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Last Lectures (1)

� Number representation

� Floating-point vs. fixed-point

� Floating-point emulation

� Embedded C extensions

� Named address spaces

� Saturated/fixed-point arithmetic
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Last Lectures (2)

� Engineering a compiler

� Long living (>10 years)

� Design trade offs

� Structure: Front-end, middle-end, back-end

� Optimization trade offs

� Performance/runtime

� Code-size

� Power efficiency
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Last Lectures (3)

� Profiling

� Node vs. edge prof. / Call graph vs. CFG

� Instrumentation, sampling, hw/simulator support

� Problems: Representative input, keeping it up-to-
date, may alter observed behavior

� Loop Unrolling

� Duplicate the loop body

� Pre/post-conditioning

� Reductions

� Trade offs: better performance, increased code-size
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Assignments (1)

Assignment 8
In a clustered VLIW, we have the choice of providing implicit or explicit copy operations, for which in 
the implicit case operands must include encoding bits for the full register specifier, and in the explicit 
case we only need a cluster bit in the encoding, at the expense of requiring extra copy operations to 

move values between clusters. For a 4-way VLIW architecture with 32 registers per cluster draw a 
figure showing the number of bits in an instruction associated with the register specifier in the two 

cases. Compute how many (%) intercluster copy operations can be issued before the explicit copy 
mechanism becomes less efficient than the implicit copy.

Assume: 4 Clusters, 32 registers each vs. unified register file with 4x32 registers
 Each operation has 3 register operands (2xR, 1xW)

Bits Overhead Operand 1 Operand 2 Operand 3

Unified 0 2+5 2+5 2+5

Clustered 1 5 5 5

Copy 0 0 2+5 5

n * 3 * 7 = n * (1 + 15) + n * c (1 + 12)

21 = 16 * c * 13

5/13 = c
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Assignments (2)

Assignment 9
Write C code that implements the multiplication of two 24-bit fractional values to produce a 48-bit 
fractional value, assuming 32-bit registers.

Input: unsigned v1, unsigned v2

Output:  unsigned LO, unsigned HI

unsigned a, b, c, d, bd, ad, cb, ac;

unsigned mid, mid2, carry_mid = 0;

a = (v1 >> 16) & 0xffff;

b = v1 & 0xffff;

c = (v2 >> 16) & 0xffff;

d = v2 & 0xffff;

bd = b * d;

ad = a * d;

cb = c * b;

ac = a * c;

mid = ad + cb;

if (mid < ad || mid < cb)

  /* Arithmetic overflow or carry-out */

  carry_mid = 1;

mid2 = mid + ((bd >> 16) & 0xffff);

if (mid2 < mid || mid2 < ((bd >> 16) & 0xffff))

  /* Arithmetic overflow or carry-out */

  carry_mid += 1;

LO = (bd & 0xffff) | ((mid2 & 0xffff) << 16);

HI = ac + (carry_mid << 16) + ((mid2 >> 16) & 

  0xffff);

Source: SPIM Simulator
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Assignments (3)

Assignment 10

int foo(int a[], int n) {

  int i, min;

   min = UINT_MAX;

    for (i = 0; i < n; i++) {

       min = a[i] < min ? a[i] : min;

    }

    return min;
}

Assume a 4-way VLIW architecture that has a unified register file with 32-bit registers (r0-r31), and 
the usual arithmetic and logic operations (+,-,*,/,&,|,etc.) and a multiply-accumulate (mac), 8 predicate 
registers (p0-p7), and according comparison operations (==, !=, >, <, etc.). Memory can be accessed 

using load/store operations (ld, st).  The architecture supports partial predication, and offers a 
select instruction. There are no restrictions on the instruction bundling from the architecture or the 

encoding. Multiply, multiply-accumulate, and load operations take at least 3 cycles, all other 
operations finish within 1 cycle. There is no hazard detection implemented.

foo: r0 = UINT_MAX;

p0 = r2 == 0;

if (p0) goto L1;

r2 = r2 * 4; // size of int

nop

nop // wait for multiply

r2 = r1 + r2; // end of array

L0: r3 = ld(r1);

r1 = r1 + 4; // next element

p0 = r1 >= r2; // end?

p1 = r3 < r0;

r0 = p1 ? r3 : r0; // min

if (p0) goto L1; // exit loop

goto L0;

L1: return;
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Assignments (4)

Assignment 10

� Unrolling with pre-conditioning, reductions and ILP

foo: p0 = r2 == 0; r10 = r2 & 3; r0 = UINT_MAX; r2 = r2 & ~3;

     if (p0) goto Exit; p1 = r10 != 0;

     if (p1) goto L0;

     goto L1;

// pre-conditioning

L0: r3 = ld(r1);          r1 = r1 + 4;      r10 = r10 - 1;

    p1 = r10 != 0;

    nop   // wait for load

    p1 = r3 < r0;

    if (p1) goto L0;      r0 = p1 ? r3 : r0;

// prepare for unrolled loop

L1: p0 = r2 == 0;           r2 = r2 << 2;   r22 = UINT_MAX;   r23 = UINT_MAX;

    if (p0) goto Exit;      r2 = r1 + r2;   r24 = UINT_MAX;



  

 

04/25/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #9

Assignments (5)

Assignment 10

// unroll by 4, and use reductions to eliminate data dependencies

L2: r11 = ld(r1);  r12 = ld(r1 + 4); r13 = ld(r1 + 8);    r14 = ld(r1 + 12);

    r1 = r1 + 16;    // next 4 elements

    p0 = r1 >= r2;    // end?

    p1 = r11 < r0;      p2 = r12 < r22;     p3 = r13 < r23;      p4 = r14 < r24;

    r0 = p1 ? r11 : r0; r22 = p2 ? r12 : r22; r23 = p3 ? r13 : r23; r24 = p4 ? r14 : r24;

    if (p0) goto L2;  // exit loop?

// reduction

L3:

    p1 = r21 < r0;           p2 = r22 < r23;

    r0 = p1 ? r21 : r0;      r11 = p2 ? r22 : r23;

    p1 = r11 < r0;

    r0 = p1 ? r11 : r0;

// result in r0

Exit: return;   
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In Today's Lecture

� High-level 
Optimizations

� Control Flow Graph

� Function Inlining

� Alias Analysis

� Loop Transformations

� Definition of Loops

� Loop Optimizations

� Data Cache 
Optimizations
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Phases of an ILP Oriented Compiler

High Level Optimizer

C C++ Java

Code Generator (BURS)

Low Level Optimizer

Region Scheduler
Target

Machine
Description

Alias
Information
Database

Assembly Printer

Front-End

Middle-End

Back-End

LLIR

Opt. LLIR

Sched. LLIR
Assembly
Code

Opt. HLIR

HLIR
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Control Flow Graph

� Basic block

� Sequence of computations

� One single entry, one single exit

� Control flow graph (CFG)

� Nodes: Basic blocks

� Edges: Jumps between blocks

� Top most block usually called entry
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Example: CFG

int foo(int a, int b) {

  int z = a * b;

  if (a < 0)

z = -z;

  else if (b < 0)

z = abs(z);

  return z;

}

entry:

z = a * b

if (a < 0) goto L0

goto L1

L0:

z = -z

goto L2

L1:

z = abs(z)

goto L2

L2:

return z
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Scalar Optimizations

� Mostly simple transformations

� Usually improve performance & reduce code-size

� Available in virtually every compiler

� Examples:

� Subexpression elimination

� Copy propagation

� Copy elimination

� Dead-code elimination

� Strength reduction
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Copy Propagation

if () {

  a = b;

  c = (a + e) * 1024;

  d = b + e;

  b = 7;

}

else {

  b = 7;

  x = a + c;

}

return b + c + d

if () {

  a = b;

  c = (b + e) * 1024;

  d = b + e;

  b = 7;

}

else {

  b = 7;

  x = a + c;

}

return b + c + d
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Constant Propagation

if () {

  a = b;

  c = (b + e) * 1024;

  d = b + e;

  b = 7;

}

else {

  b = 7;

  x = a + c;

}

return 7 + c + d

if () {

  a = b;

  c = (b + e) * 1024;

  d = b + e;

  b = 7;

}

else {

  b = 7;

  x = a + c;

}

return b + c + d
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Common Subexpr. Elimination

if () {

  a = b;

  tmp = b + e;

  c = tmp * 1024;

  d = tmp;

  b = 7;

}

else {

  x = a + c;

  b = 7;

}

return 7 + c + d

if () {

  a = b;

  c = (b + e) * 1024;

  d = b + e;

  b = 7;

}

else {

  x = a + c;

  b = 7;

}

return 7 + c + d
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Dead Code Elimination

if () {

  a = b;

  tmp = b + e;

  c = tmp * 1024;

  d = tmp;

  b = 7;

}

else {

  x = a + c;

  b = 7;

}

return 7 + c + d

if () {

  a = b;

  tmp = b + e;

  c = tmp * 1024;

  d = tmp;

  b = 7;

}

else {

  x = a + c;

  b = 7;

}

return 7 + c + d
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Strength Reduction

if () {

  tmp = b + e;

  c = tmp << 10;

  d = tmp;

}

return 7 + c + d

if () {

  tmp = b + e;

  c = tmp * 1024;

  d = tmp;

}

return 7 + c + d
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Function Inlining

� Replace a function call by the functions body

� Eliminates call overhead (argument passing, etc.)

� Enlarges the scope for other optimizations

� Increases code-size (effects on cache)

� Typically done using simple heuristics

� Code-size (caller and callee)

� Number of call sites

� Profiling information

� Sometimes controlled by user (inline keyword)
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Data Dependencies

� Arise from reading/writing data 

� Read-after-write (true dependence)

� Write-after-Read (anti dependence)

� Write-after-write (output dependence)

� Dependence information

� Required for many optimizations

� Determine if calculations are independent

� Represented as graphs (data dependence graph)

04/25/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #22

Aliasing Problem

� Obtaining dependence information

� Easy for scalar variables

� Hard problem for memory locations

� Pointer may refer to different locations at different 
program points

if (z > 100)

  a = &x;

else

  a = &y;

(*a)++;

int x, y, z;

int *a = &z;

(*a) = 101;
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Alias Analysis

� Analysis tackling the aliasing problem

� Determine to which memory locations a pointer may 
 refer

� Possible memory locations

� Local/global variables with address taken (& in C)

� Heap references (malloc, new)

� Arguments passed by reference
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Alias Analysis (2)

� Flow-insensitive AA

� Alias information independent of program locations

� Flow-sensitive AA

� Alias information for each program point

� More precise & more complex

� May vs. must aliasing

� Determine if a pointer is guaranteed to refer to a 
particular memory location
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Example: Flow Sensitivity

(1) int x, y, z;

(2) int *a = &z;

(3) (*a) = 101;

(4) if (z > 100)

(5)   a = &p;

(6) else

(7)   a = &q;

(8) (*a)++;

Flow-insensitive AA:
a may alias {x, y z}

Flow-sensitive AA:
(3) a must alias {z}
(6) a must alias {p}
(7) a must alias {q}
(8) a may alias {p, q}
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Analysis Scope

� Intra procedural

� Only consider the scope of a function

� Conservative assumptions on incoming arguments

� Similar for result values of calls

� Inter procedural 

� Consider the complete call graph

� Context-sensitive vs. Context-insensitive analysis

� More precise & more complex
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Beyond Alias Analysis

� More precise information on heap objects

� Statically detect dangling/NULL pointers

� Detect memory leaks

� Detect shared memory cells

� Reachability of memory cells (garbage)

� Shape analysis

� Determine a finite representation of dynamic data 
structures (lists, trees, DAGs, etc.)
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Loop Transformations

� Loops contribute a large amount of the 
execution time of programs

� Optimizing loops is attractive

� Limited scope, thus
allows to use more sophisticated techniques

� What is a loop?
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Loop Definition

� A set of basic blocks such that edges 
connecting these blocks form a cycle

� Distinctive loop header

� All blocks are reachable from the header

� For any block there is a path to the header

� All paths from a block outside the loop to a block 
inside the loop go through the header

� These loops are called natural loops

04/25/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #30

Example: Loops

BBx

BB4

BB3

BB2BB1

BB0

BBxBBxBBxBBxBB0

BB5

BB4

BB1

BB3BB2
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Identifying Loops

� Using dominance relation

� Block A dominates another block B iff all paths from 
the entry node to B go through A

� Efficiently calculated using depth first search (DFS)

� An edge of the CFG is a backegde iff the head 
of the edge dominates its tail

� The head of a backedge is a loop header
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Example: Backedges

BBx

BB4

BB3

BB2BB1

BB0

BBxBBxBBxBBxBB0

BB5

BB4

BB1

BB3BB2
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Reducible Flow Graphs

� A CFG is called reducible iff we can partition 
the edges into two sets:

� backedges

� forwardedges

� Considering only forwardedges, the CFG 
becomes a DAG

� A reducible CFG contains only natural loops

� Every cycle contains at least one backedge
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Irreducible Flow Graphs

� Not all CFGs for real programs are reducible:

� These cases are rare, nevertheless one has to 
account for them

� Usually loop optimizations target natural loops

BB2BB1

BB0
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Dependencies in Loops

� Loops complicate dependence analysis

� Loop carried dependencies

� Aliasing of pointers/overlapping arrays

� Distance vectors

� Dependence testing

� Induction variables/subscript analysis

� Array dependence analysis

� Delta - test
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Example: Dependencies

for (i = 0; i < n; i++) {

  a[i+1] = a[i] + b[i];

}

tmp = a[i];

tmp1 = b[i];

a[i+1] = tmp1 + tmp2;

i = i + 1;

tmp = a[i] tmp = b[i]

Controll flow graph

Original C-code

a[i+1] = tmp1 + tmp2

i = i +1

Data dependence graph

1 1

1

1

1
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Loop Optimizations

� Typical goals

� Reduce the loop overhead

� Increase data reuse - by modifying access patterns

� Increase parallelism - by eliminating dependencies

� Examples:

� Loop fusion, distribution, interchange

� Loop skewing, peeling

� Many, many, more
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Renaming

for (i = 0; i < n; i++) {

  t = a[i] + b[i];

  c[i] = t + t;

  t = d[i] – b[i];

  a[i+1] = t * t;

}

Scalars

for (i = 0; i < n; i++) {

  t1 = a[i] + b[i];

  c[i] = t1 + t1;

  t2 = d[i] – b[i];

  a[i+1] = t2 * t2;

}

for (i = 0; i < n; i++) {

  a[i] = a[i-1] + x;

  y[i] = a[i] + z;

  a[i] = b[i] + c;

} Arrays

for (i = 0; i < n; i++) {

  a1[i] = a[i-1] + x;

  y[i] = a1[i] + z;

  a[i] = b[i] + c;

}
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Scalar Expansion

for (j = 0; j < m; j++) {

  for (i = 0; i < n; i++) {

    t = 0;

    for (k = 0; k < l; k++) {

      t = t + a[i][k] * b[k][j];

    }

    c[i][j] = t;

  }

}

for (j = 0; j < m; j++) {

  for (i = 0; i < n; i++) {

    T[i] = 0;

    for (k = 0; k < l; k++) {

      T[i] = T[i] + a[i][k] * b[k][j];

    }

    c[i][j] = T[i];

  }

}
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Loop Distribution

for (j = 0; j < m; j++) {

  for (i = 0; i < n; i++) {

    T[i] = 0;

    for (k = 0; k < l; k++) {

      T[i] = T[i] + a[i][k] * b[k][j];

    }

    c[i][j] = T[i];

  }

} for (j = 0; j < m; j++) {

  for (i = 0; i < n; i++) {

    T[i] = 0;

  }

  for (i = 0; i < n; i++) {

    for (k = 0; k < l; k++) {

      T[i] = T[i] + a[i][k] * b[k][j];

    }

  }

  for (i = 0; i < n; i++) {

    c[i][j] = T[i];

  }

}
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Loop Interchange

for (j = 0; j < m; j++) {

  for (i = 0; i < n; i++) {

    T[i] = 0;

  }

  for (i = 0; i < n; i++) {

    for (k = 0; k < l; k++) {

      T[i] = T[i] + a[i][k] * b[k][j];

    }

  }

  for (i = 0; i < n; i++) {

    c[i][j] = T[i];

  }

}

for (j = 0; j < m; j++) {

  for (i = 0; i < n; i++) {

    T[i] = 0;

  }

  for (k = 0; k < l; k++) {

    for (i = 0; i < n; i++) {

      T[i] = T[i] + a[i][k] * b[k][j];

    }

  }

  for (i = 0; i < n; i++) {

    c[i][j] = T[i];

  }

}
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Index-Set splitting

for (i = 0; i < 100; i++) {

  a[i+20] = a[i] + x;

}

Threshold analysis + 
strip mining

for (I = 0; I < 100; I+=20) {

  for (i = I; I < I + 19; i++)

    a[i+20] = a[i] + x;

}

for (i = 0; i < n; i++) {

  a[i] = a[i] + a[0];

}

Loop Peeling

a[0] = a[0] + a[0];

for (i = 1; i < n; i++) {

  a[i] = a[i] + a[0];

}
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Cache Optimizations

� Reduce the number of cache misses

� Reorganize data

� Reshape access patterns

� Reduce the number of memory accesses

� Prefetching

� In loops

� Improve spatial and temporal locality
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Loop Interchange (2)

for (i = 0; i < n; i++) {

  for (j = 0; j < m; j++) {

    a[i][j] = a[i][j] + b[i][j]

  }

}

1

2

3

...

i

j

for (j = 0; j < m; j++) {

  for (i = 0; i < n; i++) {

    a[i][j] = a[i][j] + b[i][j]

  }

}

1 2 3 4 5 6 7 ...

i

j
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Loop Blocking

for (j = 0; j < m; j++) {

  for (i = 0; i < n; i++) {

    d[i] = d[i] + b[i][j]

  }

}

for (I = 0; I < n; I+=S) {

  for (j = 0; j < m; j++) {

    for (i = I; i < min(I+S-1,n); i++)

      d[i] = d[i] + b[i][j]

  }

}

Accesses to d:

Block size
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Outlook

� Code layout

� Block & function placement

� Code generation

� Instruction selection on trees

� DAG based approaches


