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Abstract

Higher Java performance for network computing on desktop machines can be achieved by a
Just-in-Time compiler that translates the stack-based Java byte code into machine code. This
document presents the Just-in-Time compiler approach taken by the LaTTE virtual machine.
Special focus is taken on the fast and efficient register mapping and allocation algorithm imple-
mented in LaTTe.

1 Introduction

A Java just-in-time compiler is a component of a Java virtual machine that in contrast to static,
off-line translation [2] translates byte code to native code immediately prior to its execution. Just-
in-time compilation is more suitable for Java due to its dynamic loading nature.

The main challenge of Java just-in-time compilation is the generation of efficient code by allocating
stack slots and local variables to registers efficiently. As the compilation time becomes part of the
running time of the code, the register allocation requires a fast algorithm. Conventional algorithms
based on graph-coloring are rather unsuitable for a JIT compiler.

This work presents LaTTe [1], a just-in-time compiler for the SPARC platform. LaTTe translates
Java byte code into intermediate code using symbolic registers. A fast and efficient algorithm then
allocates real registers to the symbolic registers, coalescing unnecessary copy operations representing
pushes and pops to and from the operand stack.

2 Java virtual machine and SPARC

The Java virtual machine is a typed stack architecture [2]. A thread of execution has a Java stack
associated where a new activation record is pushed each time a method is invoked and popped upon
method return. The activation record includes local variables and an operand stack used to perform
computations.

The calling convention for Java method calls looks like follows: the arguments are pushed on the
callers operand stack, including the this pointer as first argument. They are popped by the JVM

∗This document is intended to be a summary of [1]. The ideas and presented algorithms are the work of the authors
of [1].
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and set up as first local variables of the called method. When the method returns, the return value
is transfered from the top of the callee’s operand stack to the top of the caller’s operand stack.

The SPARC is a RISC architecture featuring a register-based instruction set [3]. A function uses a
register window consisting of 24 registers partitioned into 8 in-registers (%i0 - %i7), 8 local registers
(%l0 - %l7) and 8 out-registers (%o0 - %o7). When a function is called, the register window is
rotated, so that the caller’s out registers correspond to the callee’s in registers. The callee saves the
return value to in-register 0, which corresponds to out-register 0 from the view of the caller.

3 Code generation

In LaTTe, native code is generated on a per-method basis. The translation process is started when
a Java method is called for the first time and it consists of five passes. First control join points
and subroutines are identified in the code. Next a control flow graph (CFG) is computed containing
instructions with symbolic registers. In the following optional stage optimisations are performed. In
the fourth stage a fast register allocation algorithm is performed and finally native code is emitted.
The rest of this section focuses on passes two and four.

3.1 Translation of byte code to pseudo code

The SPARC instruction generated by a specific byte code instruction is determined only by the
opcode. Instead of registers as operands the instruction uses symbolic registers. These symbolic
registers are composed of three parts:

• type: a = address, i = integer, f = float, l = long, d = double

• location: s = operand stack, l = local variable, t = generated temporary

• number further distinguishing the symbolic register

An additional TOP compile-time variable is used to address the topmost item on the stack. For
example if the stack size is 4 then is{TOP - 1} is equivalent to is3. The types of the variables in
the stack slots are stored in a compile-time array type[1 .. TOP]. LaTTe traverses the code in
depth-first order. If a byte code instruction that pushes elements on the stack is encountered, TOP
is incremented by the number of elements pushed. Byte codes instructions popping stack elements
decrement TOP.

The stack computational model of the JVM leads to the consequence that byte code instructions
transferring values between local variables and the stack occur frequently. These load and store

instructions are translated to mov instructions with pseudo registers representing stack slots and local
variables as operands. An example is shown in table 1.

Bytecode Pseudo SPARC Code Compile time actions Stack

iload n mov il{n}, is{TOP+1} TOP += 1, type[TOP] = i ... => ..., local variable n

astore n mov as{TOP}, al{n} TOP -= 1 ..., value => ...

Table 1: Translation of load and store instructions

Arithmetic byte code instructions operate of the top items of the operand stack and are directly
mapped to pseudo instructions. An example is shown in table 2.
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Bytecode Pseudo SPARC Code Compile time actions Stack

iadd add is{TOP-1}, is{TOP}, is{TOP-1} TOP -= 1 ..., x, y => ..., (x+y)

Table 2: Translation of arithmetic instructions

A memory representation of an object in the LaTTe JVM contains a pointer to the virtual/interface
table, a 32 bit lock followed by the instance data. The object fields are located at a specified offset
from the start of the object. Field access is mapped to load and store pseudo instructions. An
example is shown in table 3.

Bytecode Pseudo SPARC Code Compile time actions Stack

getfield x.foo ld as{TOP} + offset, is{TOP} type[TOP] = i ..., object => ..., integer

putfield x.foo st is{TOP}, as{TOP-1} + offset TOP -= 2 ..., object, integer => ...

Table 3: Translation of filed access instructions

For each loaded class a virtual function table is maintained. The table contains the start address of
each method defined in the class or inherited from the superclass. Because of single inheritance in
Java, if a method of a class is placed at offset n in the virtual function table, it can be placed at
offset n in the virtual function tables of all subclasses. The symbolic registers corresponding to the
arguments and return values are allocated in the register allocation stage to registers according to
SPARC calling conventions. Consult table 4 for an example.

Byte code invokevirtual x.func // (int, int) -> int

Stack ..., object, argument, argument => ..., result

Pseudo code ld as{TOP-2}, at0

// pointer to is located at the beginning of the object

ld at0 + function offset, at1

// address of method is located at a specified offset in the table

call at1

Preferred register allocation as{TOP-2}:%o0, is{TOP-1}:%o1, is{TOP}:%o2
is{TOP-2}:%o0

Compile time TOP -= 2, type[TOP] = i

Table 4: Translation of method invocation

3.2 Fast register allocation

The CFG of pseudo SPARC instructions is partitioned into tree regions which are single-entry,
multiple-exit subgraphs shaped like trees (same as extended basic blocks [4]). Tree regions start at
the beginning of the program or at control join points and end at the of the program or at other
join points. Next, last uses of symbolic registers are calculated. Stack and temporary registers are
supposed to be dead after they are used in an instruction, so determining their life range is rather
easy. For local symbolic registers an upper bound of their liveness is computed. The regions are then
register-allocated one by one in reverse post-order traversal of the CFG of regions.

Each region is traversed twice. Once in a post-order traversal called the backward-sweep and once
in a depth-first traversal called the forward sweep. The backward sweep determines the preferred
destination registers for instructions. The forward sweep uses this information to perform the ac-
tual register allocation. During each traversal, a map which is a set of (symbolic, real) register pairs
is constructed. For the backward sweep it is called p map while for the forward sweep is called h map .
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The purpose of the backward sweep algorithm is to determine the p map for destinations of instruc-
tions based on the required register assignment at the end of the region, or at method call/returns
according to the conventions. For example if at the end of a region a symbolic register il2 is al-
located to register r and there are the instructions add is1, is2, is1; mov is1, il2, then the
destination is1 of the add is preferred to be allocated to r to avoid a copy. If x is preferred to be
allocated to r under a mov y, x, then y is preferred to be allocated to r above the instruction.

The forward sweep algorithm computes the h map starting of an initial h map . It maintains
refcount, a map showing the count of symbolic registers mapped to a real register and freereg,
the set of real registers not yet mapped to real registers. In a depth-first traversal of the region, if an
instruction z = x + y is encountered, first the right hand side is generated as h[x] + h[y]. If x is
the last use, the refcount of h[x] is decremented. If it even gets zero h[x] is added to freereg. The
target register z in case of a copy instruction z = x is allocated to the same register as x. Otherwise
if there is a preferred register for z and the register is available in freereg, it is chosen. In case it is
not available in freereg and arbitrary free register is chosen. The pair (z, chosen register) is then
added to h.

If, in the traversal, we encounter the root of the next region, we save the current h map at that root,
so that it can be used as the initial h map of that forward sweep. As the root is a join point, it can
be reached by more than one forward sweeps. If it was already reached and therefore has already an
initial h map , we need to reconcile the old initial h map with the new initial h map .

Let’s call h old the initial h map at a region and h new the new initial h map to be set in the forward
sweep. If h old[x]=h old[y]=r and h new[x]=h new[y]=r’ then a copy r=r’ has to generated on
the new incoming edge. This will preserve the old mapping, h[x]=h[y]=r. However, if h new[x]=r’

and h new[y]=r’’ there is a problem. Although the mappings can be reconciled inserting copies
also in the old incoming edge, the old mapping h=h old on the regions root can not be preserved
any more. If the region has not yet been register allocated, this is no problem. But if the region has
already been allocated using the h old mapping, it has to be reallocated.

If during forward sweep no registers are available on an instruction I, a real register for spilling
is chosen based on a heuristic. Assuming that h[x] = h[y] = r and r is chosen for spilling, we
generate a store instruction before I st x, SPILL0. Than we mark x and y last uses. By register
allocating the generated store, we allocate st r, SPILL0. The symbolic registers x and y are than
mapped to SPILL0 (h[x] = h[y] = SPILL0). If a spilled register is used later, a load is inserted
before.

4 Comparison with previous JIT compilation techniques

In this section the LaTTe JIT compiler is compared with JVMs whose compilation techniques were
published including Kaffe [5], VTune [6] and CACAO [7].

Kaffe features a relatively simple single-pass JIT. In Kaffe, local variables and stack slots are mapped
to the C stack of the translated method. If a variable or stack slot is used in a basic block, it is
loaded to a register and spilled back at the end of the basic block. The consequence are many loads
and stores in the generated code. Kaffe generates native code in its single pass, without generating
any intermediate code.
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Intel’s VTune includes a JIT compiler for the x86 platform. Here, local variables are globally pre-
allocated before the translation starts. Then code is generated in a single pass with local register
allocation for stack slots and temporaries. To avoid copy operations, a compile-time mimic stack is
computed. If at basic block boundaries the mimic stack is found to be not empty, all stack slots are
spilled to the C stack.

In CACAO, local variables are preallocated like in VTune. Stack slots that are live beyond a basic
block are allocated to interface pseudo registers. CACAO first converts the byte code to an inter-
mediate representation creating a compile-time static stack which contains information similar to
symbolic registers in LaTTe. Than an elaborate stack analysis is used to eliminate copy instructions.

The preallocated local variables in CACAO and VTune lead to inefficiency problems compared with
LaTTe. First, if a local variable is copied to another, in LaTTe they can both be allocated to the
same register. Second, if local variables have different life ranges, then in LaTTe they can be allo-
cated to the same register.

The fact that CACAO an VTune give up coalescing at basic block boundaries if the compile time
stack is not empty represents another inefficiency. LaTTe in contrast resolves conflicts at basic block
boundaries and generates less instructions.

5 Summary

In this document LaTTe, a Java JIT compiler featuring fast and efficient register allocation has been
introduced. The algorithm used represents a solution that trades off quality and speed of register
allocation such that it’s suitable for JIT compilation. This is confirmed by experimental results in [1].
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