i < n;

(5) t2 = ld[&a + t1];

(6) sum = sum + t2;

(7) if (b1) goto L

(8) return

2

5

6

7

3

4

1 0

2 1

2
-1

Assuming one branch delay slots!

-1
-1

-1

Avail. nodes

Sched. nodes

Ready nodes

Schedule: 7-6

5

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #23

Example: Backward Scheduling (4)

(0) i = 0;

(1) sum = 0;

(2) L: t1 = i * 4

(3) i = i + 1;

(4) b1 = i < n;

(5) t2 = ld[&a + t1];

(6) sum = sum + t2;

(7) if (b1) goto L

(8) return

2

5

6

7

3

4

1 0

2 1

2
-1

Assuming one branch delay slots!

-1
-1

-1

Avail. nodes

Sched. nodes

Ready nodes

Schedule: 5-7-6

5

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #24

Example: Backward Scheduling (4)

(0) i = 0;

(1) sum = 0;

(2) L: t1 = i * 4

(3) i = i + 1;

(4) b1 = i < n;

(5) t2 = ld[&a + t1];

(6) sum = sum + t2;

(7) if (b1) goto L

(8) return

2

5

6

7

3

4

1 0

2 1

2
-1

Assuming one branch delay slots!

-1
-1

-1

Avail. nodes

Sched. nodes

Ready nodes

Schedule: 2-3-4-5-7-6

5

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #25

Alternatives to List Scheduling

� Linear programming (LP)

� Very flexible

� Allows to model additional constraints

� e.g, utilize vertical & horizontal NOP features

� Slow and complex

� Many decision variables required

� VLIW bundling adds extra overhead

� Constraint solving

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #26

Resource Models

Schedulers need a model of the architecture

� Number and properties of functional units

� Constraints imposed by

� Architecture implementation

� Instruction set

� Encoding, etc.

� Behavior of the pipeline

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #27

Reservation Tables

� List of resources (units)

� Virtual resources for other constraints

� Max. number of concurrent uses

� Record for each instruction

� Which resources are used

� When are these resources used

� How many cycles does each use take

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #28

Example: Reservation Tables

Available Resources:
1xMUL
2xALU
1xLD
1xBRA
1xES0*
1xES1*

* Virtual resources for encoding slots

Resources per Instruction:
* <ES0|ES1,MUL>
nop <ES0|ES1, ALU>
+ <ES0|ES1, ALU>
< <ES0|ES1, ALU>
ld <ES0|ES1, LD>
goto <ES0, BRANCH>

Instructions Reservation table

t1 = i * 4; i = i + 1;

b1 = i < n; t2 = ld[&a + t1];

nop; nop;

if (b1) goto L; sum = sum + t2;

[ES0][ES1]
[ES0][ES1]
[ES0][ES1]
[ES0][ES1]

[MUL][ALU]
[ALU][LD]
[ALU][ALU]
[BRA][ALU]

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #29

Finite State Automatons

� States of the automaton

� Capture the architecture state

� Other constraints (encoding, etc.)

� Transitions

� Model the scheduling of instructions

� Prohibit transition for instructions causing hazards
or violating some constraint

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #30

Example: Finite State Automatons

Initial Automaton

Minimized Automaton

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #31

Scheduling for VLIWs

� We already know

� Branches limit the amount of achievable ILP

� Consequently

� We would like to schedule across branches

� The scope of basic blocks is too limited

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #32

Trace Scheduling (1)

� Extend instruction scheduling to traces

� Traces allow to schedule across basic blocks

� Developed for micro-code compaction by J. Fisher

� A sequence of basic blocks form a trace

� Build a linear path through the CFG

� May contain several entries (joins)

� May contain several exits (splits)

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #33

Trace Scheduling (2)

� Code moved across a branch

� May violate control dependencies

� May violate data dependencies

� Insertion of compensation code is required

� Causes some overhead in the compiler

� May have negative impact on execution time

� The compensation code slows down other paths

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #36

Trace Scheduling Outline

1. Trace selection

� Combine profitable blocks into traces

2. Trace buffering

� Save variables live at the entries and exits of the
trace (required for compensation code)

3. Scheduling

� Invoke some scheduling algorithm
(e.g. list scheduling)

4. Bookkeeping

� Insert compensation code (if required)

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #37

Trace Selection (1)

1. Select a hot basic block

i. Select heuristically some predecessor or successor

� Append the block to the trace

� Repeat this step

ii. If no profitable candidate is available

� Stop the trace formation

� Start a new trace with the next hottest block available

2. Repeat until all blocks are assigned to a trace

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #38

Trace Selection (2)

� Forming profitable traces depends heavily on
profiling information

� Selection of hot blocks

� Rating candidate blocks during trace expansion

� It is beneficial if the program executes mostly
the same (few) paths and is predictable

� It is hard to find traces if all execution paths
have equal frequencies

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #42

Code Motion and Compensation

Source: P. Faraboschi, HP

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #43

Handling Loops (1)

� Hierarchically decompose the CFG

� Start with innermost loop

� Schedule the loop

� Replace the original loop with the scheduled trace

� Schedule its surrounding loop

� Repeat until all loops have been processed

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #44

Handling Loops (2)

Source: P. Faraboschi, HP

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #45

Limitations of Trace scheduling

� Sensitive to static branch prediction accuracy

� Off-trace paths are penalized

� Favor shorter traces in these cases

� Code size growth

� Caused by compensation code

� May hurt instruction cache

� Can be controlled using thresholds

� Handling loops

� Trace scheduling is an acyclic technique

05/16/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #46

Outlook

� Other forms of regions

� SEME vs MEME regions

� Superblocks vs Traces

� Non linear regions

� Hyperblocks, Treegions

� Region enlargement techniques

� Cyclic scheduling

� Software pipelining

