

 1

Application of Procedural Abstraction and Cross Jumping

Jürgen Wohlmuth
University of Technology, Vienna
e0125400@student.tuwien.ac.at

Abstract
In the field of embedded systems, where resources are
limited, code compressions becomes an important factor.
Two popular compression techniques are procedural
abstraction and cross-jumping. This paper will examine
their application on different stages of the compilation,
namely on object code and intermediate representation.
First we will present the basic ideas on the example of
object code compression according to Cooper and
McIntosh. Later we will discuss the differences to the
application of basically the same strategies by Nyström
and Sjödin. We will close with a comparison and some
considerations about concurrent application of both.

1 Motivation
Most compiler optimization focus on runtime improvements but only few of them take
memory consumption into account. Focusing on runtime sometimes even means
making a program longer by loop unrolling for example. [2]
Especially in an environment which is short on resources as embedded systems are,
it is economical to focus on both. Generally this topic also affects other environments
where the delivery of a program is the bottleneck like in web applications and Java
applets. Concentrating on embedded systems like within cellular phones, industrial
control units and many other devices compressing code has a direct impact on cost
and power consumption. [1]
As the number of such devices quadrupled in the last years the demand was to put
even more sophisticated software and functionality in them which leads to even
higher memory requirements.
Here is where code compression on any level of generation becomes necessary. [4]
This paper outlines basically two strategies which both originate in the mid-1970s to
the mid-1980s but are still valid on current embedded systems, namely cross-jumping
and procedural abstraction. For both techniques it is essentially to identify equal or at
least similar sequences of assembly code, so called “repeats”.
To illustrate the basic idea of both strategies, we will mainly refer to the presentation
of Cooper and McIntosh ([1]), the basic outline of the paper will be as follows. Section

 2

2 describes how repeats are identified and the mentioned strategies are applied.
Section 3 will introduce the application in the context of intermediate representation
according to Nyström and Sjödin ([3]), identify differences and discuss the application
of both. Section 4 will present a concluding statement of the author and personal
opinions.

2 Compressing assembly code
As already mentioned, finding equal occurrences of blocks of assembly code will be
the first task of the compression framework. A two-stage approach is used to
combine the construction of a suffix tree and afterwards building the repeat table. [1]
Suffix trees are well known from pattern-matching applications where every edge
represents a possible substring of the original text S. Each path from the root to a leaf
node therefore represents a certain suffix within S. [5]
By computing a hash-code for each instruction in the program using the opcode,
registers and constants a global instruction table is build. The actual “text” is
constituted by a list of indices of the global instruction table corresponding to the
sequence of instructions in the original program. We can now use Ukkonen’s
algorithm ([5]) to construct the actual suffix tree in O(N) where N denotes the texts
length, in other words the length of the program in instructions. [1]
Note that we now seek for identical substrings (i.e. code fragments) within the suffix
tree and general substrings are constituted by arbitrary subtrees of the suffix tree.
The information about identical substrings/subtrees is stored in the repeat table
where each entry is constituted by a set of identical code fragments, each of them
extended by its length and offset in the original text/program. Considering a repeat
table entry with K fragments, the goal is to eliminate (K – 1) of them securely. [1]
Securely in this context means, that there are no circumstances under which a
certain fragment cannot be eliminated. In other words, the flow of control has to be
preserved.
Note that some fragments might overlap with fragments in other repeats. The default
strategy is to calculate the benefit of each repeat and sort the repeat table
accordingly before applying the compression in descending order of the repeat’s
benefit. Also profile based repeat selection is possible. For more details see [1] sect.
4.3.

2.1 Control hazards
Control hazards are circumstances which prevent a certain fragment to be part of the
repeat, i.e. there is a branch into or out of the fragment. A typical countermeasure is
the so called repeat splitting. A given repeat with N fragments a control hazard at
offset h will be split by replacing it with two new repeats with again N fragments, one
containing the partition before and the other one the partition after the repeat. [1]
Note that it is pointless to keep the hazardous instruction in any repeat, because the
hazard itself is not eliminated but merely ignored.
The repeat manager also implements a cost model to decide if a certain split makes
sense. This model takes fragment length, type and offset of the hazard into account
so that if the split fragments get too small hazardous fragment(s) will be removed
entirely from the repeat. [1]

 3

2.2 Procedural abstraction and cross jumping
After the compiler’s compression framework has identified repeats within the input
program it is time to use this information to decrease code size. Based on certain
properties of the fragments within one repeat the mentioned replacement strategies
are possible.
Procedural abstraction replaces the fragments of the repeat by calls to a new
procedure which is basically accomplished by adding the jump-label at start and a
return statement at the end. [1, 2]
Note that it is not necessary to save a stackframe on procedure invocation. As the
procedure originates from equal fragments the register allocation remains valid.
Figure 1 shows an example.

Fragment 1 Fragment 2 Fragment 1' Fragment 2'
… … … …
ADD r4, r2, r3 ADD r4, r2, r3 CALL pa1 CALL pa1
LOAD r7, r3 LOAD r7, r3 … …
SUB r9, r7, r8 SUB r9, r7, r8
… … Abstract procedure
 pa1: ADD r4, r2, r3
 LOAD r7, r3
 SUB r9, r7, r8
 STORE r4, r9

 RET

Figure 1. Procedural abstraction

Cross-jumping, also sometimes referred to as “tail-merging”, is applicable if the
identified fragments have a branch instruction to the same destination in common on
the last instruction. One fragment is left as it is and the other occurrences are
replaced by branch instructions to the start of this fragment. Figure 2 shows the same
example as above extended by a common jump in both fragments to enable cross
jumping.

Fragment 1 Fragment 2 Fragment 1' Fragment 2'
… … … …
ADD r4, r2, r3 ADD r4, r2, r3 JMP cj1 cj1: ADD r4, r2, r3
LOAD r7, r3 LOAD r7, r3 LOAD r7, r3
SUB r9, r7, r8 SUB r9, r7, r8 SUB r9, r7, r8
JMP L5 JMP L5 JMP L5
… … … …

Figure 2. Cross jumping

Both strategies have their benefits and costs in code space and execution time. In
both cases the compression framework has to add branch instructions at any place
where invocation shall take place and in case of procedural abstraction one
additional return instruction. [1, 6]

 4

2.2.1 Abstracting fragments
The presented constitution of the repeat table is based on lexically identical
fragments thus the set of eligible fragments is quite limited. Lexical identity implies
identity of all instructions, registers and constants. To provide some degree of
freedom to the identification algorithm it is advantageous to replace certain operands
and the branches by wildcards. [1]
Branches usually terminate a fragment because of lexical differences in the branch
destination labels. To abstract them we have to consider both ways in which they can
be identical. Absolute identity of the branch targets is at hand if they reference the
identical labels. Branches are relatively equal if they span the same distance in
instructions. [1, 6]
We assume that register allocation has already taken place for the program at hand.
As it turns out it is often the case that fragments are identical except for the use of
registers. The goal now is to rewrite the fragments and adjust the register usage that
they get equal and ready to be processed by the matching algorithm. This technique
basically requires recoloring of the live ranges with respect to the other fragments.
For more details see [1] sect. 4.2.
A possibly interesting future extension would be the abstraction of constants because
the current framework is not able to identify similar fragments which only differ in the
constants used. One way would be to parameterize the abstract procedures
generated by the compiler and use the parameter instead of the immediate value.
One precondition would be that there is one free register available per constant. The
authors leave this point for future investigation. For further details see [1] sect. 7.

3 Discussion and comparison
So far we summarized the basics of suffix-tree based code compression and possible
extensions. While some ideas of suffix-tree based compression date back to the
1970s and 1980s (e.g. [2]), relaxed pattern matching opened new possibilities for a
compression framework to find repeats as it is not locked in lexical equality any more.
While the impact to code size is possible negligible for general purpose CPUs in
today’s PCs there might still be a noteworthy impact when it comes to embedded
systems where one major difference is the availability of resources. [1]
An early paper by Fraser, Myers and Wendt ([2]) already described suffix-tree based
compressions but the invention here was the depth of abstraction on the assembly
code at hand. Compared to that, Cooper’s and McIntosh’s research ([1]) aimed more
towards gaining abstract information which itself can be incorporated into
compression. As mentioned in section 2.2.1 some kind of liveness graph is
reconstructed for register abstraction as register allocation has already taken place.
The question arises if it would sense to conduct the mentioned compression
strategies in other stages of the compilation procedure to reduce or even eliminate
the effort to reacquire information which is already lost.
As code compression typically operates on machine code using some kind of string
matching algorithm (as the presented one), Nyström and Sjödin investigated the
possibilities of applying them to intermediate code. This makes sense as intermediate
code is suitable for other optimizations as well and allows identification of
semantically equal but after register allocation most likely lexically different

 5

fragments. An eligible precondition which Nyström and Sjödin name explicitly but also
applies to machine code compressors is, that the framework (i.e. the compiler) shall
have access to the whole program. The main advantage would be that optimization
can take place over the - potentially very tight - borders of modules.
Naturally there are many similarities shared by both approaches and they can be
mapped directly. By doing so, we can try to identify pros and cons of either based on
the possibilities and points of view they provide.

3.1 Pros of the intermediate representation
The main point when using intermediate representation is that almost no abstraction
from the source is necessary. The effort to abstract information about registers and
branches can be saved because this representation is already in an “abstract” form.
The approach by Cooper and McIntosh needs to reverse engineer this information
from the object code as briefly discussed in section 2.2.1.
The fact that register allocation has already taken place introduced much complexity
and possibly drawbacks because of powerful allocation algorithms. [3]

3.2 Cons of the intermediate representation
Object code compression can be applied to object code only. Using compression on
intermediate code probably leads to a complete recompilation, assuming that some
modifications on the intermediate code generation are necessary too.
Possibly a big drawback is the missing of opportunities for optimization after object
code generation has taken place. The impact of function prologue and epilogue might
be considerable to compression in some cases. [3]

3.3 Future prospects
We identified calling of a function as a critical factor when operating on intermediate
representation. Since new procedures are generated the used calling conventions
are a critical factor. By using a calling convention, which passes parameters and
return values in registers, the overhead can be kept low. As discussed in section 3.2,
saving the stack frame might still be an opportunity to miss. The usage of
interprocedural register allocation potentially can decrease the impact. But the
problem still exists that due to introduction of function prologue and epilogue new
compression opportunities are introduced. [3]
As these opportunities are visible in object code it would be reasonable to combine
both strategies and apply them in sequence. To examine the full potential of the
combined application of both strategies, concerning compression ratio as well as
compile time, it would be reasonable to analyze several combinations, namely the
combination of both described methods and the combination of adapted variants
which aim for disjoint sets of compression opportunities.

4 Conclusion
Both techniques themselves are quite interesting and also effective. From a detached
point of view we would prefer the intermediate code representation as the main point
to introduce compression to the input program. The abstract form is far more suitable

 6

to get insight of the code and some semantics. It is not necessary to reconstruct
liveness, program flow or other information as it is when applying compression to
object code. Nevertheless we will miss some opportunities which are introduced in
subsequent steps of object code generation. Therefore it makes sense to use object
code compression as described by e.g. [1] or [2] for further compression but we think
that an adapted variant will do because of the runtime overhead introduced by
reconstructing information from the object code.

5 References
[1] K. D. Cooper, N. McIntosh, Enhanced Code Compression for Embedded RISC
 Processors, 1999.
[2] C. W. Fraser, E. Myers, A. L. Wendt, Analyzing and Compressing Assembly
 Code, 1984.
[3] S.-O. Nyström, J. Sjödin, Optimizing Code Size through Procedural
 Abstraction, 2000
[4] S. Debray, W. Evans, R. Muth, Compiler Techniques for Code Compression,
 1999
[5] E. Ukkonen, On-line construction of suffix trees, 1995
[6] W. Wulf, et al, The Design of an Optimizing Compiler, 1975

