
Efficient Programs
Group 3 - Magic Hexagon Optimization

Steps taken

1. Algorithmic optimization of solve() function

2. Adapt exploration order

3. Bisecting search space

4. Optimization of sum() function

5. Compiler flags

Algorithmic optimization of solve() function

Challenges:

● Understand the program code.

● Function solve() contains many goto jumps.

● Figure out which goto jumps are necessary.

● Reduce the number of goto jumps.

● Preserve program correctness.

Algorithmic optimization of solve() function

Delete unnecessary goto jumps.

Algorithmic optimization of solve() function

Jump only when boundaries for all points are updated.

Same solution applied for sum constraints.

Adapt exploration order

● Goal:
By exploring the variables in a different order inside labeling()
we aim to check more constraints earlier and consequently
eliminate parts of the search tree

● Attempted strategies:
○ Variable with fewest values first
○ Spiral order
○ Wheel order
○ Spiral order with corners first

Spiral Wheel Spiral +
corners

Adapt exploration order

Left to right,
Top to bottom

Variable with
fewest values first

Spiral order Wheel order Spiral order with
corners first

Precomputed No No Yes Yes Yes

Leafs visited 15,808,871 14,286,898 2,720,000 40,307,012 2,270,926

Running time 51.17 sec 40.74 sec 6.83 sec 121.51 sec 6.21 sec

Improvement - 20.4% 86.7 % -137.5% 87.9%

Bisecting search space

● Goal:
Eliminate branches of the search / recursion tree earlier
by calling solve() on already stronger constrained fields

● Strategy: Divide & Conquer
Divide the value range in the labeling() step into

lower and
upper range

and solve separately

⇒ Classic bisection of search space (binary search, > git bisect, etc.)

Bisecting search space
void labeling (...) {
 // ...
 if(hexagonEntry->lo == hexagonEntry->hi)
 // hexagonEntry already fully constrained, continue to next hexagon index.
 return labeling(hexagon,index+1,order);
 // ...
 long mid = (oldHexagon[i]->lo + oldHexagon[i]->hi) / 2;
 // ...
 // initialize new hexagon and set lower-halve bounds for entry i
 newHexagon[i].lo = oldHexagon[i]->lo;
 newHexagon[i].hi = mid;
 if (solve(newHexagon))
 labeling(newHexagon,index,order);
 // ...
 // re-initialize new hexagon and set upper-halve bounds for entry i
 newHexagon[i].lo = mid+1;
 newHexagon[i].hi = oldHexagon[i]->hi;
 if (solve(newHexagon))
 labeling(newHexagon,index,order);
 // ...
}

Bisecting search space
Resulting search space for first Hexagon field (index 0)
Nodes are new field ranges on which solve() is called
> ./magichex 3 2

Bisecting search space

● Improvements for > ./magichex 4 3 14 33 30 34 39 6 24 20

original: 15808871 leafs visited
original+bisect: 4930863 leafs visited 69 % reduction

spiral access: 2270926 leafs visited
spiral access+bisect: 397928 leafs visited 82 % reduction

Optimization of sum() function

● Context of sum()

○ Calculates and sets constraints for upper and lower boundary

○ Ensures that the sum of variables holds certain constraints

● Early termination

○ Utilizing early termination conditions

● Optimizing conditional checks

● Reduced cycles and run time

Optimization of sum() function

● Early termination

Optimization of sum() function

● Optimizing conditional checks

Compiler flags

● Tried various flags mentioned in the gcc docs
● Using the -O flag

○ 0 - 3, no optimization to highest optimization
○ s for size optimization
○ g for optimizing the debugging experience
○ fast for optimizing speed only

● funroll-loops, funroll-all-loops
● march=native
● fwhole-program
● fsplit-loops
● AutoFDO

Compiler flags

● -O0: Baseline
● -O1: ~60% faster
● -O2: ~70% faster
● -O3: ~71% faster
● -Ofast: ~70% faster
● -Os: ~47% faster
● -Og: ~62% faster
● -O3 -funroll-loops: ~76% faster
● -O3 -funroll-all-loops: ~75% faster
● -O3 -fsplit-loops -funroll-loops: ~76.1% faster

Compiler flags

● -Wall -O3 -DNDEBUG -funroll-loops -fsplit-loops -march=native
-fwhole-program: ~79% faster

○ -O3 most of optimization flags specified by gcc
○ -DNDEBUG
○ -funroll-loops

■ unroll loops whose number of iterations can be determined at compile time or upon entry
to the loop, loop peeling, more code

○ -fsplit-loops
■ split a loop into two if it contains a condition that’s always true for one side of the

iteration space and false for the other.
○ -march=native

■ tune generated code for the micro-architecture and ISA extensions of the host CPU
○ -fwhole-program

■ all public functions and variables (except main) become static and in effect are optimized
more aggressively

Benchmarks

● Baseline: 181.1950 +- 0.0531 seconds
○ 15809528 leafs visited, 849851023565 cycles, 2372629024670 instructions

● Partial goto optimization: 159.582 +- 0.140 seconds
○ 15808871 leafs visited, 748731599056 cycles, 2096155150602 instructions

● Corners-first and spiral access pattern: 12.9534 +- 0.0245 seconds
○ 2270926 leafs visited, 60759414081 cycles, 221531374766 instructions

● Bisecting search space: 7.8680 +- 0.0132 seconds
○ 397928 leafs visited, 21159230657 cycles, 132925675516 instructions

● Full goto optimization: 4.50446 +- 0.00202 seconds
○ 397929 leafs visited, 21159230657 cycles, 73292614871 instructions

● Sum optimization: 4.62492 +- 0.00896 seconds
○ 397929 leafs visited, 21855899006 cycles, 73105231178 instructions

● Compiler flags: 1.425913 +- 0.000960 seconds
○ 397929 leafs visited, 6962204289 cycles, 21246335112 instructions

Benchmarks

Project online at:
http://www.complang.tuwien.ac.at/anton/lvas/effizienz-abgaben/2023w/group03/

http://www.complang.tuwien.ac.at/anton/lvas/effizienz-abgaben/2023w/group03/

