VU2 185.324

Compilation Techniques for VLIW Architectures

Dietmar Ebner ebner@complang.tuwien.ac.at
Florian Brandner brandner@ecomplang.tuwien.ac.at

http://complang.tuwien.ac.at/cd/vliw

Last Lecture (2)

* Characterization
- Main purpose is not computing
- Applications (consumer, comm., automotive)
- Processor architecture
- Work load
* Compatibility
e Custom solutions (ASIP, DSP, SoC)

Last Lecture

* Product life cycle
- Product volume (“long tail” vs. “head”)
» Constraints
- Performance/powet/size
- Production costs/Development costs
- Market/Time to market

* VLIW principles

- ILP

- VLIW vs. Superscalar
* Instruction Set

- Execution model

- Extensions
* Instruction Encoding

VLIW Principles Forms of Parallelism

Expose ILP in the architecture design.
* Pipelining

 Data parallelism (SIMD, Vector processing)
If you can do it in software, do it in software! » Instruction level parallelism (ILP)
* Thread level parallelism (TLP)
Clean successor of RISC.

Sequential Execution Pipelined Execution
* Process one instruction at a time * Divide instructions into stages
* No parallelism at all « Parallel processing of independent stages

Idr1, (a) Id r1, (a)
addr4,r2,r3 addr4,r2,r3
addr5, r1, r4 addr5,r1,r4

Time Time

Parallel Execution VLIW vs. Superscalar

RISC-Instructions

* Group independent operations -
. . Superscalar
« Parallel processing of operations 7 ! hardware

static int
foo(int a1, a2)

Idr1, (a) -
addr4,r2,r3 VLIW-Instructions
addr5, r1, r4 ILP aware

compiler

=

Runtime

Time

Example: MIPS 74k Example: ST231

void vec_sum(int *a, int *b, int*c, int n) {

* Compiler generates 2 loops

for (int i = 0; 1 < n; i++)
(*ct4) = (*at+) + (*bt++); - first captures initial
) . ! (0) L?2_0.9:
(n & 3) iterations (1) 1dw $r9= 0[$r17)

IEU IEU/AGEN . . (2) add $r16 = $ri6,4
(0) .BB1_2: - second is 4 times (3) add $rl7 = $ri7,4
(1) 1w $10,0($4) = “1i;
(2) agdfu $3,:3,1 (2) addiu $3,$3,1 | (1) lw $10,0($4) unrolled :é; igi :ig = ?Zz[gélé]”
(3) 1w $9,0($5) (4) addiu $4,84,4 | (3) 1w $9,0($5) (6) convib $bl = $r20
(4) addiu $4,$4,4 (5) addiu $5,$5,4 | (6) addu $9,8$9,510 (7) add $r18 = $ris, 4
(5) addiu $5,8$5,4 (9) addiu $6,$6,4 | (7) sw $9,0($6) (8) add $ri5 = $ri15,1;;
(6) addu $9,$9,$10 (9) add $r9 = $r9,$ri0;;
(7) sw $9,0($6) (10) stw -4[$r18] = $r
(8) bne $3,$7, .BB1_2 (11) br $bl, L?_0_9;;

(9) addiu $6,$6,4

IEU ... Integer execution unit
IEUWAGEN ... Shared integer unit and address generator

Architecture Classification

VLIW vs. Superscalar

Sequential D
Architectures Architectures Architectures
Superscalar Dataflow VLIW
Dependence Implicit via Exact description of | EXPlicit description of
information in " some independent
register names all dependences P
the program operations
How are " .
dependent By the hardware's By the compiler By the compiler
‘ 2 (and they are embedded| (and they are implicit in
operations control unit into the program) FeTaaarars)
typically exposed prog e
How are By the compiler
independent By the hardware's By the hardware's | tyhe o im" e
operations control unit control unit they - ran‘:)
typically exposed prog
Where is the final
opeartion In the hardware's In the hardware's NP
scheduling control unit control unit P

typically done

Replaces virtually all
hardware dedicated to
parallelism exposure

and i

Rearrange code to make
Role of the | parallelism more evident
compiler and accessible to the

hardware

Replace some of the
analysis hardware found
in superscalars

The Role of the Compiler

* Compilers are important
- Especially for VLIW architectures
- Less for superscalar
» Extracting parallelism
- Instruction scheduling
- Predication
- Speculation
- Loop optimizations

Superscalar
Scheduling is done by hardware

Sequential stream of scalar
operations

Allows for In-order and out-of-order|
execution

Number of issued instructions is
dynamically determined by a
hardware dispatch unit

Microarchitecture technique

VLIW

Scheduling is done by Software

Sequential stream of parallel
operations

Only allows for in-order issue

Number of issued instructions is
statically determined by the
compiler

Architecture technique

Instruction Set

Interface to the programmer/compiler

Explicitly hide or expose architectural features

Instruction encoding

- Bundles/groups of operations

- Legal combinations
Binary compatibility

Architectural Features Execution Model

* Many details are exposed to the

e Execution model .
programmetr/compiler

- Operation latencies

. - Which operations are executed in parallel
- Computational resources

- How an operation is executed
- When an operation is finished
- Handling of hazards

- Semantics of parallel execution
* Exceptions/Interrupts
» Extensions

- Predication * Complicates compilers
- Speculation * Simplifies hardware
Semantics Exceptions/Interrupts

¢ What is the value of r1?

* Exceptions may be raised in parallel

mov $rl = 1
mov $r2 = 2;;
mov $r2 = 3 - Precise vs. imprecise exceptions
mov $rl = $r2;
- Which instruction(s) caused the exception(s)
« |s this valid? - In which order are they processed

{ * Restarting execution

mov rl, 0
if (r2 == 3) mov rl, 1
}

- Which operations need to be reexecuted

Predication Speculation

 Conditionally nullify the effect of operations))
L * Speculatively execute operations
¢ Full predication) o
- Even if the calculation is useless

- Even if the calculation may be incorrect
* May require compensation

- All (almost all) operations can be predicated
* Partial predication
- Only a few instructions can be predicated

- Suppress exceptions
- Conditional move (cmov)

- Undo incorrect calculations
- Select

Instruction Encoding RISC Encoding

* Bri ween ware and hardware L .
dges between software and ha * RISC advocates simplicity and regularity
- Programs are transformed to binary code

- Hardware executes programs based on binary code

 Strong connection between architectural style
and encoding

- Encoding uses a fixed length
- Few encoding formats
- Reserved space for future extensions

- Encoding for RISC machines
- CISC encoding techniques

* Simple decoding hardware

) . * Some code size overhead
- Special techniques for VLIW

Example: MIPS CISC Encoding

* fixed width of 32 bit
3 encoding formats:

* Variable length
- Frequent instructions get short encoding

R-Format: - Infrequent instructions get longer encodings
o | s [n [@ | shm [fna | - Easier to add extensions
I-Format: * Complex structure
o [s [n] addressfimmediate | - Encode length of the instruction
J-Format: - Many instructions and instruction variants
‘ op target address ‘ - More complex hardware
Example: x86-32 VLIW Encoding

* 7 addressing modes
« 5 different prefixes

* 4 displacement variants
* 4 immediate variants

* 1 —17 bytes in size

* Inspired by RISC encoding
» Decompose a VLIW into fixed sized junks
- Fixed encoding width for operations
- Few encoding formats for operations
- Variable encoding width for instructions
1\‘ « Simple encoding scheme for bundles

Terminology

Instruction/group

- Independent operations that can be executed in
parallel

* Bundle

- Group of operations that are encoded in the same
VLIW

- Not necessarily independent

Example: Intel Itanium

41 bit syllable

41 bit operations (exactly one syllable)
Bundle

- 3 syllables/operations

- 5 bits template and stop bit
Instruction/group

- Several bundles

- Variable length

Terminology (2)

* Operation
- Basic operation of the execution pipeline
- Similar to RISC operations/instructions
* Syllable
- Basic unit for the instruction encoding
- Fixed bit width
- Typically encodes one single operation

VLIW Encoding Schemes

* Uncompressed Encoding

* Fixed-overhead Encoding
* Distributed Encoding

* Template-based Encoding

Uncompressed Encoding Saving NOPs

* Explicitly encode all operations * Horizontal NOPs
- Including explicit NOPs if no useful operations could - Replace consecutive NOPs in a bundle
be found * Vertical NOPs

* Allows for simple decoding - Replace consecutive bundles of NOPs

* Very bad code size Dynamically expanded during decoding

- Negative effect on instruction cache

= . = Ee.

Fixed-overhead Encoding Fixed-overhead Encoding (2)

Bundles in memory
* Variable length bundles
- Based on horizontal NOPs
* Prepend a header to each bundle Soanded.
- Count of operations
- Map operations to functional units
* Adopted by early architectures

- e.g. Multiflow

Distributed Encoding

* Header information distributed
- Either using a stop-bit or parallel-bit
- Encoded with operations

* Reduces code size
* More complex decoding

- Requires a search for the stop-bit
* Adopted by ST231

Template-based Encoding

* Similar to fixed-overhead encoding

- Limits number of combinations

» Space efficient

* Low hardware overhead

* Adds complexity to compiler
* Adopted by Intel ltanium

Distributed Encoding (2)

Bundles in memory
|0‘op02‘0‘op05‘1 ‘op06|0‘0p1 O‘O‘opﬂ ‘O‘om 2‘1 ‘op13|

Expanded:

&‘
oo e

Template-based Encoding (2)

Bundles in memory

EEraEs

Expanded:

Dispatching Dispatch (2)

* Unit identifiers within operations

* Assign operations to computational units « Explicit mapping
 Explicitly encoded in the simple scheme - Fixed-overhead encoding
- 1:1 mapping of operations and functional units - Within templates

* The mapping is lost for the other schemes
* Positional encoding

- Based on syllable ordering within instructions

Encoding Tricks Encoding Tricks (2)
* Embedding large immediates * Modifying the effect of parallel operations
- Special immediate operation - Special test/modifier operations

- Used by some parallel operation

o sl - § B 1| o dreles - - H 1|

* Adopted by ST231 - Adopted by Chil

Outlook

Historical Perspective
Architectural Structures
Microarchitectural Design Issues
Clustered Architectures
Examples: Multiflow, Chili, ST231

