

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #1

VU2 185.324

Compilation Techniques for VLIW Architectures

Dietmar Ebner ebner@complang.tuwien.ac.at

Florian Brandner brandner@complang.tuwien.ac.at

http://complang.tuwien.ac.at/cd/vliw

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #2

Last Lecture

� Product life cycle

� Product volume (�long tail� vs. �head�)

� Constraints

� Performance/power/size

� Production costs/Development costs

� Market/Time to market

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #3

Last Lecture (2)

� Characterization

� Main purpose is not computing

� Applications (consumer, comm., automotive)

� Processor architecture

� Work load

� Compatibility

� Custom solutions (ASIP, DSP, SoC)

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #4

In Today's Lecture

� VLIW principles

� ILP

� VLIW vs. Superscalar

� Instruction Set

� Execution model

� Extensions

� Instruction Encoding

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #5

VLIW Principles

Expose ILP in the architecture design.

If you can do it in software, do it in software!

Clean successor of RISC.

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #6

Forms of Parallelism

� Pipelining

� Data parallelism (SIMD, Vector processing)

� Instruction level parallelism (ILP)

� Thread level parallelism (TLP)

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #7

Sequential Execution

� Process one instruction at a time

� No parallelism at all

ld r1, (a)

add r4, r2, r3

add r5, r1, r4

Time

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #8

Pipelined Execution

� Divide instructions into stages

� Parallel processing of independent stages

Time

ld r1, (a)

add r4, r2, r3

add r5, r1, r4

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #9

Parallel Execution

� Group independent operations

� Parallel processing of operations

Time

ld r1, (a)

add r4, r2, r3

add r5, r1, r4

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #10

VLIW vs. Superscalar

static int
foo(int a1, a2)
{

....

VLIW-Instructions

RISC-Instructions

Scheduling

Runtime

Superscalar
hardware

ILP aware
compiler

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #11

Example: MIPS 74k

void vec_sum(int *a, int *b, int*c, int n) {

 for (int i = 0; i < n; i++)

 (*c++) = (*a++) + (*b++);

}

(0) .BB1_2:

(1) lw $10,0($4)

(2) addiu $3,$3,1

(3) lw $9,0($5)

(4) addiu $4,$4,4

(5) addiu $5,$5,4

(6) addu $9,$9,$10

(7) sw $9,0($6)

(8) bne $3,$7,.BB1_2

(9) addiu $6,$6,4

IEU/AGENIEU

(2) addiu $3,$3,1 (1) lw $10,0($4)

(4) addiu $4,$4,4 (3) lw $9,0($5)

(5) addiu $5,$5,4 (6) addu $9,$9,$10

(9) addiu $6,$6,4 (7) sw $9,0($6)

IEU ... Integer execution unit
IEU/AGEN ... Shared integer unit and address generator

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #12

Example: ST231

� Compiler generates 2 loops

� first captures initial
(n & 3) iterations

� second is 4 times
unrolled

(0) L?__0_9:

(1) ldw $r9= 0[$r17]

(2) add $r16 = $r16,4

(3) add $r17 = $r17,4

(4) add $r20 = $r20,-1;;

(5) ldw $r10 = -4[$r16]

(6) convib $b1 = $r20

(7) add $r18 = $r18,4

(8) add $r15 = $r15,1;;

(9) add $r9 = $r9,$r10;;

(10) stw -4[$r18] = $r9

(11) br $b1, L?__0_9;;

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #13

Architecture Classification

VLIW

In the compiler

Sequential
Architectures

Dependence
Architectures

Independence
Architectures

Superscalar Dataflow

Dependence
information in
the program

Implicit via
register names

Exact description of
all dependences

Explicit description of
some independent

operations
How are

dependent
operations

typically exposed

By the hardware's
control unit

By the compiler
(and they are embedded

into the program)

By the compiler
(and they are implicit in

the program)

How are
independent
operations

typically exposed

By the hardware's
control unit

By the hardware's
control unit

By the compiler
(and they are implicit in

the program)

Where is the final
opeartion
scheduling

typically done

In the hardware's
control unit

In the hardware's
control unit

Role of the
compiler

Rearrange code to make
parallelism more evident

and accessible to the
hardware

Replace some of the
analysis hardware found

in superscalars

Replaces virtually all
hardware dedicated to
parallelism exposure

and scheduling

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #14

VLIW vs. Superscalar

SuperscalarSuperscalar
� Scheduling is done by hardware

� Sequential stream of scalar
operations

� Allows for In-order and out-of-order
execution

� Number of issued instructions is
dynamically determined by a
hardware dispatch unit

� Microarchitecture technique

VLIWVLIW
� Scheduling is done by Software

� Sequential stream of parallel
operations

� Only allows for in-order issue

� Number of issued instructions is
statically determined by the
compiler

� Architecture technique

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #15

The Role of the Compiler

� Compilers are important

� Especially for VLIW architectures

� Less for superscalar

� Extracting parallelism

� Instruction scheduling

� Predication

� Speculation

� Loop optimizations

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #16

Instruction Set

� Interface to the programmer/compiler

� Explicitly hide or expose architectural features

� Instruction encoding

� Bundles/groups of operations

� Legal combinations

� Binary compatibility

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #17

Architectural Features

� Execution model

� Operation latencies

� Computational resources

� Semantics of parallel execution

� Exceptions/Interrupts

� Extensions

� Predication

� Speculation

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #18

Execution Model

� Many details are exposed to the
programmer/compiler

� Which operations are executed in parallel

� How an operation is executed

� When an operation is finished

� Handling of hazards

� Complicates compilers

� Simplifies hardware

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #19

Semantics

� What is the value of r1?

� Is this valid?

mov $r1 = 1

mov $r2 = 2;;

mov $r2 = 3

mov $r1 = $r2;;

{

 mov r1, 0

 if (r2 == 3) mov r1, 1

}

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #20

Exceptions/Interrupts

� Exceptions may be raised in parallel

� Precise vs. imprecise exceptions

� Which instruction(s) caused the exception(s)

� In which order are they processed

� Restarting execution

� Which operations need to be reexecuted

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #21

Predication

� Conditionally nullify the effect of operations

� Full predication

� All (almost all) operations can be predicated

� Partial predication

� Only a few instructions can be predicated

� Conditional move (cmov)

� Select

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #22

Speculation

� Speculatively execute operations

� Even if the calculation is useless

� Even if the calculation may be incorrect

� May require compensation

� Suppress exceptions

� Undo incorrect calculations

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #23

Instruction Encoding

� Bridges between software and hardware

� Programs are transformed to binary code

� Hardware executes programs based on binary code

� Strong connection between architectural style
and encoding

� Encoding for RISC machines

� CISC encoding techniques

� Special techniques for VLIW

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #24

RISC Encoding

� RISC advocates simplicity and regularity

� Encoding uses a fixed length

� Few encoding formats

� Reserved space for future extensions

� Simple decoding hardware

� Some code size overhead

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #25

Example: MIPS

� fixed width of 32 bit

� 3 encoding formats:

R-Format:

op address/immediatertrs

6 5555 6op shamtrdrtrs funct

op target address

I-Format:

J-Format:

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #26

CISC Encoding

� Variable length

� Frequent instructions get short encoding

� Infrequent instructions get longer encodings

� Easier to add extensions

� Complex structure

� Encode length of the instruction

� Many instructions and instruction variants

� More complex hardware

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #27

Example: x86-32

� 7 addressing modes

� 5 different prefixes

� 4 displacement variants

� 4 immediate variants

� 1 � 17 bytes in size

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #28

VLIW Encoding

� Inspired by RISC encoding

� Decompose a VLIW into fixed sized junks

� Fixed encoding width for operations

� Few encoding formats for operations

� Variable encoding width for instructions

� Simple encoding scheme for bundles

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #29

Terminology

� Instruction/group

� Independent operations that can be executed in
parallel

� Bundle

� Group of operations that are encoded in the same
VLIW

� Not necessarily independent

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #30

Terminology (2)

� Operation

� Basic operation of the execution pipeline

� Similar to RISC operations/instructions

� Syllable

� Basic unit for the instruction encoding

� Fixed bit width

� Typically encodes one single operation

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #31

Example: Intel Itanium

� 41 bit syllable

� 41 bit operations (exactly one syllable)

� Bundle

� 3 syllables/operations

� 5 bits template and stop bit

� Instruction/group

� Several bundles

� Variable length

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #32

VLIW Encoding Schemes

� Uncompressed Encoding

� Fixed-overhead Encoding

� Distributed Encoding

� Template-based Encoding

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #33

Uncompressed Encoding

� Explicitly encode all operations

� Including explicit NOPs if no useful operations could
be found

� Allows for simple decoding

� Very bad code size

� Negative effect on instruction cache

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #34

Saving NOPs

� Horizontal NOPs

� Replace consecutive NOPs in a bundle

� Vertical NOPs

� Replace consecutive bundles of NOPs

� Dynamically expanded during decoding

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #35

Fixed-overhead Encoding

� Variable length bundles

� Based on horizontal NOPs

� Prepend a header to each bundle

� Count of operations

� Map operations to functional units

� Adopted by early architectures

� e.g. Multiflow

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #36

Fixed-overhead Encoding (2)

op02 head1 op10 op11 op12head0 op13op06op05

op05 op06op02

Bundles in memory

Expanded:

op11op10 op13op12

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #37

Distributed Encoding

� Header information distributed

� Either using a stop-bit or parallel-bit

� Encoded with operations

� Reduces code size

� More complex decoding

� Requires a search for the stop-bit

� Adopted by ST231

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #38

Distributed Encoding (2)

op02

op05 op06op02

Bundles in memory

Expanded:

op11op10 op13op12

0 op050 op061 op100 op110 op120 op131

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #39

Template-based Encoding

� Similar to fixed-overhead encoding

� Limits number of combinations

� Space efficient

� Low hardware overhead

� Adds complexity to compiler

� Adopted by Intel Itanium

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #40

op20

Template-based Encoding (2)

op02 tem1 op10 op11 op12tem0 op13op06op05

op05 op06op02

Bundles in memory

Expanded:

op11op10 op13op12

tem2

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #41

Dispatching

� Assign operations to computational units

� Explicitly encoded in the simple scheme

� 1:1 mapping of operations and functional units

� The mapping is lost for the other schemes

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #42

Dispatch (2)

� Unit identifiers within operations

� Explicit mapping

� Fixed-overhead encoding

� Within templates

� Positional encoding

� Based on syllable ordering within instructions

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #43

Encoding Tricks

� Embedding large immediates

� Special immediate operation

� Used by some parallel operation

� Adopted by ST231

...0 addi0 imm1 ...0 ...0 ...0 ...1

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #44

Encoding Tricks (2)

� Modifying the effect of parallel operations

� Special test/modifier operations

� Adopted by Chili

...0 mod0 op1 ...0 ...0 ...0 ...1

03/28/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #45

Outlook

� Historical Perspective

� Architectural Structures

� Microarchitectural Design Issues

� Clustered Architectures

� Examples: Multiflow, Chili, ST231

