

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #1

VU2 185.324

Compilation Techniques for VLIW Architectures

Dietmar Ebner ebner@complang.tuwien.ac.at

Florian Brandner brandner@complang.tuwien.ac.at

http://complang.tuwien.ac.at/cd/vliw

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #2

Last Lecture

� VLIW principles

� Forms of parallelism

� Pipelining

� Instruction level parallelism (ILP)

� VLIW vs. superscaler

� Similar ILP

� Differing techniques to achieve ILP

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #3

Last Lecture (2)

� Instruction set design

� Expose details (Latencies/Resources)

� Semantics of parallel execution

� Exceptions/Interrupts

� Instruction encoding

� Uncompressed/Fixed-overhead encoding

� Distributed/Template-based encoding

� Dispatching techniques

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #4

Terminology

� Operation

� Syllable

� Instruction/group

� Set of independent operations

� Bundle

� Set of operations encoded as a unit

� May have dependencies

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #5

Instruction/Group

Bundle

Last Lecture (4)

SyllableSyllableSyllableSyllableSyllableSyllable

OperationOperationOperation Operation Operation

Syllable

Bundle

Instruction/GroupInstruction/Group

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #6

Instruction/Group

Bundle

Last Lecture (5)

SyllableSyllableSyllableSyllableSyllableSyllable

OperationOperationOperation Operation Operation

Syllable

Bundle

Instruction/Group

In many cases bundles and instructions coincide

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #7

In Today's Lecture

� VLIW Implementation

� Architecture Design

� Microarchitectural
Design

� Examples

� Multiflow Trace

� ST231

� Chili

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #8

Memory Architecture

� Strongly oriented towards RISC

� Dedicated load/store operations

� Typical addressing modes

� register indirect, register + offset, register + register

� pre/post increment/decrement

� Similar alignment, and access sizes

� Same caching and prefetching techniques

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #9

Instruction Fetch

Instruction cache lineFetch

Align Instruction buffer

Decode

Dispatch FU1 FU4FU3FU2

Source: P. Faraboschi, HP Research

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #10

Instruction Fetch

� Additional step required: Align

� Find the boundaries of instructions

� Usually employs an instruction buffer

� Expansion of NOPs

� Both vertical and horizontal

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #11

Instruction Alignment

� Variable length instructions

� Complicate the Align step

� Might cause several cache accesses

� Interferes with cache organization

� Instruction encoding

� Alignment constraints

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #12

Memory Architecture (2)

� Some techniques not unique to VLIW

� Stream buffers

� Dedicated caches relaying on spatial locality only

� Fast local memories

� Scratch pad memories

� Lockable caches (turned into regular memory)

� DMA engines

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #13

Code Compression

� Compressed code in memory

� Decompression

� On instruction fetch
� Yet another step before Align

� On cache refill

� Access to memory is slow, thus
allows more complex compression schemes

� Cache holds uncompressed instructions, thus
reduces effective cache size

� Example: IBM Codepack

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #14

Register File

Register File

� Multiple ports

� Typically 2 read, 1 write port for each execution unit

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #15

VLIW Datapath Example

Source: P. Faraboschi, HP Research

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #16

Register Count

� Media-oriented
benchmarks

� 2-16 execution
units

Source: P. Faraboschi, HP Research

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #17

Register File Structure

� Organized as a two-dimensional grid

� Built from bit cells

� Control lines running horizontally

� Data lines running vertically

Bit Cell

Write 1

Read 1

Read 2C
o
n
tr

o
l

W1 R1 R2

Data

Bit Cell

Write 1

Write 2

Read 1

W1 W2 R1 R2 R3 R4
C

o
n

tr
o
l

Data

Read 2

Read 3

Read 4

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #18

Register File Structure (3)

� Implementation

� Dominated by wires

� Thus shrinking transistors does not help

� Area grows with the number of ports

� Similarly the access time, and power consumption

� Example: 130nm process

� Maximum of 20 ports (read/write)

� Sweet spot: 12 ports (8 read/4 write)

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #19

Bypassing

� Complexity increases:

� Number of read ports x write ports x pipeline depth

read write

read write

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #20

Clustered Register Files

� Reducing the number of ports

� Split the register file into several smaller

� Copy between the clusters

Register FileRegister File

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #21

Clustered Datapath

Source: P. Faraboschi, HP Research

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #22

Clustering

� Architecturally invisible

� Illusion of a single large register file
� Implemented in hardware

� Encoding overhead (bits for all registers)

� Architecturally visible

� Implicit vs. explicit copying

� Complicates the compiler

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #23

Cost of Clustering

Source: P. Faraboschi, HP Research

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #24

Address Registers

� Special form of
clustering

� Not recommended

Source: P. Faraboschi, HP Research

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #25

Indexed Register Files

� Generalization of register windows (Sparc)

� Offer `base + offset` addressing for registers

� Rotating register files

� Policy to update the base address

� e.g. cycle over a subset of the register file

� Used for software pipelining

� Benefits unclear

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #26

Branch Architecture

� Again similar to RISC

� Common prediction techniques

� Unbundling branches

� Split the branch into several steps

� Prepare the target instruction streams to fetch

� Select the instruction stream that will be taken

� Execute the taken instructions

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #27

Unbundling branches

� Two-step branching

� Separate branching from condition

� Usually using dedicated branch registers

� Three-step branching

� Additionally decouple the target address calculation

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #28

Example: Two-step branch

Source: P. Faraboschi, HP Research

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #29

Multiway Branches

� Several branches in one instruction

� Can be seen as a single jump with multiple targets

� Why multiway branches?

� One branch every 5-10 instructions

� Branches get the bottleneck for larger ILP

� Reduces the number of branches

� Alternative: Predication

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #30

Multiway Branches (2)

if X

if Z

if YA

B

C D

Control flow

if x br Aif X br A if Z br Cif Y br B

A

B

C
D

Multiway branch

fall through

Branches need to be prioritized when conditions are not mutual exclusive!

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #31

History

� Attached signal processors (70s-80s)

� ILP similar to VLIW

� Very idiosyncratic

� Exclusively hand-coded

� Horizontal microcode (70-80s)

� Control of hardware to emulate a complexer high-
level instruction set

� Hardware operates in parallel

� Thus microcode needs to be parallel

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #32

The first VLIWs

� Research

� ELI-512 (1983)
� Joseph Fisher, et.al.

� Commercial

� Multiflow - Trace (1984-1990)

� Fisher, et. al.

� Cydrome - Cydra (1984-1988)

� Rau, et. al.

� Initially successful

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #33

Todays VLIWs

� Intel Itanium (EPIC)

� The only VLIW for workstations and servers

� Research started 1989 by Hewlett-Packard

� Partnered with Intel in 1994

� Rau, Fisher both involved

� Many VLIWs in the embedded domain

� Philips TriMedia, TI C6x, StarCore, ST2xx, ...

� OnDemand Chili

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #34

Multiflow Trace

� Built from 5 board types

� Pairs of Integer/Float boards (I-F)

� Global/memory/IO controller

� 45x45cm each

� Based on numerous gate arrays (8000 gates)

� Configurations with 1,2 or 4 I-F boards

� Issuing up to 28 operations per cycle

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #35

I-F Board Pair

Source: P. Faraboschi, HP Research

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #36

Instruction Set Architecture

� Register files

� 64 32-bit integer registers

� 64 32-bit float registers (paired)

� Clustered, with explicit copy

� Instructions

� Integer select - partial predication

� �Fast moves� for register file-register file transfers

� Speculative loads

� Non-trapping floating point instructions

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #37

Instruction Set Architecture (2)

� Two-step branches

� 7 branch registers

� 1 delay slot

� Multiway branches (up to 4 in parallel)

� Encoding

� Fixed-overhead with 32-bit syllables

� 7 syllables for each I-F pair

� 256-bit to 1024-bit instruction word

� Expanded at cache refill

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #38

Instruction Encoding

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #39

Memory

� Virtual memory

� Sophisticated paging and TLB

� Full Unix OS support

� No data caches, but

� Interleaved memory banks

� Allowing 4 accesses to be initiated in parallel

� Bank stalls on actual conflicts

� Instruction cache

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #40

OnDemand Chili

� 4-way VLIW architecture

� 64 32-bit general purpose register file

� Instruction Set Architecture

� Full set of Micro-SIMD instructions

� Distinctive predication model

� No floating point support

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #41

OnDemand Chili (2)

� SVENm - SoC

� 2 Chili v1.0 cores

� ARM control processor, running Linux

� Applications

� Mobile multimedia processing

� Focus on video decoding

� H264, MPEG, VC-1, etc.

� Developed in Austria

� Built in China though

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #43

SVENm � Board

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #44

SVENm - Area

SVENm postlayout active area breakdown

i2s_trans_top

0%

svm_ddr_controller

8%

i2s_rec_top

0%

svm_axi_local_sram

3%

svm_mmi_top

0%

svm_doorbell_top

0%

svm_tam_top

0%

mbus_top

3%

sd_master

2%
sd_slave

1%

dcc_top

4%

other

5%

chili_0

25%chili_1

24%

arm926

18%

padring

7%

dcc_top

i2s_rec_top

i2s_trans_top

mbus_top

sd_master

sd_slave

svm_axi_local_sram

svm_ddr_controller_top

svm_mmi_top

svm_doorbell_top

svm_tam_top

chili_0

chili_1

arm926

padring

other

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #45

Chili Core Overview

CHILI Core

Scratch Pad

IF

DMS IF

Fetch

Unit
ICACHE

Local

Arbitration

DRAM

3232

MasterMaster

32 32

Scratch

Pad

RAM

Control

Slave

Slave

6432 64

C lock CHILI

Debug &

Execution

ControlReset

DMA

Controller

C

o

n

t

r

o

l

Core

RAM

Control

HALT

32 32

DMA Control

CHILI T op Level

GPIO

64

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #46

Chili - Pipeline

� 4 identical pipelines in parallel

� 11 stages

� Fetch/Expand/Decode

� Forward/Execute/Memory access

� Writeback

� Limited hazard detection and stalling

� Typical latency of 1 cycle

� Multiplication 3 cycles

� Loads up to 40 cycles!

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #47

Chili - ISA

� Special instructions

� Clip integer value to upper/lower bound

� Align and round, for fractional data types

� Population count, leading 0s, leading 1s, etc.

� Sum of absolute differences (SAD)

� Multiply accumulate (MAC)

� Full 2x16-bit Micro-SIMD

� Powerful permute instructions

� No division

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #48

Chili � Predication

� Full predication

� Not all operations can be predicated

� Unfortunate: loads/stores can not be predicated

� Requires two operations

� Test and predicated operation execute in parallel

� Saves extra cycles

� May increase code size

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #49

Chili � Branches

� May only reside in the first slot

� 5 delay slots

� Up to 23 operations are execute after the branch

� May be predicated

� No unbundling possible

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #50

Chili � Encoding

� 32-bit syllables

� Operations require 1-2 syllables

� Variable-length bundles

� Neither vertical nor horizontal NOPs

� Always encodes 4 operations

� Requires 16-32 bytes

� May cross cache boundaries

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #51

Chili � Memory

� Several memories

� Slow, shared DDR RAM

� Faster, shared SRAM

� Fast, local scratchpad memory

� Issue up to 4 memory operations

� Accesses executed out-of-order

� Interleaved memory banks

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #52

Chili - Floorplan

Fetch

Execution Units

DMS Core Interface

Forwarding

Register File

Comparators

DMS Bus Interface

Decode

Memory Subsystem (DMS)

Multiplexer

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #53

ST 2xx

� Joint development by HP and STMicro.

� Based on the HP-LX research project

� 4-way VLIW architecture

� 64 32-bit general purpose register file

� Instruction set architecture

� Dismissible loads

� Fractional arithmetic

� Partial predication (select)

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #54

ST231 - Applications

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #55

ST231 - Pipeline

� No details available

� Not completely symmetric

� 4 integer execution units

� 2 multiply units

� 1 load/store, branch unit

� Hazard detection with stalling

� Typical latency of 1 cycle

� Loads and multiplications take 3 cycles

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #56

ST231 - ISA

� Special instructions

� Min/max

� Count leading 0s

� Multiplies for fractional data types

� Division step

� Partial predication

� Dismissible loads

� Prefetching to dedicated buffer

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #57

ST231 - Branches

� May only reside in the first syllable

� Two-step branches

� 8 branch registers

� 2 bundle distance between condition and branch

� No delay slot

� All branches incur 1 stall cycle

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #58

ST231 - Encoding

� Bundles of up to 4 syllables

� Distributed encoding

� Positional dispatch

� 32 bit syllables, 1 stop bit

� Immediates

� 9-bit short immediate

� 9+23-bit extended immediates

� Restrictions for

� Branches, multiplies, extended immediates

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #59

ST231 - Memory

� Issue one single access per cycle

� Caches

� 32kb instruction cache

� 32kb lockable data cache (8kb-24kb local RAM)

� 256 byte prefetch buffer

� Streaming data interface (SDI)

� Fast streaming I/O

� Does not pollute caches

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #60

ST231 � Block Diagram

04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #61

Outlook

� Overview of traditional compilers

� Introduction to ILP aware compilation

� Profiling techniques

� Phase ordering problems

