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The gap between processor and main memory performance increases every year. In order to over-
come this problem, cache memories are widely used. However, they are only effective when pro-
grams exhibit sufficient data locality. Compile-time program transformations can significantly im-
prove the performance of the cache. To apply most of these transformations, the compiler requires
a precise knowledge of the locality of the different sections of the code, both before and after being
transformed.

Cache miss equations (CMEs) allow us to obtain an analytical and precise description of the
cache memory behavior for loop-oriented codes. Unfortunately, a direct solution of the CMEs is
computationally intractable due to its NP-complete nature.

This article proposes a fast and accurate approach to estimate the solution of the CMEs. We
use sampling techniques to approximate the absolute miss ratio of each reference by analyzing
a small subset of the iteration space. The size of the subset, and therefore the analysis time, is
determined by the accuracy selected by the user. In order to reduce the complexity of the algorithm
to solve CMEs, effective mathematical techniques have been developed to analyze the subset of the
iteration space that is being considered. These techniques exploit some properties of the particular
polyhedra represented by CMEs.

Categories and Subject Descriptors: C.1.0 [Processor Architectures]: General; C.4 [Perfor-
mance of Systems]: Measurement techniques; D.3.4 [Programming Languages]: Processors—
Compilers optimization

General Terms: Design, Performance

Additional Key Words and Phrases: Cache memories, optimization, sampling

1. INTRODUCTION

Memory latency is critical for the performance of current computers, which
have the memory organized hierarchically in such a way that the lower levels
are smaller and faster. The lowermost level typically has a very short latency
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(e.g., one to two cycles) but the latency of the upper levels may be a few orders
of magnitude larger (e.g., main memory latency may be around 100 cycles).
Various hardware and software approaches have been proposed lately for in-
creasing the effectiveness of memory hierarchy. Software-controlled prefetch-
ing [Mowry et al. 1992] hides the memory latency by overlapping a memory
access with computation and other accesses. Another useful optimization is ap-
plying loop transformations such as tiling [Carr and Kennedy 1992; Coleman
and McKinley 1995; Lam et al. 1991; Wolf and Lam 1991] and data layout trans-
formations [Chatterjee et al. 1999; Kandemir et al. 1999; Rivera and Tseng
1998; Temam et al. 1993]. In all cases, a fast and accurate assessment of a pro-
gram’s cache behavior at compile time is needed to make an appropriate choice
of parameter values.

Data cache behavior is very hard to predict. Simulators are used to describe it
accurately. However, they are very slow and do not provide too much insight into
the causes of the misses. Thus, current approaches are based on simple models
(heuristics) for estimating locality [Carr et al. 1994; Coleman and McKinley
1995; Lam et al. 1991; Rivera and Tseng 1998, 1999]. Such models provide very
rough performance estimates, and, in practice, are too simplistic to statically
select the best optimizations.

Cache miss equations (CMEs) [Ghosh et al. 1999] are an analytical method
that describes the cache behavior accurately. CMEs allows studying each ref-
erence in a particular iteration point independently of all other memory refer-
ences. Deciding whether a reference causes a miss or a hit for a given iteration
point is equivalent to deciding whether it belongs to the polyhedra defined
by the CMEs. Unfortunately, even though the computation cost of generating
CMEs is a linear function of the number of references, solving them is an NP-
complete problem [Ghosh 1999], and thus trying to study a whole program may
be infeasible.1

This article presents an efficient method for analyzing cache memory behav-
ior. It consists of a set of techniques that, built on the top of the CMEs, make it
feasible to use them as a cost model for implementing optimizations. Although
CMEs are limited to perfect nested loops due to the lack of reuse analysis, our
techniques can be applied to any kind of CME-polyhedra, independently of the
kind of loop nest that is being analyzed.

Central to our approach are polyhedral analysis and the application of sam-
pling techniques, which allow the cache analysis to be both fast and accurate.
The contributions of this work are summarized below:

—Formulation of CMEs. We develop a new formulation of the CMEs that de-
scribes in a low level the relationship between iteration space, memory ref-
erences, and cache parameters. This new formulation allows us to develop
specific techniques to deal with the CMEs.

—CMEs Emptiness analysis of CMEs. We derive some algorithms to reduce the
number of polyhedra to be considered in our analysis. Since those polyhedra

1It is equivalent to deciding whether a solution exists to a system of equalities and inequalities,
which is NP-complete [Banerjee 1988].
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that do not contain integer points inside are useless, some techniques have
been developed in order to identify them.

—Sampling. We estimate the result of the CMEs by means of sampling tech-
niques. This approach represents a compromise between expensive simula-
tions and potentially imprecise heuristics; it is very fast but the result is
given as a confidence interval instead of a single value, which in practice is
enough for many purposes. The user can set both the width of the interval
and the confidence level.

—Iteration points analysis. We use mathematical techniques to analyze the
behavior of the different iteration points efficiently. By exploiting some in-
trinsic properties of the particular types of polyhedra generated by CMEs,
we reduce the complexity of the algorithm that checks whether an iteration
point results in a miss, which translates to very high speedups compared to
standard algorithms.

—Prototyping implementation. We have implemented our system in the Polaris
Compiler. We used the Ictineo library in order to obtain low-level information.
Our prototype obtains the reuse vectors, generates the CMEs, detects those
that are empty, and solves them applying sampling.

—Experimental results. We present results for a set of loop fragments drawn
from different SPECfp95 programs. Our experimental results show that the
proposed method can compute their miss ratios in a few seconds. Moreover,
the analysis time is generally several orders of magnitude faster than simu-
lation on a typical workstation. We also show that the results obtained using
our model are close to those from real execution on a Pentium-4 machine.
This opens the possibility of including this analysis framework in production
compilers to support and guide many optimizations.

The rest of the paper is organized as follows. Section 2 provides the mathe-
matical terminology used in this work. Section 3 introduces our program model,
defines the cache architecture used, and outlines our contributions to have a
fast implementation of the CMEs. Next, we introduce our method in detail.
Section 4 describes, for each equation, its mathematical formulation, presents
the techniques used to remove empty polyhedra, and explains how the itera-
tion points are analyzed. Then we describe our sampling technique in Section 5.
Section 6 shows the accuracy and speed of our method. Section 7 presents a re-
view of the related work and discusses some applications of our approach. We
summarize the conclusions in Section 8.

2. BACKGROUND

This section reviews the definitions of some basic mathematical concepts.

2.1 Polyhedral Definitions

We give some basic definitions on polyhedra in order to introduce the concepts
that are used in further sections.

Definition 2.1. Given the points x1, . . . , xn and scalars λ1, . . . , λn, we define
a convex combination of x1, . . . , xn as

∑n
i=1 λixi where

∑n
i=1 λi = 1 and all λi ≥ 0.
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Definition 2.2. A vertex of a set K is any point in K which cannot be ex-
pressed as a convex combination of any other distinct points in K .

Definition 2.3. A set K is convex ⇐⇒ every convex combination of any two
points in K is also a point in K .

Definition 2.4. A convex polyhedron P is the intersection of a finite family
of closed linear half-spaces which has the form {
x|
a
x ≥ c} where a is a nonzero
row vector and c is a scalar constant.

We only consider bounded convex polyhedra because polyhedra defined by
CMEs are convex and always bounded. Since the points of a convex bounded
polyhedron can be expressed as convex combinations of their vertices, a poly-
hedron is fully described by its vertices. Therefore, a polyhedron can be given
by either a system of linear constraints or a set of vertices [Wilde 1993]. Both
representations will be considered in the development of our techniques.

Definition 2.5. We define the real domain of a variable x in a polyhedron P
as the range of real values it takes inside P.

Definition 2.6. We define the integer domain of a variable x in a polyhedron
P as the range of integer values it takes inside P.

2.2 Statistical Overview

This subsection presents the basic statistical concepts that will be used in this
work. We first introduce random variables, which are used to model the number
of misses. Then, we explain how we can estimate their behavior.

2.2.1 Discrete Random Variables. Random variables are functions defined
over the probability space [DeGroot 1998].

Let S = (�, A, P ) be a probability space (where � is the sample space, A ⊂
℘(�),2 and P is the probability function). Let X : � → R be a real random
variable (RV) defined over S. X is said to be a discrete random variable when
the image set is finite or numerable. There are several RVs that have been
deeply studied due to their importance and the number of usual phenomena
that they describe. Now we review two of them that are used in our model.

Let X be a real discrete random variable:

—We say that it follows a Bernoulli distribution (X ∼ B(p)) when the image
set has only two elements. Bernoulli RVs describe the random experience in
which only two things can happen: success or miss. We define T ⊂ � as the
set of results obtained that we consider as “success.” Thus:

X : � −→ R,

ω �−→
{

0 ⇐⇒ w /∈ T ,
1 ⇐⇒ w ∈ T .

We note P [X = 0] = p as the probability that the RV X is 0. Therefore, the
probability P [X = 1] is q = 1 − p, since p + q must be 1.

2℘(X ) is the set of all the possible subsets of X .
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—Binomial distribution (represented by X ∼ Bin(n, p)) models phenomena
where n different and independent experiments modeled by Bernoulli RVs
take place. This RV represents the number of successes.
Once T ⊂ � is defined, we obtain

X : �n −→ R,
(ω1, . . . , ωn) �−→ card{i|ωi ∈ T }.

P [X = k], k = 0 · · · n represents the probability that k experiments out of n
succeed. Thus,

P [X = k] =
(

n
k

)
pk(1 − p)(n−k).

2.2.2 Parameters Estimation. Sometimes it is desired to study a certain
property of a large set of elements (also called population), but it is impossible
due to its size. In these cases it is interesting to reduce the problem size. One
way to overcome this problem is to analyze a subset and infer to the population
the results obtained for the sample. In our case, we model the behavior of
a reference using a binomial-RV, where the different experiments consist in
taking an iteration point and checking whether it results in a miss.

Let X ∼ Bin(n, p), and assume that p (the probability of success) is un-
known. The way to obtain an approximation of p is to evaluate the behavior of
a subset of the population (called sample), which yields the empiric values of
the parameters that describe the sample-RV, and to infer these values to the
population-RV.

Let Q ⊂ �n be the sample, N = card(�n), and k = card(Q). The value p̂ is
defined as

p̂ = successes ∈ Q
k

and Y ∼ Bin(k, p̂) is the RV that describes the behavior of the sample.
If k is large enough, the sample does not contain repeated elements, and the

value of the parameter p is not close either to 0 or 1, we can approximate p̂ by
means of the well-known normal or Gauss distribution:3

p̂ � N
(

p,
√

pq
k

)
.

Thus,
( p̂ − p)√

pq
k

∼ N(0, 1),

which allows estimating Y by means of a normal-RV. We summarize and for-
malize the conditions in the following list:

(1) The sample does not contain repeated elements.
(2) k

N ≤ 0.05.
(3) p̂k ≥ 5 and q̂k ≥ 5.
(4) k ≥ 30.

3Z ∼ N(0, 1) is the normalized Gauss distribution; zα = P [−α < Z < α].
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Fig. 1. A running example: matrix multiply algorithm.

The approximation of the value of p is calculated in terms of confidence in-
tervals. The meaning of the confidence (c%) is such that if we generate many
samples and compute p̂, p̂ lies in the calculated interval in c% of the cases (e.g.,
if the percentage is 95%, it represents that, for 95 out of every 100 different
samples, p̂ will belong to the confidence interval).

Once a confidence α = 1 − c is chosen, a confidence interval for the value of
p is given by the following expression:

p ∈ p̂ ± z α
2

√
p̂q̂
k

.

3. TERMINOLOGY AND OVERVIEW

3.1 Program Model

The current model applies to numerical codes consisting of perfectly nested
loops. The usual data accesses in these codes are array accesses.4 In this article,
all programs are in FORTRAN 77. Thus, all arrays are stored in column major.

Definition 3.1 (Iteration point). Let us consider an n-dimensional nested
loop with loop indexes I1, . . . , In. An execution of the loop when I1 = i1, . . . , In =
in is identified by the vector i = (i1 , . . . , in ). Since each of these vectors repre-
sents the coordinates of a point in Zn, we call them iteration points.

Definition 3.2. The iteration space of an n-dimensional loop nest is the poly-
tope bounded by the bounds of the n enclosing loops.

Let us introduce a running example we will use through this article. For
illustration purposes, we consider the matrix multiply algorithm as shown in
Figure 1. It has a nested loop of depth 3. Each loop iterates N times, with the
lower bound equal to 1 and the upper bound equal to N. Therefore, the iteration
space of this nested loop is defined by {(i, j , k) | 1 ≤ i ≤ N , 1 ≤ j ≤ N , 1 ≤ k ≤
N }. Figure 2 illustrates the shape of the iteration space when N is 3.

Definition 3.3. A reference is a static read or write in the program. High-
lighted in Figure 1 we can see the four different references of our running
example.

4A scalar is represented either as register-allocated or as a one-dimensional (1-D) array.
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Fig. 2. Net representing the iteration space of Figure 1 when (N = 3).

Definition 3.4. A memory access is the execution of a reference at a particu-
lar iteration point of the loop nest enclosing the reference. For instance, b(1,1)
and b(1,3) are memory accesses of the reference b(i,j).

We assume some constraints that ensure that our analysis can be done in
the polyhedral model [Feautrier 1996]. Loop bounds and subscript expressions
are affine expressions of the enclosing loop nests. These constraints are not
very restrictive for static analytical models, since they are limited to static
control flows and memory accesses. Indeed, these constraints are assumed by
all different analytical models reviewed in Section 7.

In addition, our model analyzes cache behavior statically. Therefore, the base
addresses of all arrays and the sizes of all their dimensions must be known
statically.

3.2 Cache Model

We consider a uniprocessor with two levels of memory. The cache is virtually
indexed and an LRU replacement policy is used.

In a k-way set-associative cache, each cache set contains k different cache
lines. Cache size (C) defines the number of bytes a cache can hold, whereas the
line size (L) determines how many contiguous bytes are fetched from memory
when a cache miss occurs. Thus, C= N× L× k, where N denotes the number of
sets in the cache. Formally defined:

Definition 3.5. A memory line refers to a cache-line-sized block in main
memory.

Definition 3.6. A cache line refers to the actual cache block in which a mem-
ory line is mapped. In a set-associative cache, the set of cache lines a memory
line can map to is called a cache set.

Understanding reuse is essential to predict cache behavior, since a datum
will only be in the cache if its line was referenced sometime in the past. Reuse
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Table I. Reuse Vectors for References in Figure 1. R Stands for
READ, W for WRITE

Reusing reference Reused reference Reuse vector
Self-spatial (1, 0, 0)a(i, j) (R)

Self-temporal (0, 0, 1)
Self-spatial (1, 0, 0)b(i, k)

Self-temporal (0, 1, 0)
Self-spatial (0, 0, 1)c(k, j)

Self-temporal (1, 0, 0)
a(i, j) (R) Group temporal (0, 0, 0)

a(i, j) (W) Self-spatial (1, 0, 0)
Self-temporal (0, 0, 1)

happens whenever the same data item is referenced multiple times. Trying to
determine all iterations that use the same data is extremely expensive. Thus,
we use a concrete mathematical representation that describes the direction as
well as the distance of the reuse in a methodical way. The shape of iterations
that reuses the same data is represented by a reuse vector space [Wolf and Lam
1991]. We use the reuse vectors for a basis that represents such space.

Definition 3.7. If a reference R accesses the same memory line in itera-
tions 
i1 and 
i2, where 
i1 ≤ 
i2, we define the reuse vector 
r as 
r = 
i2 − 
i1.

Given a reference, we may observe four different kinds of reuse:

—Self-temporal. A self-temporal reuse takes place when a reference accesses
the same data element in different iterations of the loop.

—Self-spatial. A self-spatial reuse takes place when a reference accesses the
same memory line in different iterations of the loop.

—Group-temporal. A group-temporal reuse takes place when two different ref-
erences access the same data element in different iterations of the loop.

—Group-spatial. A group-spatial reuse takes place when two different refer-
ences access the same memory line in different iterations of the loop.

Whereas self-reuse (both spatial and temporal) and group-temporal reuse
are computed in an exact way, group-spatial reuse is only considered among
uniformly generated references, that is, references whose array subscripts differ
at most in the constant term [Gannon et al. 1988]. Table I lists all reuse vectors
for the references of our running example shown in Figure 1.

3.3 An Overview

CMEs [Ghosh et al. 1999] are an analysis framework that describes the behavior
of cache memory. Briefly, the general idea is to obtain for each memory reference
a set of constraints and equations that represents the cache misses. These
equations are defined over the iteration space.

In order to describe reuse among memory accesses, CMEs make use of the
well-known concept of reuse vectors [Wolf and Lam 1991]. To discover whether a
reuse translates to locality we need to know all the data brought to the cache be-
tween the two accesses and the particular cache architecture we are analyzing.
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CMEs set up a set of equations5 that describe the iteration points where
the reuse is not realized. For each reuse vector, two kinds of equations are
generated:

—Cold6 equations: Given a reference, they represent the first time a memory
line is touched. We may distinguish between spatial and temporal reuse:
—Temporal reuse: The reuse is not realized when the studied reference

reuses from an iteration point outside the iteration space (cold miss equa-
tions).

—Spatial reuse: The reuse does not hold when either the analyzed reference
reuses from data mapped to another cache line (cold miss bounds), or the
reference reuses data from an iteration point outside the iteration space
(cold miss equations).

—Replacement7 equations: Given a reference, replacement equations represent
the interferences with any other reference, including itself (self-conflicts).

Even though generating the equations is linear in the number of references,
solving them can be very time consuming (the appendix shows the existing
methods to derive information such as the number of misses as well as the
cause of these misses from the equations).

Our goal consists in obtaining the number of cache misses in a reasonable
time for any cache configuration. Therefore, we have developed a technique that
builds upon traversing the iteration space (see Section A.2). We summarize the
difficulties when solving the CMEs below:

(1) All the iteration points should be analyzed, which is O(#iteration points).
(2) CMEs define convex bounded polyhedra (see Section 2.1) with the enclosed

integer points representing potential cache misses. Thus, the complexity of
any method to count CMEs is a function of the number of CMEs polyhedra.
The number of polyhedra is O(#references2).

(3) The cost of checking whether an iteration points belongs to a particular
polyhedron is exponential to the number of dimensions and their domains.
The number of dimensions of each polyhedron is O(nesting depth).

Our approach uses statistical techniques to reduce the computation time.
Another part of our approach deals with the CMEs polyhedra. Taking advan-
tage of their particular topology, we have developed efficient techniques to both
remove a large number of those that contain no information and analyze the
behavior of the different iteration points.

Next, we introduce the different steps of our analysis framework, which
tackle the problems shown above.

(1) Sampling. This approach uses statistical techniques to estimate the number
of cache misses. It allows us to study only a small subset of the iteration

5The term equation has been used loosely to represent a set of simultaneous equalities and
inequalities.
6They represent compulsory misses.
7They represent both conflict and capacity misses.
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space. The reduction of the number of analyzed points translates to a small
computation time while having a high accuracy.

(2) Remove empty polyhedra. A CME-polyhedron is considered empty when it
does not contain any integer point, although it may contain real points.
Hence, we have developed techniques to determine whether a CME-
polyhedron is empty and thus reduces the number of polyhedra to be ana-
lyzed.

(3) Analyze iteration points. When analyzing an iteration point, we need to
know whether it is a solution of the CMEs, that is, whether it fulfills the
equations. We have developed some specific techniques for each type of poly-
hedron to check whether an iteration point is a solution to the equations or
not. Since the dimension of most CMEs polyhedra is larger than the itera-
tion space, after substituting the induction variables for the values given by
the iteration point there is still a set of inequations left (which describes a
new polyhedron). Therefore, checking whether an iteration point is solution
of a CME is equivalent to checking whether the remaining polyhedron is
empty or not.

The following sections explain in detail how we apply these techniques to
have a fast and accurate framework to predict cache behavior.

4. CMEs MODELING

This section introduces our polyhedral model for the CMEs. We start giving
some notation that is used through this section. Then, we give a formal math-
ematical definition of the equations. For each type of equation, we explain our
techniques to remove those that are empty and show how we determine whether
an iteration point results in a miss for the remaining equations.

4.1 Introduction

The part of our study that focuses in the treatment of CMEs polyhedra is mainly
based on their structure. Therefore, the interpretation of the different constants
that appear in the definition of the equations is avoided except in some special
cases, where the significance of some of these constants is useful for the devel-
opment of our techniques.

We assume that f1, . . . , fm, g1, . . . , gm are integer values. For each induction
variable ik (k = 1, . . . , m), ubk and lbk stand for the upper and lower bounds of
this variable in the iteration space.

4.1.1 A Criterion to Detect Empty Polyhedra. We present a general tech-
nique to identify whether a polyhedron is empty. It provides a criterion for
detecting the emptiness of polyhedra that is repeatedly used in different steps
of our approach.

General criterion: If there exists a variable that cannot take any integer
value, there will not be any integer point inside the given polyhedron. Notice
that this condition is sufficient for the polyhedron to be empty of integer points.
This gives us a general criterion for detecting empty polyhedra, although it
does not detect all of them. For each variable xk , its definition domain [ak , bk]
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Fig. 3. Cold miss equations.

in the polyhedron is calculated (see Definition 2.5). Let lbk and ubk be the
lower and upper bounds of the integer domain (see Definition 2.6), respectively.
If ubk < lbk , there is no integer value inside the real domain [ak , bk] of the
variable; thus the polyhedron is empty.

This criterion does not detect all empty polyhedra. In order to increase the
number of detected empty polyhedra, specific criteria for each type of polyhe-
dron have been developed. These criteria rely on the structure of the equations
and their interpretation in terms of the cache behavior.

4.2 Cold Miss Equations (Temporal or Spatial Reuse)

These equations describe the iteration points where a reuse does not translate
to locality because the reference reuses from an iteration point outside the
iteration space (see Figure 3). The obtained polyhedra are defined over the
iteration space. This means that only induction variables appear in their
definition (in the linear inequalities that characterize the set). The cold miss
equations add a restriction on the possible values of one of the variables inside
the iteration space.

(CM)

il ≤ dl , for a fixed l ∈ [1, . . . , m],
lbk ≤ ik ≤ ubk , k = 1 · · · m,

where il is the lth variable of the iteration space, dl ∈ Z, and the first equation
represents an additional restriction on one of the variables.8 Note that this
equation could introduce a lower bound of the variable ik instead of an upper
bound. The other 2m constraints determine the iteration space.

4.2.1 Empty Cold Miss Equations. Since each of these polyhedra consists
of the iteration space and an additional restriction on one of the variables, it
will be empty if the restriction is incompatible with the iteration space. If the
additional restriction has the form il ≤ dl and dl < lbl , there is a contradiction
between the two conditions and we conclude that the polyhedron is empty. The
same happens when the restriction has the form il ≥ dl and dl > ubl . Hence,
the time taken to compute the emptiness is O(1).

8il − rl must belong to the domain of the lth variable of the iteration space.
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Fig. 4. Cold miss bounds.

4.2.2 Determining an Iteration Point. Let 
i0 = (i01, i02, . . . , i0m) be the iter-
ation point we want to study. The only inequality it might not fulfill is

il ≤ dl (1)

since the others are just a characterization of the iteration space. So, 
i0 is a
point inside the given cold miss polyhedron ⇐⇒ its lth component fulfills the
previous equation.

4.3 Cold Miss Bounds (Spatial Reuse)

These equations describe the iteration points where a reuse is not realized
because the reference reuses data that are mapped to a different cache line (see
Figure 4).

Given reference RA, there is a cold miss along the reuse vector 
r in the
iteration point 
i if the following equation holds:

Memory LineRA
(
i) �= Memory LineR ′

A
(
i − 
r),

where R ′
A is RA (if 
r is a self-reuse vector), or a different reference (if 
r is a

group-reuse vector).
When extending this identity we obtain a set of inequations that describes

a convex polyhedron which is defined over R
m+1, m being the dimension of the

iteration space. A new variable z is introduced for linearity reasons [Clauss
1996]. In fact, there is a version of the CMEs that ignores this variable [Ghosh
et al. 1998], but we focus on the more precise model that includes it.

The equations have the following form:

(CMB)
f1i1 + f2i2 + · · · + fmim − Lz ≥ LB1,
f1i1 + f2i2 + · · · + fmim − Lz ≥ LB2,
f1i1 + f2i2 + · · · + fmim − Lz ≤ UB,
lbk ≤ ik ≤ ubk , k = 1 · · · m,

where LB1, LB2, UB ∈ Z, and L stands for the cache line size. Note that
the three first equations can also have the form

f1i1 + f2i2 + · · · + fmim − Lz ≥ LB,
f1i1 + f2i2 + · · · + fmim − Lz ≤ UB1,
f1i1 + f2i2 + · · · + fmim − Lz ≤ UB2,
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where LB, UB1, UB2 ∈ Z. One of these constraints is redundant, so the
polyhedron can be expressed as follows, where UB = min{UB1, UB2}:

(CMB)

f1i1 + f2i2 + · · · + fmim − Lz ≥ LB,
f1i1 + f2i2 + · · · + fmim − Lz ≤ UB,
lbk ≤ ik ≤ ubk , k = 1 · · · m.

4.3.1 Empty Cold Miss Bounds. Since the domains of i1, . . . , im are explic-
itly given, and they are not constrained by any other equation, the only variable
that might have a domain without integer values inside is variable z. Let us
observe the constraints involving variable z.

f1i1 + · · · + fmim − UB ≤ Lz ≤ f1i1 + · · · + fmim − LB

Let us define

zmax = max(i1,...,im)∈I { f1i1 + · · · + fmim} − LB
L

,

zmin = min(i1,...,im)∈I { f1i1 + · · · + fmim} − UB
L

,

where I stands for the iteration space. Thus, the integer domain of the variable
z in the polyhedron (CMB) is

[�zmin�, �zmax�] ∩ Z

If there are no integer values inside this interval, we can conclude that (CMB)
polyhedron is empty in O(m). This condition is sufficient, but not necessary.
That is, even if the domain of z contains integer values, the polyhedron might
be empty.

4.3.2 Determining an Iteration Point. When an iteration point 
i0 is substi-
tuted, an one-dimensional polyhedron is obtained. Deciding whether 
i0 fulfills
the equations is equivalent to deciding whether the one-dimensional polyhe-
dron (CMB′)

LB′ ≤ −Lz ≤ UB′

is empty, where LB′ = LB− f1i01−· · ·− fmi0m and UB′ = UB− f1i01−· · ·− fmi0m.
We obtain the integer domain z from its real domain, [−UB ′

L
, −LB ′

L
] ⊂ R. We

determine whether it is empty comparing its bounds.

4.4 Replacement Equations

Given a reference RA and an iteration point 
i, replacement equations represent
those memory accesses which map to the same cache set as RA(i).

For each pair of references (RA and RB), the following expression gives the
condition for a cache-set contention in a set-associative cache:

Cache Set(
i)RA = Cache Set(
j )RB ,

j ∈ J ,
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Fig. 5. J set.

Fig. 6. Replacement equations.

where J represents the set of iteration points between 
i (the current one) and
the iteration point from which RA reuses, 
i − 
r (see Figure 5).

This identity results in

MemRA(
i) − MemRB ( 
j ) = Cn + b,

j ∈ J ,

where C stands for C
k
, k is the associativity of the cache, n stands for the distance

between RA and RB in cache size units, and b is the difference between the
offset of each reference with respect to the beginning of their respective lines
(see Figure 6).

This is the type of polyhedron obtained from the CMEs that has the most
complex topology. A replacement polyhedron is contained in R

2m+3. 2m of its
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variables (i1, . . . , im, j1, . . . , jm) refer in some way to the iteration space and
the remaining variables (b, n, and z) are introduced for linearity reasons.
Replacement equations have the following form:

(RCM)

−b − Cn + f1i1 + · · · + fmim + g1 j1 + · · · + gm jm = A,
Lz − b + g1 j1 + · · · + gm jm ≥ B1,
Lz + g1 j1 + · · · + gm jm ≤ B2,
Lz + g1 j1 + · · · + gm jm ≥ B1,
Lz − b + g1 j1 + · · · + gm jm ≤ B2,
n �= 0,

j ∈ J ,

where L stands as usual for the cache line size, A, B1, B2 ∈ Z, and pk , qk ∈
Z, ∀k = 1, . . . , m.

We present some remarks below.

(1) The condition n �= 0 is split up into n ≤ −1 and n ≥ 1. Each of these inequal-
ities combined with the remaining inequalities above defines a different
polyhedron.

(2) J is the set of all potentially interfering points (see Figure 5). Depending
on the access order of the references whose interferences are being studied,
this set has one of the following forms:

J = [
i − 
r, 
i),
J = (
i − 
r, 
i],
J = (
i − 
r, 
i),

where 
i stands for the iteration point and 
r stands for the considered reuse
vector.

In general, J is not convex (see Figure 5). Therefore, it is divided in
several convex regions [Ghosh et al. 1999]. The regions obtained have the
following form:

αk ∗ ik − jk ≤ qk , k = 1 · · · m,
βk ∗ ik − jk ≥ pk , k = 1 · · · m,

where αk , βk ∈ {0, 1}.
We obtain a replacement polyhedron for each convex region. In our expo-

sition, we will assume αk = 1 and βk = 1, since this fact does not introduce
significant changes in the techniques proposed.

(3) The coefficient of the variable b in the equation is −1. Thus, we isolate b in
the equation and express it as a function of the other variables:

b = f1i1 + f2i2 + · · · + fmim + g1 j1 + g2 j2 + · · · + gm jm − Cn − A.

Substituting this expression of b in the inequations, a more simple form of
the replacement equations is obtained.
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Regarding the previous considerations, the standard replacement polyhe-
dron is described by the following equations:

(RCM)
−Lz − Cn + f1i1 + · · · + fmim ≥ AL,
−Lz − Cn + f1i1 + · · · + fmim ≤ AU,
Lz + g1 j1 + · · · + gm jm ≥ BL,
Lz + g1 j1 + · · · + gm jm ≤ BU,
n ≥ 1,
pk ≤ ik − jk ≤ qk , k = 1 · · · m,
lbk ≤ ik ≤ ubk , k = 1 · · · m,

where AU, AL, BU, BL ∈ Z.

4.4.1 Empty Replacement Equations. Different criteria to detect empty re-
placement polyhedra have been developed. In this case, not only the information
given by the equations is considered, but also its interpretation in terms of the
cache behavior.

We consider a replacement polyhedron empty if:

(1) Its “convex regions” do not belong to the iteration space. In a replacement
polyhedron, there is a subset of equations which relates the variables ik and
jk for k = 1, . . . , m:

ik − jk ≥ pk ,
ik − jk ≤ qk ,
k = 1, . . . m.

These equations result from the division in convex regions of the domains of
variables j1, . . . , jm [Ghosh et al. 1999]. In order to detect empty replace-
ment polyhedra, we check whether these constraints are consistent with
the fact that 
i and 
j must belong to the iteration space. The worst case
complexity for checking this is O(m).

(2) The variable n and the expression MemRA − MemRB have different sign.
Recall that replacement equations result from the following identity:

MemRA(
i) − MemRB ( 
j ) = Cn + b.

Since the placement of the two references RA and RB in the memory is fixed,
their relative position will not change; thus MemRA(
i) − MemRB ( 
j ) has con-
stant sign for all 
i, 
j . Besides, this sign must be the same as the sign of
the variable n, because this variable represents the distance, in terms of
cache size units, between the two references. A replacement polyhedron is
empty if the range of feasible values of the expression MemRA(
i)−MemRB ( 
j )
(which depends on the variables i1, . . . , im and j1, . . . , jm) causes a contra-
diction with the restriction that determines the sign of the variable n. This
can be done in O(1).

(3) The range of the expression MemRA − MemRB is incompatible with the re-
striction of the variable n. The first two equations of (RCM) are

AL ≤ −Lz − Cn + f1i1 + · · · + fmim ≤ AU,
BL ≤ Lz + g1 j1 + · · · + gm jm ≤ BU.
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Hence, the following expressions hold:

AU − BU ≥ f1i1 + · · · + fmim + g1 j1 + · · · + gm jm − Cn, (2)
AL − BL ≤ f1i1 + · · · + fmim + g1 j1 + · · · + gm jm − Cn. (3)

Depending on the constraint on the variable n, one of the two inequalities
is chosen and gives a criterion to detect the emptiness of the polyhedron.

*n ≤ −1

As this restriction gives an upper bound of n, that is, a lower bound of −n,
we consider the second restriction.

AU − BU ≥ f1i1 + · · · + fmim + g1 j1 + · · · + gm jm − Cn

≥ f1i1 + · · · + fmim + g1 j1 + · · · + gm jm + C

≥ min

i∈I, 
j∈J

{ f1i1 + · · · + fmim + g1 j1 + · · · + gm jm} + C.

*n ≥ 1

In this case the considered inequality is the first one.

AL − BL ≤ f1i1 + · · · + fmim + g1 j1 + · · · + gm jm − Cn

≤ f1i1 + · · · + fmim + g1 j1 + · · · + gm jm + C

≤ max

i∈I, 
j∈J

{ f1i1 + · · · + fmim + g1 j1 + · · · + gm jm} + C,

where I stands for the iteration space and J for the domains of ( j1, . . . , jm).
In each of these cases, if the constraint does not hold, we conclude that

the polyhedron is empty in O(m).
(4) The variable n cannot take integer values. The inequations (2) and (3) are

used in order to compute the domain of the variable n. If it contains no
integer points, the polyhedron is empty.

Hence, the worst-case complexity to detect empty replacement polyhedra is
O(m). Note that by means of these techniques we might not detect all empty
replacement polyhedra. However, we show in Figure 7 in Section 6 that the
number of them is considerably high.

4.4.2 Determining an Iteration Point. When considering a k-way set-
associative cache with LRU replacement, an iteration point 
i0 fulfills the equa-
tions if the polyhedron contains a set of integer points with k different values
of the variable n (that represent k distinct contentions, k ≥ 1).

In this section we present a criterion for determining whether a replace-
ment polyhedron is empty. For those polyhedra that are not filtered out by this
criterion, the number of points inside them will be counted.

We propose a method for counting integer points inside replacement polyhe-
dra that works for either direct-mapped or set-associative caches.
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The polyhedron (RCM′) obtained after substituting 
i0 = (i01, i02, . . . , i0m) in
the equations of a replacement polyhedron has the following form:

(RCM′)
AL′ ≤ Lz + Cn ≤ AU ′,

BL ≤ Lz + g1 j1 + · · · + gm jm ≤ BU,
n ≥ 1,

q′
k ≤ jk ≤ p′

k , k = 1 · · · m.

This polyhedron is empty if there exists no integer combination of the variables
j1, j2, . . . , jm, z, n, that fulfills the equations. By construction, BU −BL = AU −
AL = L − 1, where L is the cache line size. Thus, AU ′ − AL′ = L − 1.

Note that as we are only interested in integer solutions, the inequalities
AL′ ≤ Lz + Cn ≤ AU ′ are equivalent to the following system of diophantine
equations:

Lz + Cn = D,
D = AL′, . . . , AU ′, D ∈ Z. (4)

According to the linear diophantine equations theory, an equation of the
form Lz + Cn = D has a solution ⇐⇒ Gcd (C, L) divides D [Banerjee 1993].
Since C = C

k
represents the cache size, C = N ∗ L for a certain N ∈ N. It is

straightforward that

Gcd(C, L) = L.

Therefore, the previous equation Lz+ Cn = D has a solution ⇐⇒ L divides
D, and thus the system of Equations (4) has a solution ⇐⇒ there exists a
value of D in [AL′, AU ′] that is multiple of L.

Since AU ′ − AL′ = L − 1, the interval [AL′, AU ′] mod L contains all the
values of ZL.9 As the previous interval can be written as AL′ + [0, L − 1], we
have that

∀x ∈ ZL ∃D ∈ [AL′, AU ′] | x ≡ D mod L.

In fact, since the number of integer points in [AL′, AU ′] is L, the relation
defined before is bijective. For this reason, since 0 ∈ ZL, there will always be
only one value of D for which the equation Lz+ Cn = D has a solution. Let D0
be that value:

D0 =
⌈

AL′

L

⌉
∗ L.

Then, (RCM′) can be written as follows:

(RCM′)
Lz = D0 − Cn,

BL − D0 ≤ −Cn + g1 j1 + · · · + gm jm ≤ BU − D0,
n ≥ 1

q′
k ≤ jk ≤ p′

k , k = 1 · · · m.

9
ZL = Z mod L.
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Let be BL′ = BL − D0 and BU ′ = BU − D0. We obtain

(RCM′)

BL′ ≤ −Cn + g1 j1 + · · · + gm jm ≤ BU ′,
n ≥ 1,

q′
k ≤ jk ≤ p′

k , k = 1 · · · m.

We assume that q′
k �= p′

k , ∀k. Otherwise, we substitute the value of the respec-
tive j ’s in the inequalities and we obtain a polyhedron with the same structure,
but lower dimension.

Let us observe the system of linear diophantine equations corresponding to
the first two inequations above:

−Cn + g1 j1 + · · · + gm jm = E, E = BL′, . . . , BU ′ E ∈ Z.

Each of these equations has solution ⇐⇒ G = Gcd (g1, . . . , gm, C) divides
E. However, neither the existence nor the uniqueness of a value E0 for which
the corresponding equation has a solution is ensured.

E0 =
⌈

BL′

G

⌉
∗ G.

E0 is the smallest integer value of E, greater than BL′, for which an equation
of the form −Cn+ g1 j1 + · · · + gm jm = E has a solution. If E0 does not belong
to the domain of E, that is, if E0 > BU ′, then (RCM′) is empty.

On the other hand, a feasible value of E does not ensure that the polyhedron
is not empty and, in this case, the number of integer points inside the polyhedron
must be counted. Due to the particular form of this polyhedron, the number of
integer solutions can be computed in a more efficient way than for general
polyhedra. Assuming that all the Gcd are computed, the complexity of the
algorithm is O(m).

4.4.3 Counting Integer Points. The method for counting presented next is
based on the fact that the vertices of a polyhedron are extreme points. This
implies that the greatest and smallest values that any variable can have inside
a polyhedron can be found in the vertices. Therefore, the computation of the
domain of a variable can be done using its vertices. We first introduce a general
method, and then we extend it with a new technique to compute the domains
of the variables.

The general method is as follows: Let P be a polyhedron in R
p. We take a

variable xi and calculate its integer domain [lbi, ubi]. Then, for every integer
value z in this domain, we consider the (p-1)-dimensional polyhedra that result
from giving the variable xi the value z. This process is repeated recursively,
until we have polyhedra defined by only one variable.

Let P1
1 , . . . , P1

M be these polyhedra. The number of integer points inside one
of them is ub − lb + 1, where ub and lb are the upper and lower bounds of the
corresponding variable. The total number of integer points in the polyhedron
is obtained by adding the points of P1

1 , . . . , P1
M .
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The following are some remarks on this method:

(1) The selection of the variable to be fixed is not irrelevant. In general, the
domain of a variable in a polyhedron is a function of the other variables.
Thus we choose every time the variable that has the smallest domain in
order to minimize the number of nodes in the recurrence tree. Although
we do spend some time in choosing the variable, this criterion helps us to
reduce the time consumed for counting the number of integer points inside
the polyhedron.

(2) The domains of the variables are calculated as follows: Let xk be the variable
whose domain we want to determine. Let VP be the set of vertices of P . Then
the bounds of the integer domain of the variable in P are

lbk =
⌈

min
v=(v1,...,vn)∈VP

vk

⌉
,

ubk =
⌊

max
v=(v1,...,vn)∈VP

vk

⌋
.

Unfortunately, computing the vertices of a polyhedron is a problem with
exponential complexity. Our approach avoids this expensive phase of the
computation.

From the definition of (RCM′) we can derive the following conclusion: the
domains of the variables j1, . . . , jm are explicitly given in the expression of the
polyhedron, so they do not need to be calculated. The domain of the variable n
can be calculated by means of the next two inequations:

g1 j1 + · · · + gm jm − BU′ ≤ Cn ≤ g1 j1 + · · · + gm jm − BL′
. (5)

Let us define

nmax = max( j1,..., jm)∈J {g1 j1 + · · · + gm jm} − BL′

C
,

nmin = min( j1,..., jm)∈J {g1 j1 + · · · + gm jm} − BU′

C
,

where J stands for the domain of 
j = ( j1, . . . , jm). Then the integer domain of
the variable n in the polyhedron (RCM′) is

[�nmin�, �nmax�] ∩ Z.

Hence, we conclude that the domains of all variables are easily computed
and that the explicit computation of the vertices is not needed.

Since the domains of the variables j1, . . . , jm may change when the variable
n is fixed, the order in which the variables will be fixed cannot be determined
at the beginning. Thus, the real domain of these variables must be recalculated
every time. This is done in a similar way to the computation of the domain of
n in the initial polyhedron: for each variable jk , its greatest and lowest values
given by the two inequations (Equation (5)) are calculated. The actual domain
of this variable is the intersection of this interval and the explicit domain given
by the equations of the polyhedron.
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In order to detect empty polyhedra, the search of empty integer do-
mains must be done for all the variables. Theoretically, the complexity is
O(#iteration points), but in practice it is O(1.5m) for our benchmarks.

4.5 Summary and Review

Overall, we have introduced our polyhedral model to handle the CMEs. We have
formally described each class of equation, and shown all steps to transform a
high-level definition into a low-level characterization. Then, based on this new
formulation, we have developed a set of methods that allows us to remove many
empty polyhedra. Furthermore, we introduce new methods to check in a fast
way whether an iteration point belongs to an equation.

Now, we review three different general-purpose methods to check the empti-
ness of polyhedra. We compare them to the specific algorithms shown above.

The Omega test [Pugh 1991] checks if a set of affine constraints has an integer
solution, which is equivalent to check whether the associated polyhedron is
empty. It manipulates Presburguer formulas [Kreisel and Krevine 1967] with
parameters, and the best upper bound on the complexity of this algorithm is
222p

, where p is the domain of the variables that appear in the formula. In our
case, p corresponds to the size of the longest dimension of the iteration space.

The method described by Pugh for counting integer points in polyhedra con-
sists of a set of techniques that are iteratively applied [Pugh 1994]. Choosing
the technique to be applied at each step is done by hand and no systematic
approach has been proposed.

M. Haghighat and C. Polychronopoulos presented a method for volume com-
putation of polyhedra [Haghighat and Polychronopoulos 1993]. They defined a
set of rules, but nothing was said about how to decide which rules to apply at
each step.

Ehrhart polynomials allow computing the number of integer solutions in
a set of linear constraints [Clauss 1996]. It is a method oriented to param-
eterized polyhedra. The first step of this approach is the computation of the
parameterized vertices, for which it uses the Fourier-Motzkin transformation.
Then the number of points of a given number of nonparameterized polyhedra
is computed in order to determine each coefficient of the polynomial. The com-
plexity of the Fourier-Motzkin transformation is O(#constraints� #variables

2 �) and
the complexity of the remaining steps to compute the parameterized vertices
is O(#variables ∗ p3), where p is the number of parameters. In our case the
number of constraints is 2m + 3 and the number of variables is m + 1, where
m is the dimension of the loop nest.

5. SAMPLING

Obtaining the information from the CMEs is not straightforward. Since we
want to analyze both direct-mapped and set-associative caches, our proposal
builds upon the second method to solve the CMEs (traversing the iteration
space as shown in the Appendix). This approach to solve the CMEs allows
us to study each reference in a particular iteration point independently of all
other memory references. Based on this property, a small subset of the iteration
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space is analyzed, strongly reducing the computation cost. In particular, we
use random sampling to select the iteration points. This sampling technique
cannot be applied to a cache simulator. A simulator cannot analyze an isolated
memory reference, since it requires information of all previous references to
decide whether it results in a miss or a hit.

5.1 Modeling CMEs

This subsection describes how the statistical techniques (see Section 2.2) are
used to analyze the CMEs.

We are interested in finding the number of misses that a loop nest produces
(#m). In order to obtain it, we define a RV for each reference within the loop
nest that returns the number of misses. Below, we show that this RV follows
a binomial distribution. Thus, we can use the statistical techniques shown in
Section 2.2.2 to compute the parameters that describe it.

For each memory instruction, we can define a Bernoulli RV X ∼ B(p) as
follows:

X : Iteration Space −→ R,

i �−→ {0, 1},

such that X (
i) = 1 if the memory instruction results in a miss for iteration

ı, X (
i) = 0 otherwise. Note that X describes the experiment of choosing an
iteration point and checking whether the memory instruction produces a miss
for it, and p is the probability of success. The value of p is p = #m

N , where N is
the number of iteration points.

Then, we repeat the experiment N times, using a different iteration point
for each experiment, obtaining X 1, . . . , X N different RVs. We point out that

—all the X i, i = 1 · · · N have the same value of p;
—all the X i, i = 1 · · · N are independent.

The variable Y = ∑
X i represents the total number of misses for all

N experiments. This new variable follows a binomial distribution Bin(N, p)
[DeGroot 1998] and it is defined over all the iteration space. By generating ran-
dom samples over the iteration space, we infer the total number of misses as
shown in Section 2.2.2.

5.2 Generating Samples

Now, we discuss the methodology used to obtain samples. The key issues to
create a good sample are

— it is important that all the population is represented in the sample;
—the size of the sample.

In our case, we have to keep in mind another constraint: the sample cannot
have repeated iteration points (one iteration point cannot result in a miss twice).

To fulfill these requirements, we use simple random sampling [McCabe
1989]. The size of the sample is set according to the required width of the con-
fidence interval and the desired confidence (see Section 2.2.2). Table II shows
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Table II. Size of the Sample and Required Size of the
Population for a Set of Accuracy Configurations

I. width Confidence #Points Min. population

0.90 656 13120
0.05 0.95 1082 21640

0.99 2164 43280
0.90 164 3280

0.10 0.95 270 5400
0.99 541 10820
0.90 72 1440

0.15 0.95 120 2400
0.99 240 4800

Table III. Execution Time Required to Analyze the Matrix
Multiply Algorithm for a 32 kB Cache; Interval Width =

0.05, Confidence = 95%

N Miss % Sim. time CME time Samp. time

1000 28.31 2 h 37 m 211 h 6 s
100 7.35 9 s 10 m 5 s
10 0.9 0.09 s 0.4 s N/A

some possible values for those parameters. For each of them, we show the re-
quired size of the sample and the minimum size of the population according to
the statistical requirements. If we ask for the best accuracy (i.e., the narrowest
interval and the highest confidence), the size of the sample is about 2000 points,
and the iteration space must exceed 43000 points. In most numeric programs
loop nests have iteration spaces bigger than the values shown in the table. Oth-
erwise, the iteration space is small enough to test all the iteration points in it.

5.3 Example

Let us recall our running example (see Figure 1). We illustrate the effective-
ness of the sampling approach analyzing its cache behavior for a 32 kB direct-
mapped cache. Table III shows the results obtained for an accuracy defined by
an interval width of 0.05 and a 95% confidence.10 For large problem sizes (N =
1000), simulators are very slow and analyzing all the iteration points through
the CMEs (see the classic analysis in the appendix) is not feasible, whereas we
obtain the same results as the simulator11 in a few seconds. For small problems
(N = 100), sampling is faster than simulators. In the smallest one (N = 10),
the size of the sample must be all the iteration space, which has the same low
computation cost as the classic analysis due to the small number of points. For
an extensive validation of our model against actual execution, see Section 6.3.3.

6. PERFORMANCE EVALUATION

Next we evaluate the accuracy of the proposed method and the speed/accuracy
tradeoffs. We first compare to what extent our method is better than previous

10Our approach and the simulator run on a Sun UltraSparc I at 167 MHz.
11In this particular case, the central point of the confidence interval practically coincides with the
simulation result.
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Table IV. Properties of the Analyzed Loop Nests; #Ref,
#R.V., and #Eq. Represent Average Values Across the

Different Analyzed Loops

SPEC #L %VLN #Ref. #R.V. #Eq.

tomcatv 9 100% 10.6 30.8 261
swim 22 59% 10.5 18.5 33

su2cor 13 84% 14.0 25.8 296.4
hydro2d 42 76.1% 7.1 11 196
mgrid 8 100% 29 627.5 70229
applu 55 100% 10.2 24.3 286.7

Average 18.6 77.25 13.6 123 11883.7

Note: L: loops; VLN: analyzed loop nests; Ref.: references; R.V.:
reuse vectors; Eq.: equations.

approaches to remove empty polyhedra. Then we analyze the accuracy of the
sampling technique. Finally, we report results showing the efficiency of our
approach for analyzing the cache behavior.

6.1 Experimental Framework

The CMEs have been implemented for FORTRAN 77 codes through the Polaris
Compiler [Padua et al. 1994] and the Ictineo library [Ayguadé et al. 1995]. These
libraries allow us to obtain all the compile-time information needed to generate
the equations.

The evaluation of CMEs has been implemented in C++ following the tech-
niques outlined in the previous sections and using our own polyhedra repre-
sentation.

Due to CMEs restrictions, only isolated perfect nested loops in which the
array subscript expressions are affine functions of the induction variables are
analyzed [Ghosh et al. 1999]. The loop nests considered are obtained from the
SPECfp95 suite, choosing for each program the most time-consuming loop nests
that in total represent between 60–70% of the whole execution time. Basically,
for each program, we consider its loop nests, analyzing the references inside
the loop as they were in an isolated loop nest. Each program is analyzed using
the reference input data.

Four SPECfp95 programs have not been evaluated for the following reasons:

—125.turb3d and 141.apsi. The loop nests that represent the 65% of the exe-
cution have not enough iteration points to use sampling.

—145.fpppp. The section of the code that represents the main part of the exe-
cution time does not contain perfect nested loops.

—146.wave5. The array subscripts are functions of other arrays, and thus the
CMEs cannot be obtained.

CMEs have been generated for a 32 kB cache of arbitrary associativity, with
32-B lines. Table IV shows the number of loops and the percentage of loop nests
in which we can apply sampling.12 The “L” entry lists the number of analyzable

12At least 200 points must be tested.
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Fig. 7. Empty polyhedra for the different analyzed SPECfp95.

loops, whereas the third column presents the percentage of associated loop nests
that can be analyzed using our sampling technique.

The next three columns illustrate the problem size. The table shows that
on average, each loop nest contains 13.6 references and 123 reuse vectors. In
addition, the number of equations per loop nest for a direct-mapped cache is
11883.7. Since the number of misses depends on the organization of the cache,
so does the number of equations.

The simulation values are obtained using a trace-driven cache simulator.13

The traces are obtained by instrumenting the program with Ictineo [Ayguadé
et al. 1995]. For the evaluation of the execution time, a Sun UltraSparc I running
at 167 MHz has been used.

6.2 Empty Polyhedra

In this section we evaluate the effectiveness of our proposal for detecting empty
polyhedra. We assume a direct-mapped cache, since the polyhedra generated
for a k-way set-associative cache of size C are the same as the ones generated
for a direct-mapped cache of size C = C

k
(see Section 4.4).

Figure 7 compares our method with the technique implemented in the
Polylib [Wilde 1993] for detecting empty polyhedra. Only replacement poly-
hedra have been considered, as their evaluation is the most time consuming
among all CMEs polyhedra. The first column shows the number of replacement
polyhedra obtained for each program. The second column depicts the number
of empty polyhedra detected by our approach, whereas the third column shows
the number of empty replacement polyhedra detected through Polylib. We can
see that our approach detects a significantly higher number of empty polyhe-
dra. This is due to the fact that Polylib, which is a general-purpose library, only
detects real empty polyhedra.14

Columns 1 and 2 of Table V show the execution times required by both
methods to check the emptiness of all polyhedra. Due to the complexity of the
computation of the vertices of a polyhedron, our proposal is much faster than

13A locally written simulator has been used in all our experiments. It has been validated over the
years against Dinero III trace-driven simulator [Hill n.d.].
14It checks whether the real domains (see Section 2.1) are empty.
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Table V. Execution Time (in
Seconds) to Detect Empty

Polyhedra

Empty polyhedra
SPEC Proposed Polylib

applu 36.70 1933.87
apsi 1.30 17.31

hydro2d 3.16 47.51
mgrid 235.75 5495.10
su2cor 3.08 34.27
swim 3.00 48.71

tomcatv 9.60 280.75

total 292.59 7857.52

Fig. 8. Distribution of empty polyhedra when analyzing our running example (Figure 1) for dif-
ferent problem sizes.

Polylib’s technique; the complexity of the proposed method is O(m). On the other
hand, Polylib’s method relies on computing the vertices of each polyhedron. The
complexity of its algorithm is O(#constraints� #variables

2 �). For replacement polyhe-
dra, the number of constraints is 2m + 3 and the number of variables is m + 1,
where m is the nesting depth of the loop nest. Thus, the complexity of Polylib’s
approach is O(m� m

2 �).
Finally, Figure 8 shows the number of empty polyhedra detected by our

method when analyzing the matrix multiply algorithm (see Figure 1). We
present the results for two different cache configurations: (32-kB, 32-B) direct-
mapped cache and a (8-kB, 64-B) two-way set-associative cache. In each graph,
we plot the number of polyhedra against the size of the matrices. Note that the
total number of polyhedra only depends on the reuse vectors and the number
of references. Since we are studying the same program with different problem
sizes, the total number of polyhedra is the same.

We can observe that the number of empty polyhedra relates to the miss ratios
shown in Figure 11. For the 8-kB cache the number of empty polyhedra is almost
the same for all problem sizes, and so are the miss ratios. Miss ratios fluctuate a
bit more for the 32-kB cache, and so does the number of empty polyhedra. Those
drops in empty polyhedra correspond to the peaks in miss ratios in Figure 11.
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Table VI. Analyzed Loops

SPEC (1) (2) (3)

tomcatv 9 9 9
swim 13 13 13

su2cor 11 11 10
hydro2d 32 32 32
mgrid 8 8 6
applu 55 51 51

Note: (1) stands for α = 0.05 and interval width = 0.10;
(2) stands for α = 0.05 and interval width = 0.05; (3)
stands for α = 0.01 and interval width = 0.05.

Fig. 9. Execution time for different accuracies.

6.3 Accuracy

In this section we analyze the accuracy of our method for predicting cache
miss ratios. We first analyze the tradeoffs between accuracy and analysis time.
In order to check the accuracy of our approach, we compare against a simulator
that simulates exactly the same memory accesses. Finally, we show the accuracy
of our model comparing the predicted average stall times due to cache misses
with that from real executions.

6.3.1 Sampling Accuracy. We have experimented with different accuracy
configurations. Table VI shows the different configurations (from less accurate
to more accurate) and the number of loops for which sampling can be used.
For more accurate configurations fewer loops can be analyzed using sampling
because there are not enough points in the iteration space. In these cases the
whole iteration space must be traversed. However, this situation arises only for
small iteration spaces, which can be fully analyzed in a reasonable time.

Figure 9 shows the time in seconds required to analyze the SPECfp95 pro-
grams for the three accuracy configurations for a (32-kB, 32-B) direct-mapped
cache. Note that the analysis time is reasonable in all cases and that the more
accurate the configuration is, the more time is required since more points are
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Fig. 10. Sampling error for different cache configurations.

Fig. 11. Predicted and simulated miss ratios for our running example.

considered. From our experiments we observe that a confidence of 95% and an
interval of 0.05 is a good tradeoff between analysis time and accuracy.

6.3.2 Comparison with Simulation. We depict in Figure 10 the cumulative
distribution of the difference between the miss ratio and the central point of
the confidence interval (also known as empirical estimate) for all the programs,
with a 95% confidence and an interval width of 0.05. The Y -axis represents the
percentage of loop nests that has an error less than or equal to the corresponding
value in the X -axis. This graph shows that the absolute differences between
the actual miss ratio and the miss ratio obtained from our analyzer is usually
lower than 0.2 and never higher than 1 (i.e., the actual miss ratio is always in
the interval [(x − 1)%, (x + 1)%] where x is the central point of the confidence
interval) for all the different cache configurations.

Finally, Figure 11 compares the predicted miss ratios against those from
simulation for two different cache configurations: (32-kB, 32-B) direct-mapped
cache and a (8-kB, 64-B) two-way set-associative cache. In all experiments, the
predicted miss ratios are very close to the simulated ones, which shows the
accuracy of our approach when varying the problem size (the average absolute
errors are 0.30 in both cases).
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Fig. 12. Average stall time due to L1 misses.

6.3.3 Comparison with Real Execution. In order to evaluate the ability of
our model to predict actual cache miss ratios, we have run all our benchmarks
on a modern out-of-order processor and quantified the error between predicted
and actual cache miss ratios. For the sake of concreteness, we have compiled
all codes with “g77 -O3” on a Pentium-4 machine running Linux, and obtained
the actual accesses and misses using the hardware counters.

We present results in terms of average stall time per memory access. Con-
sidering that an access to L2 cache takes 24 cycles, we set up the following
formula [Ailamaki et al. 1999]:

avg stall cycles = #misses
#accesses

× 24 cycles.

Figure 12(a) shows the cumulative distribution of the difference between the
predicted average stall time and the actual one for all programs. The Y -axis
represents the percentage of loop nests that has an error less than or equal to the
corresponding value in the X -axis. We can observe that the absolute differences
between the predicted average stall times and the actual ones are less than 0.75
cycles for 84% of the loops, and never higher than 1.75 cycles. The larger errors
are due to extra memory accesses that are not currently considered in our
compiler Ictineo, such as spill code and stack accesses. Figure 12(b) compares
the predicted average stall time against that from execution for our running
example. We show the absolute errors. In all experiments, the predicted average
stall times are very close to the actual ones (the average error is 0.04, while
the largest one is 0.15). This confirms the accuracy of our approach when the
memory references are known.

6.4 Execution Time: Analyzing Iteration Points

Next, we evaluate the effectiveness of the proposed technique to determine
whether an iteration point results in a miss. We compare it with an algorithm
that counts the number of integer points inside the polyhedra by means of the
general method for counting presented in Section 4.4.3. The computation of the
vertices of the polyhedra needed for this second method (Vertices) is done by
means of functions from the Polylib library.

Table VII shows the time in seconds required to analyze the different
SPECfp95 for four different organizations of set-associative caches, for both
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Table VII. Execution Time for Different Cache Organizations

Applu Hydro2d Mgrid Su2cor Swim Tomcatv

1 way 99.63 s 12.21 s 1.89 s 1.91 s 2.18 s 4.57 s
2 way 89 s 12 s 2.36 s 2 s 4 s 5.2 s

(1) 4 way 91 s 12.8 s 7 s 2.02 s 7.7 s 8.4 s
8 way 97 s 14.19 s 14.19 s 2.17 s 15 s 15 s

1 way 18 m 48.55 s 1 m 26.23 s 9 m 6.67 s 19.18 s 21.22 s 31 m 51 s
2 way 6 m 44.92 s 1 m 53.27 s 9 m 27.35 s 27.6 s 26.66 s 34 m 23.73 s

(2) 4 way 6 m 39.62 s 2 m 0.33 s 13 m 32.59 s 17.77 s 48.32 s 1 h 8 m 24 s
8 way 6 m 37.85 s 1 m 52.84 s 18 m 46.30 s 15.30 s 1 m 29.6 s 1 h 7 m 25 s

speedup 1 way 11.7 7 283 10 9.7 418.1

Note: (1) proposed; (2) vertices.

the proposed method and the Vertices method, with a 95% confidence and an
interval width of 0.05.

The speedup of our approach is very important, due to the different
complexities of both algorithms. For a direct-mapped cache, it is between
7 and 418 times faster than the Vertices method and 30 times faster on
average. The speedup for different set-associative configurations is even
higher. For instance, the average speedup for a four-way set-associative cache
is 42.

The difference between these two algorithms relies on the approach to com-
pute the domains of all variables. The proposed method does it with a com-
plexity of O(m2). The Vertices method is split in two steps: first the vertices of
the polyhedron are computed with a complexity of O(m� m

2 �), as explained in the
previous subsection. Then, the domains of the variables are computed with a
complexity of O(m ∗ #vertices) by means of the vertices.

Note that most programs can be analyzed by the proposed approach in
less than a minute, and the most expensive one is Applu, which takes about
1.5 minutes, whereas the approach based on the Vertices method takes several
minutes and in the worst case it takes more than 1 hour.

7. RELATED WORK

There are different approaches to analyze data locality which provide differ-
ent tradeoffs between: accuracy, speed, flexibility (i.e., adaptability to different
memory configurations), and information provided.

Memory simulation techniques are very accurate and flexible and can provide
rich information. They are usually based on trace-driven simulation [Kennedy
et al. 1990; Goldberg and Hennessy 1991; MIPS 1988; Sugumar 1993; Gee
et al. 1993; Magnusson 1993; Goldschmidt and Hennessy 1993; Bedichek 1995;
McKinley and Temam 1996; van der Deijl et al. 1997]. However, these tech-
niques may demand a lot of space to store traces and are very slow (typical
slowdowns are several orders of magnitude). For instance, the slowdown exhib-
ited by all simulators surveyed in Uhlig and Mudge [1997] is in the range of 45
to 6250.

There are some innovative methods that have been proposed with the ob-
jective of reducing the exhibited slowdown [Martonosi et al. 1992; Lebeck and
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Wood 1994; Witchel and Rosenblum 1996]. However, these methods provide
little information (usually only miss ratios), trading information for speed.

Martonosi et al. [1993] introduced the use of trace sampling techniques in
order to further reduce the overhead of such simulators (the slowdown shown
is between 3 and 8). They take samples from the full reference trace so that
they are representative of the full trace. The sizes of the samples as well as
the number of samples depend on both the cache that is analyzed and the
characteristics of the program being traced. Even though the results present a
good degree of accuracy, neither the error can be chosen, nor the sample process
can be set, to achieve a degree of accuracy. In addition, when sampling is applied
to simulators, inaccuracy can result from the unknown state of the cache at the
beginning of the sample.

There are other tools based on hardware counters (e.g., Ammons et al. [1997])
provided by some microprocessors. These tools are fast and accurate. However
they have no flexibility since they can only be used to analyze the memory ar-
chitecture of the actual microprocessor. In addition they provide a limited set of
results depending on the particular counters provided by a particular machine.
Information like conflict misses between two particular memory references can-
not be obtained with current hardware counters.

Analytical models describe cache behavior by means of mathematical formu-
las that specify cache misses. Temam et al. [1994] computed footprints to esti-
mate cache misses of isolated perfectly nested loops for direct-mapped caches.
Fraguela et al. [1999] used a probabilistic method to estimate cache miss ratios
for set-associative caches. While allowing imperfect nests, they only analyzed
reuse among references in the same nest. These references form a subset of the
uniformly generated references analyzed by the CMEs. Recently, Chatterjee
et al. [2001] introduced a new model for exactly analyzing the cache behavior
of loop nests for set-associative caches. They derived formulas for imperfect
nested loops, and dealt with some IF statements. However, the current imple-
mentation is yet far from being practical: they discussed matrix-vector product,
presenting a formula when N = 100, but they have not solved it.

Ghosh et al. [1999] introduced the cache miss equations to specify the cache
behavior of a single perfect nested loop. They used Wolf and Lam [1991] reuse
vectors to express locality. They discussed the use of sampling [Ghosh et al.
2000] to speed up the process of solving them. Instead of using confidence in-
tervals, they analyzed a fraction of the iteration space. While improving the
performance of the solver, they used the rule of thumb to decide the size of the
sample, and they could not choose the degree of accuracy.

Static analysis techniques have limited accuracy due to unknown informa-
tion at compile time. For instance, unknown loop bounds or unknown initial
addresses of data structures can degrade the accuracy of the results.

A solution to this problem is to use hybrid techniques such as
SPLAT [Sánchez and González 1998]. SPLAT is a static analysis technique
improved with some profile (dynamic) information. This hybrid technique is
fast and flexible and can provide much different information like other static
techniques. In addition it is accurate because a profiling provides the informa-
tion unknown at compile time. The use of hybrid techniques is not restricted to
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SPLAT; other static approaches (like CMEs) can also improve their accuracy
by using profile data.

A typical cause for lack of accuracy in static or hybrid techniques is the sim-
plifications in the analysis. For instance, SPLAT is not capable of analyzing
interferences in applications with complex interference patterns and can only
analyze direct mapped caches. Cache miss equations [Ghosh et al. 1999] pro-
vide very precise information about cache behavior. If combined with profile
information, they can be as accurate as simulators and can provide the same
information and be as flexible as other static approaches. Unfortunately, solving
CMEs is an NP-complete problem that makes them slower than simulators.

7.1 Some Applications of the CMEs

The effectiveness of memory hierarchy is critical for the performance of current
processors. The proposed approach can analyze the locality of most SPECfp95
programs in just a few seconds, which allows using this analysis for guiding
optimization steps of a compiler or an interactive program transformation tool.
Recent implementations of padding [Vera et al. 2002] and tiling [Abella et al.
2002] are examples of such possible optimizations. A genetic algorithm is used
to compute tile and pad factors that enhance the program behavior. CMEs
are used to evaluate each combination of parameter values. Results show that
they can remove practically all replacement misses among variables in the
SPECfp95 suite, targeting all the different cache levels simultaneously.

Clustering is an approach that many microprocessors are adopting in re-
cent times in order to mitigate the increasing penalties of wire delays. Sánchez
and González [2000] proposed a novel clustered architecture with a partitioned
cache memory. They presented a modulo scheduling scheme which takes into
account memory intercluster communication, making use of our approach in
order to have a schedule that favors cluster locality in cache references. For
instance, given a memory instruction, it may be beneficial to schedule it in
a cluster where there are already other instructions from which it reuses
data.

Nevertheless, many steps have to be done in order to statically analyze whole
programs. Recently, Vera and Xue [2002] presented a new approach that deals
with imperfect loop nests, call statements, and IF conditionals. Based on a new
characterization of reuse vectors, they made use of the techniques presented in
this work to obtain a feasible tool that analyzes whole programs. Thus, our tech-
niques are not limited to perfect loop nests but can be used in other approaches
where CME polyhedra are used. However, data-dependent constructs and in-
direction arrays still represent an interesting and challenging future work. We
plan to investigate locality techniques to analyze them.

8. CONCLUSIONS

Cache miss equations provide an analytical and precise description of the cache
memory behavior. The main drawback of CMEs is that solving them to know the
exact number of misses is an NP-complete problem that makes them infeasible
for most applications.
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In this paper we propose the use of both mathematical and statistical tech-
niques to solve CMEs. With these techniques we can perform memory analysis
extremely fast, regardless of the size of the iteration space. For instance, it
takes the same time (6 seconds) to analyze a matrix multiplication loop nest of
size 100 × 100 as to analyze one of size 1000 × 1000. On the contrary, it takes
9 seconds to simulate the first case and more than 2 hours to simulate the
second.

The use of sampling along with inference theory allows the user to set the
desired accuracy by means of the confidence and the width of the interval. The
larger the accuracy, the bigger the set of points to analyze and therefore the
more time required to perform the analysis. This way the user can trade ac-
curacy for speed at its will. In our experiments we have found that, using a
confidence of 95% and an interval width of 0.05, the absolute error in miss ra-
tio was smaller than 0.2% in 65% of the loops from the SPECfp95 programs
and was never larger than 1.0%. Furthermore, the analysis time for each pro-
gram was usually just a few seconds and never more than 2.3 minutes.

Some mathematical techniques are proposed that exploit some intrinsic
properties of the particular polyhedra generated by CMEs. These techniques
significantly reduce the complexity of the algorithms and result in speedups of
more than one order of magnitude for the SPECfp95 benchmarks. The average
speedup for all these benchmarks is 17.94.

Overall, the proposed approach can analyze the locality of most SPECfp95
programs in just several seconds, which allows the use of this analysis in order
to guide optimization steps of a compiler or an interactive program transforma-
tion tool. Padding [Vera et al. 2002] and tiling [Abella et al. 2002] are examples
of such possible optimizations.

APPENDIX: SOLVING CMEs

CMEs contain precise information about the cache behavior, but obtaining this
information from the equations is not a trivial problem. In this section we
present two methods [Ghosh et al. 1999] to solve CMEs. A direct-mapped cache
is now assumed. The application of these methods when an associative config-
uration is considered will be discussed later.

Each equation represents a convex polyhedron in R
n (see Section 2.1), where

n depends on the type of equation. The integer points inside each convex poly-
hedron represent the potential cache misses. This leads us to consider several
ways for computing them:

A.1 Analytical Method

In this section we give an analytical description of the solution set of the CMEs.
This solution set represents the cache misses, and its volume the number of
misses.

THEOREM 1. The set of all misses of a reference along a reuse vector is given
by the union of all the solution sets of the equations corresponding to that reuse
vector.
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Given a reference and a reuse vector, an iteration point results in a miss if it
is either a cold or a replacement miss.

THEOREM 2. The set of all miss instances of a reference is given by the inter-
section of all the miss-instance sets along the reuse vectors.

Given a reference, an iteration point results in a hit if it exploits the locality
of at least one of the reuse vectors.

Thus, given a reference R with m reuse vectors and nk equations for the kth
reuse vector, the polyhedron that contains all the iteration points that result in
a miss is [Ghosh et al. 1999]

Set Misses = ∩m
k=1 ∪nk

j=1 Solution Set Equation j

For this approach we need to count the number of points inside the polyhedra,
which is an NP-complete problem. Writing the set of misses as a function of the
complementary sets, we have that

Set Misses = ∪nk
j=1 ∩m

k=1 Solution Set EquationC
j

where Solution Set EquationC
j represents the set of all points in Z

n that are not
solution to the j th equation.

Note that in general, the union of convex polyhedra is not convex. In order to
count the number of integer points inside the set of misses described above, the
set of misses must be expressed as the union of disjoint convex polyhedra. Thus,
according to measure theory, the union of s sets can be computed as follows:

µ
( ∪s

i=1 Ai
) = µ(Ai) + · · · + µ(As)

−
∑
i �= j

µ(Ai ∩ Aj )

+
∑

i �= j �=k

µ(Ai ∩ Aj ∩ Ak)

+ · · ·
+ (−1)(i−1)µ

(∩s
i=1 Ai

)
,

where µ(P ) is the number of points inside polyhedron P. As the expression
shows, the number of polyhedra that must be counted is 2s, making this problem
infeasible due to its huge computing time.

Furthermore, this method does not work for set-associative caches. We are
interested in counting the number of points from the iteration space that po-
tentially results in a miss. In particular, we want to know how many iteration
points 
i = (i1, . . . , im) verify the replacement equation. Since an iteration point
verifies a set of replacement equations if there exists any integer combination of
the variables j1, . . . , jm, n, z so that the point (i1, . . . , im, j1, . . . , jm, n, z) belongs
to the polyhedron defined by these equations, the number of combinations of
the variables j1, . . . , jm, n, z is not important. For this reason, not all the points
inside a replacement polyhedron have to be counted.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.



Framework to Analyze and Optimize Cache Memory Behavior • 297

A.2 Traversing the Iteration Space

A big advantage of CMEs over simulators is that the behavior of every iteration
point can be studied independently from the rest of the iteration space, whereas
simulators need to have processed previous iteration points to get to know what
happens at a certain iteration point. The method we present next is based on
this fact.

Given a reference, all iteration points are tested independently. We study the
equations in order: from the equations generated for the shortest reuse vector
to the equations generated for the longest one.

Next, we give an intuitive description of the algorithm.
Let us consider the reference R. For this reference several CMEs are gener-

ated for every reuse vector. The reuse vectors are studied in a lexicographical15

ascendent order. After one reuse vector has been treated, some iteration points
will be identified as resulting in a miss or a hit. Others might rest undeter-
mined. These are the points that will have to be studied when considering the
next reuse vector.

Given a reference and a reuse vector, the iteration points are studied as
follows:

—If an iteration point is a solution to a cold CMEs, the reuse along 
r is not
realized in this iteration point, but we cannot take any definitive decision
about the character of this iteration point until all reuse vectors have been
studied. Therefore, this point is considered as undetermined.

—On the other hand, if an iteration point is not a solution to any of the cold
CMEs, it is declared as a miss if it is a solution to a replacement equation,
and as a hit if it is no solution to any equation either.

Note that the set of undetermined points will generally decrease when treat-
ing new reuse vectors. The algorithm stops when all iteration points have been
characterized.

A.3 Set-Associative Caches

CMEs give an analytical precise description of the cache memory behavior for
both direct-mapped and set-associative caches. Note that cold misses are not
influenced by the associativity of the cache. Therefore, in this subsection we
will focus on replacement equations.

Although the form of the replacement equations is not affected by the
considered configuration, the way of interpreting them is different in each
case.

When considering a k-way set-associative cache, a replacement miss oc-
curs at the iteration point 
i0 if there exist k integer combinations of the vari-
ables j1, . . . , jm, n, z, ( j s

1, . . . , j s
m, ns, zs), s ∈ {1, . . . , k} such that nr �= ns ⇐⇒

r �= s which makes (i01, . . . , i0m, j s
1, . . . , j s

m, ns, zs) belong to the replacement
polyhedra16 for all s ∈ {1, . . . , k}.

15If iteration 
i2 executes after 
i1 we say that 
i2 is lexicographically greater than 
i1.
16The replacement polyhedra that model the behavior of the reference that is being studied.
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The analytical method presented to solve CMEs does not allow us to make
any distinction on the points we count. Therefore, it only works for direct-
mapped caches.

On the other hand, the second approach can be used for both direct-mapped
and set-associative organizations.
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Spain.

BANERJEE, U. 1988. Dependence Analysis for Supercomputing. Kluwer Academic Publishers,
Norwell, MA.

BANERJEE, U. 1993. Loop transformations for restructuring compilers: The Foundation. Kluwer
Academic Publishers, Norwell, MA.

BEDICHEK, R. 1995. Talismam: Fast and accurate multicomputer simulation. In Proceedings of
ACM Sigmetrics Conference on Measurement and Modeling of Computer Systems (SIGMET-
RICS’95). 14–24.

CARR, S. AND KENNEDY, K. 1992. Compiler blockability of numerical algorithms. In Proceedings of
Supercomputing (SC’92). 114–124.

CARR, S., MCKINLEY, K., AND TSENG, C.-W. 1994. Compiler optimizations for improving data locality.
In Proceedings of the VI International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’94). 252–262.

CHATTERJEE, S., JAIN, V. V., LEBECK, A. R., MUNDHRA, S., AND THOTTETHODI, M. 1999. Nonlinear array
layout for hierarchical memory systems. In Proceedings of the ACM International Conference on
Supercomputing (Rhodes, Greece) (ICS’99). 444–453.

CHATTERJEE, S., PARKER, E., HANLON, P. J., AND LEBECK, A. R. 2001. Exact analysis of the cache
behavior of nested loops. In ACM SIGPLAN ’01 Conference on Programming Language Design
and Implementation (PLDI’01). 286–297.

CLAUSS, P. 1996. Counting solutions to linear and non-linear constraints through Ehrhart poly-
nomials. In Proceedings of ACM International Conference on Supercomputing (Philadelphia)
(ICS’96). 278–285.

COLEMAN, S. AND MCKINLEY, K. S. 1995. Tile size selection using cache organization and data
layout. In Proceedings of ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’95). 279–290.

DEGROOT, M. 1998. Probability and Statistics. Addison-Wesley, Reading, MA.
FEAUTRIER, P. 1996. Automatic parallelization in the polytope model. In The Data Parallel Pro-

gramming Model, G. R. Perrin and A. Darte, Eds. Lecture Notes in Computer Science, vol. 1132.
Springer-Verlag, Berlin, Germany, 79–103.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.



Framework to Analyze and Optimize Cache Memory Behavior • 299

FRAGUELA, B. B., DOALLO, R., AND ZAPATA, E. L. 1999. Automatic analytical modeling for the esti-
mation of cache misses. In Proceedings of the International Conference on Parallel Architectures
and Compilation Techniques (PACT’99).

GANNON, D., JALBY, W., AND GALLIVAN, K. 1988. Strategies for cache and local memory management
by global program transformations. J. Parallel. Distrib. Comput. 5, 587–616.

GEE, J., HILL, M., PNEVMATIKATOS, D., AND SMITH, A. 1993. Cache performance of the spec92 bench-
mark suite. IEEE Micro 13, 4 (Aug.), 17–27.

GHOSH, S. 1999. Compiler analysis framework for tuning memory behavior. Ph.D. dissertation.
Princeton University, Princeton, NJ.

GHOSH, S., MARTONOSI, M., AND MALIK, S. 1998. Precise miss analysis for program transformations
with caches of arbitrary associativity. In Proceedings of the International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS’98). 228–239.

GHOSH, S., MARTONOSI, M., AND MALIK, S. 1999. Cache miss equations: A compiler framework for
analyzing and tuning memory behavior. ACM Trans. Programm. Lang. Syst. 21, 4, 703–746.

GHOSH, S., MARTONOSI, M., AND MALIK, S. 2000. Automated cache optimizations using CME driven
diagnosis. In Proceedings of the International Conference on Supercomputing (ICS’00). 316–326.

GOLDBERG, A. AND HENNESSY, J. 1991. Performance debugging shared memory multiprocessor
programs with mtool. In Proceedings of Supercomputing (SC’91). 481–490.

GOLDSCHMIDT, S. AND HENNESSY, J. 1993. The accuracy of trace-driven simulation of multipro-
cessors. In Proceedings of the ACM Sigmetrics Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS’93). 146–157.

HAGHIGHAT, M. R. AND POLYCHRONOPOULOS, C. D. 1993. Symbolic analysis: A basis for paralleliza-
tion, optimization and scheduling of programs. In 1993 Workshop on Languages and Compilers
for Parallel Computing (LCPC’93). Springer Verlag, Portland, Ore., 567–585.

HILL, M. n.d. DineroIII: a uniprocessor cache simulator (http://www.cs.wisc.edu/˜larus/warts.
html).

KANDEMIR, M., CHOUDHARY, A., BANERJEE, P., AND RAMANUJAM, J. 1999. A linear algebra framework
for automatic determination of optimal data layouts. IEEE Trans. Parallel Distrib. Syst. 10, 2
(Feb.), 115–135.

KENNEDY, K., CALLAHAN, D., AND PORTERFIELD, A. 1990. Analyzing and visualizing performance of
memory hierarchy. In Instrumentation for Visualization. ACM Press, New York, NY.

KREISEL, G. AND KREVINE, J. L. 1967. Elements of Mathematical Logic. North-Holland,
Amsterdam, The Netherlands.

LAM, M., ROTHBERG, E. E., AND WOLF, M. E. 1991. The cache performance of blocked algorithms.
In Proceedings of the IV International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’91).

LEBECK, A. AND WOOD, D. 1994. Cache profiling and the spec benchmarks: A case study. IEEE
Comput. 27, 10 (Oct.), 15–26.

MAGNUSSON, P. 1993. A design for efficient simulation of a multiprocessor. In Proceedings of the
Western Simulation Multiconference on International Workshop on MASCOTS-93. (La Jolla, CA).
69–78.

MARTONOSI, M., GUPTA, A., AND ANDERSON, T. 1992. Memspy: Analyzing memory system bottle-
necks in programs. In Proceedings of the ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS’92). 1–12.

MARTONOSI, M., GUPTA, A., AND ANDERSON, T. 1993. Effectiveness of trace sampling for performance
debugging tools. In Proceedings of the ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS’93).

MCCABE, M. 1989. Introduction to the Practice of Statistics. Freeman & Co., New York, NY.
MCKINLEY, K. S. AND TEMAM, O. 1996. A quantitative analysis of loop nest locality. In Proceedings

of the VII Int. Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’96).

MIPS. 1988. RISCompiler Languages Programmer’s Guide. MIPS Computer Systems,
Sunnyvale, CA.

MOWRY, T., LAM, M., AND GUPTA, A. 1992. Design and evaluation of a compiler algorithm for
prefetching. In Proceedings of the V International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS’92). 62–73.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.



300 • Vera et al.

PADUA, D. ET AL. 1994. Polaris Developer’s Document. Available online at
http://polaris.is.uiuc.edu/polaris/polaris–developer/polaris–developer.html.

PUGH, W. 1991. The omega test: A fast and practical integer programming algorithm for de-
pendence analysis. Proceedings of the ACM/IEEE Conference of Supercomputing (SC’91) (Albu-
querque, NM). 4–13.

PUGH, W. 1994. Counting solutions to presburguer formulas: How and why. In Proceedings of the
International Conference on Programming Language Design and Implementation (PLDI’94).

RIVERA, G. AND TSENG, C.-W. 1998. Data transformations for eliminating conflict misses. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI’98). 38–49.

RIVERA, G. AND TSENG, C.-W. 1999. A comparison of compiler tiling algorithms. In Proceedings of
the 8th International Conference on Compiler Construction (CC’99).
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