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Abstract
PyPy is a widely known virtual machine for the Python program-
ming language. PyPy itself is implemented in the statically typed
subset of Python called RPython. RPython includes a tracing Just-
In-Time (JIT) compiler and is capable of generating the compiler
for a language from the specification of the interpreter for that
language. In PyPy 4.0.0 we extended the tracing JIT compiler to
support vectorization of loops and emit code for the SSE4 vec-
tor operations of the x86 instruction set. This article presents the
details of the new vectorizer of PyPy. The vectorizer uses a loop
unrolling approach to vectorization. It has been designed for effi-
cient compilation as the compilation is done during the execution
of the application. The scientific library NumPy introduced arrays
which are homogeneous, primitive typed and contiguous in mem-
ory. These kind of arrays are used to avoid the problems with dy-
namic typing. Our contribution to PyPy’s new vectorizer supports
scalar and constant expansion, accumulator splitting for reductions,
guard strengthening and array bounds check removal. The empiri-
cal evaluation shows that the vectorizer can gain speedups close to
the theoretical optimum of the SSE4 instruction set.

1. Introduction
The programming language Python is becoming popular in the
embedded system domain. PyPy is a widely known virtual machine
for the Python programming language. Opposed to the standard
implementation (CPython), it includes a tracing just-in-time (JIT)
compiler supporting different architectures like x86 and PowerPC
and making it suitable for embedded systems. The implementation
language is a statically typed subset of Python called Restricted
Python (RPython). RPython is not only a programming language
but also an abstraction for byte code interpreters. It is able to
automatically generate a meta-level tracing JIT compiler and a
garbage collector. Thus it is not only used for PyPy but also for
many other interpreters for dynamic and functional languages or
instruction set simulators.

In the last two decades new Single Instruction Multiple Data
(SIMD) instruction sets where built into processors to speed up
multimedia applications. These instruction sets are not only useful
for multimedia applications but also for scientific applications. In
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theory, given a single precision floating point operation in a loop,
if the loop is vectorized to SSE4 instructions (a x86 instruction
set architecture (ISA) extension) it executes 4 times faster. If a
language implementation can use such SIMD instructions this can
lead to very high performance gains of the application programs.

Recent developments in scientific computing have drawn atten-
tion to libraries for numerical computations (e.g NumPy). NumPy
and others currently remove the interpreter overhead of numerical
computations by writing the critical routines in a low level language
like C. They are compiled to the host computers architecture ahead
of time. At runtime the language interpreter invokes the foreign
function compiled earlier. For different language interpreters the
internals often are very different. CPython for example uses a dif-
ferent garbage collector than RPython. NumPy depends on some
internals of CPythons garbage collector and therefore the library
cannot be used directly by RPython. Since NumPy is a commonly
used library, PyPy rewrote parts of NumPy and included it in the
standard library. This setup renders most of the critical loops as
normal program loops instead of foreign functions and makes it
desirable to optimize such loops. Python in general is a dynami-
cally typed language. This can lead to run time overheads when the
type of values can not be determined at run time or if the type of
some values changes often at run time. To simplify optimizations
arrays in NumPy are homogeneous, primitive typed and contiguous
in memory. These homogeneous and primitive typed arrays lay the
ground for PyPy’s vectorizer.

In this article the new auto vectorizer built into the RPython op-
timizing backend is presented. Since the vectorizer is built into the
tracing JIT compiler, vectorization happens at run time. This leads
to the requirement that vectorization should have low overhead.
Traditional high overhead vectorization approaches are therefore
not applicable, different approaches have to be used. The contribu-
tions of this article are

• an efficient vectorizer based on loop unrolling,
• fast data dependence analysis on traces,
• a cost model for the packing of instructions,
• simple and efficient heuristics for grouping and scheduling in-

structions and
• minimization of guard instructions by guard strengthening.

First details of PyPys tracing JIT compiler are presented, then
the vectorizer with all optimizations is described in detail, finally
results on the performance are given.

2. Related Work
2.1 Traditional Vectorization
Traditional vectorization [1] [35] analyzes and transforms nested
loops. To successfully transform loops transformations like loop



normalization, loop collapsing, loop distribution, loop interchange
and loop peeling are applied. To determine data dependences be-
tween array elements often equation systems considering array sub-
scripts have to be solved. Tests like Banerjee’s GCD test [3], the
Omega test [28] or the Power test [32] are needed.

Naishlos [21] presented a first version of vectorization for the
GCC tool chain in 2004. It uses traditional vectorization tech-
niques [1]. This version did neither support different access patterns
(such as even/odd) nor an elaborate alias analysis for pointers. Two
years later Nuzman et al. [22] presented the new capabilities. The
new version is able to vectorize more loops offering improved sup-
port for pointer alignment, pointer accesses, conditional operations,
reductions and non uniform strides.

Intels vectorizer [6] uses the same approach as outlined in [1]. A
lot of effort has been put into avoiding pitfalls of their architecture
and support of accumulation as well as realignment by multiple
loop peelings. The results show stunning performance boosts of
the 16-bit integer dot product. However only two out of fourteen
benchmarks from the SPEC2000 benchmark suite show significant
speedups.

At the same time as the first SIMD instruction sets found their
way into production processors (e.g. VIS in 1994 or the MMX in
1997), Cheong and Lam[9] describe an auto vectorizer split into
two phases. A source to source compiler first translates loops into a
parallel form. The second phase tackles the following problems:
alignment of memory load and stores, mask generation, partial
stores, expansion, packing and comparison vector operations.

2.2 Vectorization by Loop Unrolling
Vectorization by loop unrolling does not consider cyclic loops on
the whole, but only the acyclic loop bodies. Krall et al. [16, 27] pro-
pose an algorithm that operates on a machine independent IR and
generates short SIMD instructions for loop bodies with multiple
basic blocks. It combines several structurally equivalent statements
in unrolled loop bodies into single short SIMD instructions using
an acyclic data dependency graph. Both static alignment analysis
and dynamic alignment checks with loop versioning are employed
to respect alignment restrictions.

Similarly Larsen [17] analyzes basic blocks from unrolled loops
going through the following steps: finding adjacent memory refer-
ences, extending packed instructions, combination and scheduling.

Leupers [19] modeled SIMD code selection as an integer pro-
gramming problem. For a data flow graph of 95 nodes code selec-
tion takes 26 seconds.

In the SPIRAL project Franchetti et al. [13, 14] developed a
source to source compiler that specifically targets Digital Signal
Processing (DSP) transformations. C compiler macros are used to
leverage SSE compiler intrinsics. SPIRAL transforms the mathe-
matical representation of the problem to C source code which sim-
plifies vectorization. The later work describes in detail how to over-
come the issue of non adjacent memory accesses. The evaluation
shows that the optimizer is comparable with hand optimized third
party DSP transformation libraries.

Wu et al. [34] present a novel approach of “virtual vectors”. A
virtual vector consists of a length and type of its elements. Transfor-
mations like parallel reduction work on top of virtual vectors. The
proposed solution is implemented in IBM’s XL production com-
piler and shows that both micro kernels and real benchmarks gain
significant speedup.

Up to this point, handling control flow constructs have not been
addressed elaborately. Shin et al. [31] try to find efficient ways to
map control flow to SIMD instruction sets. In the unrolled basic
blocks control flow is converted into data dependencies using if-
conversion. An “unpredicate” step turns the predicated instructions
again back to normal control flow.

Hohenauer et al. [15] present an unroll and pack based SIMD
optimization framework for retargetable compilers. Experimental
results for different processors demonstrate that the proposed tech-
nique applies to real-life target machines and that it produces code
quality improvements close to the theoretical limit.

Porpodas et al. [25] inject redundant instructions into the code
to transform non-isomorphic code sequences into isomorphic ones.
The padded instructions can then by vectorized.

2.3 Aligned memory operations
Some SIMD instruction sets only allow the loading and storing to
memory addresses that are aligned. Pryanishnikov et al. [26] deter-
mine pointer alignment using inter-procedural abstract interpreta-
tion. Roughly 50% of all alignment decisions can be determined
statically. Moreover this information can reduce the size of the
compiled binary on the evaluated programs up to factor of 4.5.

As mentioned earlier, aligned load/store operations can be fol-
lowed by several reorder operations to move vector elements to the
right positions. Eichenberger et al. [11] and Wu et al. [33] show
that it is possible to emulate alignment at runtime. The concept of
a stream (i.e. a sequence of consecutive array elements) form the
foundation of their contributions. Using a stream offset, they de-
fine the constraints of a valid SIMD transformation. Misalignment
forces the compiler to insert data reorganization instructions to ad-
here the previous constraints. Because data reorganization can hap-
pen at several positions, three different policies (Zero,Eager,Lazy)
control the placing of reorganizations.

Alvarez et al. [2] describe the performance impact of unaligned
memory references. Their experiments show that it is critical to
prove alignment or to provide unaligned access to memory in the
instruction set to get performance gains for SIMD instructions.
They conclude that for multimedia codes unaligned memory ac-
cesses are very useful.

2.4 Interleaved Data Formats
Nuzman et al. [23] present a transformation scheme that efficiently
supports vectorization in the presence of interleaved data. The only
constraint they impose is a stride that is a power of two. Their
modifications to the GCC compiler tool chain track each load/store
operation with an index to a group. Utilizing this information it can
be determined how to reorganize the loaded data into the correct
format and reorder it just before storing it to memory. Benchmark
programs show significant speedup and highlight the benefit this
reorganization can have for interleaved formats.

Ren et al. [29] present an algorithm to vectorize loops without
restricting the reorganization to a power of two. Program source
code is transformed to a generic representation followed by an op-
timization step minimizing the amount of data permutations. The
code generator emits the necessary data reorganizations while as-
sembling the final object code. Approximately 77% of data permu-
tations can be eliminated gaining roughly 68% percent speedup for
the benchmark programs on the SSE2 platform.

Liu et al. [20] improve grouping using a variable pack conflict-
ing graph and a grouping graph. Data layout optimizations reduce
mandatory packing/unpacking operations by reorganizing data in
the memory.

2.5 Just-In-Time Auto Vectorizers
Vectorization as an optimization technique in JIT compilers is sel-
dom. El Shobaki et al. [12] extended the Jikes RVM to automat-
ically vectorize loops. The technique that used an extended tree
pattern matcher was not improved by follow up projects. Barik et
al. [5] also added a vectorizer to the Jikes RVM. Their framework
included an efficient dynamic programming-based vector instruc-
tion selection algorithm which supports scalar packing of multiple



scalar variables, the use of shuffle and horizontal vector operations
and algebraic reassociation.

Rohou et al. [30] try to find data parallelism on byte code level
by annotating information that can later be used by the JIT compiler
in the virtual machine (VM). Lesnicki et al. [18] also annotated the
byte code to enable the VM to vectorize loops with low overhead.

Another approach that couples an offline preparation stage and
a lightweight online stage was implemented by Nuzman et al. [24].
The output of the offline stage is a portable vectorized byte code
format. They provide a list of idioms the online stage can easily
recognize and efficiently map to the target architecture. Configura-
tion in the offline stage is provided to the online stage consisting
of alignment properties, cost model metrics and other convenient
parameters. The evaluation showed that this approach can be used
to successfully speedup various benchmark programs.

3. PyPy’s tracing JIT compiler
The meta-level tracing JIT (TJIT) compiler is the main compo-
nent of PyPys language development environment for dynamic lan-
guages. Here only a short introduction is given, more details can be
found in the articles describing PyPys TJIT compiler [7, 8]. To im-
plement a dynamic language with PyPy an interpreter has to be
written in RPython. The language interpreter is augmented with
hints which specify which data is used for language interpretation,
e.g. the program counter for a byte code interpreter or a frame
pointer. The RPython interpreter starts execution of the language
interpreter which executes the application program. When a loop
is executed often the TJIT compiler is activated to translate a trace
of the loop body’s intermediate code instructions to machine code.
The specialty of RPythons TJIT compiler is that it optimizes a trace
which represents an unrolled interpreter loop which executes an ap-
plication program loop. With the hints of the language implementer
the TJIT compiler is able to eliminate the complete overhead of the
interpreter loop. After the optimization only the instructions of the
application programs loop body remain.

During the execution PyPy switches between various states.
This separation is inspired by [10].

• Interpret. Byte code instructions are dispatched one by one
modifying the internal state of the VM. This is the default mode
when PyPy starts its execution. Backward jumps are instru-
mented to count the loop iterations. A loop is considered hot
after exceeding the iteration threshold. The interpreter enters
the Trace state.

• Trace. The next execution of the program loop records the in-
structions as a history. At points where the trace could be exited
(e.g. conditional jumps) guard instructions are inserted. If the
number of traced instructions does not overrun, the sequence is
provided as input to the optimizer (State Optimize).

• Optimize. This is a critical step to simplify the trace, remove
and exchange instructions. It applies commonly known op-
timizations such as constant folding, constant propagation,
strength reduction, invariant code motion, partial redundance
elimination and many others. Both guard implication and guard
strengthening are two optimizations also implemented in PyPy.
This state is immediately followed by Compile.

• Compile. This step transforms the tracing history to native ma-
chine code at runtime. It covers both register allocation and in-
struction selection. PyPy offers several different backend im-
plementations such as x86 (both 32 and 64 bit), ARM and a
PPC backend. After the compilation succeeded, the interpreter
enters the Run state.

Figure 1. All interpreter states the TJIT switches between

Figure 2. A trace tree constructed by e.g. PyPy’s tracing inter-
preter. It shows a doubly nested loop.

• Run. The VM executes any compiled trace. Before the inter-
preter can resume normal execution, the Blackhole interpreter
(reached from “Cold guard fail”) reconstructs the interpretation
state. Cold guard fails count guard exits, eventually reaching a
threshold and tracing the interpreter instructions (Edge “Guard
failure”). The trace is stitched to the guard instruction creating
another branch to the trace tree. “Hot guard fail” continues to
execute compiled machine code.

• Blackhole. The state to reconstruct the environment to continue
interpretation. This is necessary when exiting a trace at any
guarding instruction that has no stitched trace to it. Afterwards
the next byte code can be sanely executed and the normal
interpreter resumes.

Figure 1 shows the states and various transitions between them.
An edge description containing “cold” means that the threshold
has not been reached yet. On the contrary “hot” means that the
execution can follow a stitched trace or that a candidate for tracing
has been found.

3.1 Building Trace Trees
The tracing JIT compiler is generated for the main interpreter
loop dispatching the byte codes. The only addition required to the
interpreter annotates the dispatch header and the backward jump.
An automatic process creates an abstract representation that can be
traced and JIT compiled. Figure 2 shows a sample trace tree.

It represents a nested loop, switching to the inner loop in the
middle of the outer loop. Guarding instructions ensure the correct-
ness of the execution. Whenever a guard fails frequently, a “bridge”



is created and attached to the trace. To exit a trace loop the bridge
ends in a “Finish” operation and continues to execute an outer loop
or switches back to the interpreter.

The instructions that form the outer loop body are split by
the inner loop. Operations prior the inner loop are executed from
the outer loop header until entering the inner loop by a “Jump”1

operation. The guard exit leading into a “Finish” operation executes
all operations that succeed the inner loop until the outer loop is
closed again.

The existing TJIT compiler had to be extended in many areas
to support vectorization. The following contributions have been
added:

• Create a dependency graph for trace instructions.
• Unroll a trace loop by a factor greater than two.
• Find, extend and combine groups of parallel instructions.
• Schedule a dependency graph and emit vector statements.
• Strengthen guards that protect comparison.
• Create several different version of the trace loop and stitch it to

guard instructions.
• Support accumulation patterns (e.g. sum).
• Remove redundant array bound checks.
• Emit SSE4.1 machine code for vector instructions.

4. Motivation
PyPy is eager to provide parts of the NumPy library within the
standard library of their virtual machine. At the time of writing
one of the biggest challenges is to compete with the speed of native
code produced by an ahead of time compiler for NumPy kernels.
It was decided to reimplement part of the library due to major
limitations.

• Many array operations invoke foreign functions. The penalty
can be significant for PyPy.

• They are written and must be maintained in a low level language
(e.g. Fortran,C).

• By reason of the moving garbage collector, there is no API to
let foreign code access PyPy’s internal objects. This is one of
the biggest limitations that separates CPython and PyPy.

The native NumPy routines used by CPython are written in C
and use the CPython API to manipulate Python objects. It uses
a preprocessing utility2 to generate all numerical kernels and use
plain memory/pointer arithmetic to access elements. The loop ker-
nels are unrolled manually to ensure that SIMD operations are
emitted by the ahead of time compiler.

The numerical kernels of PyPy are written in RPython using an
iterator API to access memory elements. The numerical kernels are
parameterized with the kernel function, operator types and result
type. They take full advantage of the tracing JIT compiler.

5. Design
Program transformations for vector machines try to maximize the
size of vectors to be processed in parallel. The bigger the input
vectors are the more instructions can be executed in parallel. State-
ments and the loop nest provide the basic information to build a

1 In RPython, this jump is named “call assembler” and is a different opera-
tion than the jump to a loop header.
2 It does not use the preprocessor to duplicated routines for different element
types. The preprocessor is annotated in comments.

cyclic dependency graph. Strongly connected components (SCC)
are identified and the graph’s topological order is used to emit vec-
tor statements that are not contained in SCCs. SIMD instructions
have a bounded vector size thus the usual abstractions force the
code generation to split up the vectors into short vectors again.

In a tracing context the nesting of a loop is opaque and the inner
most loop is always traced first. This limitation is a design decision
that helps to cope with one problem object oriented languages
impose on the runtime: abstraction through layering. A function
call often flows through several object layers to accomplish small
tasks. The well known optimization to improve performance in
these cases is called “Inlining”. A tracing compiler can efficiently
inline and optimize the execution. At the same time the assembled
machine code size of a trace is only a fraction compared to a
method based compiler.

Practically speaking, the abstractions for nested loops and
acyclic dependency construction are well suited for vector ma-
chines. Whenever time is of essence and the vector size is bounded
a different approach might yield similar results. The algorithms
proposed by Krall and Lelait [16] and Larsen [17] are able to vec-
torize traces.

Parallel instructions are gathered by unrolling the loop. Depen-
dency construction is simplified because cyclic dependencies are
ignored. Only loop independent dependencies are tracked using the
definition-use chains of the trace. This can be done in a linear pass
over the trace loop using an associative data structure to remember
definitions. By contrast, approaches like the Power test [32], the
Omega test [28] or the well known GCD [4] test need linear/affine
equations and solvers to determine the dependency.

The rest of the algorithm boils down to a scheduling prob-
lem. The dependency graph is used to group independent and iso-
morphic instructions. This information is then considered while
rescheduling the trace and emitting vector instructions.

6. Vectorization on traces
The optimization routine is outlined in Algorithm 1. Although
the implementation in the RPython optimization backend is quite
similar to the work of Larsen [17] and Pryanishnikov [27] there are
some key differences.

Algorithm 1 shows the preparation routine for a trace loop and
the algorithm to vectorize trace loops. The function BASICINFO
returns the smallest type in bytes (for load/store operations), a list
of operations that reference memory (read/write) and all modifi-
cations on index variables. The three different information types
can be acquired in a single forward pass. The unrolling factor is
heuristically determined by the smallest type and the size of the
vector register. The smallest type has been chosen, to offer more
opportunity to pack instructions. By choosing the biggest type, oc-
casionally packed instructions do not span over the whole vector
register.

Tracing checks the loop index at the end of the trace, before it
jumps back to the header. This check at the end adds a dependency
to the next load instruction and the previous store instruction of the
unrolled trace loop. It is impossible to execute the instructions in
parallel. RELAX in Algorithm 1 finds the index guards and moves
them to the beginning of the loop. This operation is then marked as
an “early exit” which enables the dependency builder to reduce the
dependencies.

The output of PREPARE is the input for VECTORIZE. Iv is used
to determine if memory loads/stores alias or if they are adjacent
in memory i.e. ADJACENT. Without inferring this information, the
resulting dependency graph cannot assume that two memory stores
don’t depend on each other. This introduces edges which are not
necessary in most cases, but prohibit vectorization.



Algorithm 1 Vectorization optimization routine
T ... Trace loop
vs ... Size of the hardware vector register
Mr ... Set of instructions that read/write memory references
Iv ... Set of affine combinations for indices
function PREPARE(T,vs)

T← RELAX(T)
b, Mr , Iv ← BASICINFO(T)
factor← vs

b
Tu ← UNROLL(T,factor)
return (Tu,Mr ,Iv)

function VECTORIZE(T, Mr , Iv)
G← BUILDDEPENDECYGRAPH(T, Iv)
P ← INITPAIRS(G, Mr , Iv)
P ← EXTEND(P , G)
P ← COMBINE(P )
Tvec, savings← SCHEDULE(G, P)
if savings ≤ −1 then

return T
return Tvec

INITPAIRS, EXTEND and SCHEDULE are shown in Algo-
rithm 2,3,4 respectively.

6.1 Initialize and Extend
INITPAIRS create pairs of adjacent memory operations that are both
isomorphic and independent. ISOMORPHIC is defined as “semanti-
cally equivalent intermediate instruction”. Relying on these prop-
erties, a parallel execution is semantically valid.

Algorithm 2
function INITPAIRS(G, Mr , Iv)

P ← ∅
for m1,m2 ∈Mr ×Mr do

if ADJACENT(m1,m2) ∧ ISOMORPHIC(m1,m2) ∧
INDEPENDENT(G,m1,m2) then

P ← P ∪ PAIR(m1,m2)

EXTEND enumerates all known pairs and tries to follow the
definition and use chains. The Cartesian product of the two calls to
DEF/USE represent the instructions combinations possible for two
pairs. These candidates are subject of extending the list of pairs.
The idea of this algorithm is to find the pairs that directly use input
pairs to the same argument slots. If the operation has a vectorized
equivalent, a hardware SIMD instruction might be able to execute
the operation faster. The routine continues as long as new candidate
pairs are found.

6.2 Combine and Schedule
Up to this point only pairs of operations have been recorded. By
design pairs can overlap with other pairs. Given the two pairs
(l1,l2) and (l2,l3) they can be merged into a pack of three elements
(l1,l2,l3). This task is accomplished by COMBINE. It has been omit-
ted from the listing, since it’s implementation is straight forward. It
simply compares pack by pack and merges them if the right most
operation matches the left most. It already takes into account the
vector size provided by the target ISA and stops to pack further
operations if the limit of the vector size is reached.

To accomplish tight packing and to minimize the number of
resulting packs the input pairs are sorted. Each pair’s first operation
is sorted ascending. The current pack is expanded as long as there
are more matching packs and the capacity has been reached.

Algorithm 3
function EXTEND(P, G)

C ← ∅
while C 6= |P | do

C ← |P |
for PAIR(i1, i2)∈ P do

for i3, i4 ∈ USE(G,i1) × USE(G,i2) do
if ISOMORPHIC(i3, i4) ∧ INDEPEN-

DENT(G,i3,i4) then
P ← P ∪ PAIR(i3,i4)

for i3, i4 ∈ DEF(G,i1) × DEF(G,i2) do
if ISOMORPHIC(i3, i4) ∧ INDEPEN-

DENT(G,i3,i4) then
P ← P ∪ PAIR(i3,i4)

In the last step the trace is rescheduled using the information
gathered earlier. The scheduling algorithm is interwoven with logic
to estimate the savings of the loop. The estimated savings for pack-
ing an instruction is modeled using the CPU architecture in mind.
The basic saving can be calculated using the following formula:
s = −cost+ count(pack)∗ benefit. E.g. The SSE4.1 instruction
ADDPD is modeled as s = −1 + 2 ∗ 1 = 1.

UNPACKCOST models the costs needed to unpack variables that
are contained in any vector registers. Depending on the position the
function estimates costs modeled after the CPU architecture. E.g.
unpacking the higher element of a double precision floating point
has a higher cost than unpacking the lower element3.

Scheduling picks a candidate operation that is scheduleable. An
operation in the dependency graph is schedulable if there are no
edges that point to the operation. This is trivially true for the label
operation, which starts the scheduling.

If the candidate operation to be scheduled has an associated
pack, all operations are transformed to a single vector operation
by VECTOROPERATIONS. For this to succeed all operations of
the pack must be schedulable, otherwise the current candidate is
postponed. Then all edges to descending operations (i.e. the ones
that depend on the current operation) are removed in SCHEDULED.
A call to NEXT gathers all operations that are now schedulable after
edges have been removed.

6.3 Enhancements
Scalar constants and variables are expanded. If the scalar value
is produced in the loop, the expansion creates the vector register
before it is used. In any other case a dedicated vector register is
reserved before the trace loop is entered. The constant or variable
content is scattered to each slot of the vector register. The operation
is later able to use the expanded register instead of executing the
loop iterations one by one.

Accumulation of values (e.g. sum,product) can also be trans-
formed into vector instructions. The summation of a vector con-
tains dependent addition instructions for a value that is carried
across the trace loop. This pattern is recognized and a special pair
is added in EXPAND. Similar to variable expansion the accumula-
tor is expanded before the loop is entered. The summation is done
using a normal vector addition. Parts of the sum are accumulated at
the slots of the vector register. After exiting the loop through any
guard the vector register is added horizontally to a single value.
This transformation is only valid for commutative and associative
operations such as addition, multiplication, and (∧), or (∨) or xor
(⊕).

3 The assembler backend needs at least 2 assembler instructions for the high
element, instead of a maximum of one for the lower element.



Algorithm 4
function SCHEDULE(P, G)

S ← 0
T ← ∅
N ← NEXT(G,∅)
while N 6= ∅ do

O ← HEAD(N)
pack← PACK(P,O)
if ¬ pack then

T ← T ∪ {O}
S ← S − UNPACKCOST(O)
SCHEDULED(G,O)

else
if PACKSCHEDULEABLE(pack) then

S ← S − PACKCOST(pack)
T ← T ∪ VECTOROPERATIONS(pack)
S ← S + ESTIMATESAVINGS(pack)
SCHEDULED(G,pack)

else
N ← N ∪ {O}

N ← NEXT(G,N)
return T,S

6.4 Example
Figure 3 shows an example applying the algorithm described ear-
lier. It spans over three steps. The first step takes a normal trace
loop and unrolls it several times. In this example it is assumed that
the algorithm determined to unroll the loop once (determined by
the element size of the arrays a,b,c).

The third step in Figure 3 “relaxes” the guards by moving
them to the beginning of the loop. Thereafter properties such as
j = i+1, k=i+2 are known and load/store operations can be
found adhering the adjacency property. Pairs of operations are cre-
ated. They are marked with boxes containing capital letters. Their
color code indicates that they use the same operation code, their
letter dictates the pack they are in.

After the initial load/store pairs have been found, the definition
use chains of packs are followed to obtain more pairs. Pair E
accumulates a value reducing c by adding each value.

If the loop body was unrolled further, the combination stage
would merge pairs to packs. In this example all pairs are automati-
cally transformed to packs, but no actual packing takes place.

The last step schedules the trace considering all vector packs.
This emits special instructions that can be directly mapped to SIMD
hardware instructions. Pack E forces the guarding operation to re-
place the accumulation variable with its vector counter part. This
is necessary to finally sum up the contents of v_d when the loop is
exited. This is written as {..., v_d , ...}. All other guard op-
erations in this example also carry fail arguments, but for simplicity
this is not included in the Figure.

7. Vectorization Heuristics
7.1 Trigger the Search
Basic block vectorization triggers the search and compares load-
/store operations. Given store(p,i,v), store(p,i+1,w) this
forms a pair of operations.

Even for store(p,i,v), store(p,j,w) it is possible to
form a pair if and only if j is observed to be at a linear offset
of i. This case can only succeed if j is either a constant modifica-
tion of i or they have the same base variable b. Given the sequence
i = b * 2 + 1; j = b * 4/2 + 2 it will create a pair.

The linear combination is only comparable if the multiplica-
tive factor is the same integral value. In addition, it prohibits
integral modifications that include more than one variable. E.g.
i = b * 2 + a + 3, j = b * 2 + a + 4 would be adjacent
numbers, but not recognized as such. The analysis is capable of
expressing the latter case, but does not give indication that it would
suffice the adjacent property.

The rationale behind this behavior is that this combination has
never been observed either in the NumPyPy traces, nor in user
traces.

This step yields pairs that track adjacent memory loads and
stores, that could directly be mapped to SIMD instructions.

7.2 Maximize the Pair Candidates
Definition and use of a variable unveils new pairs. The candidates to
group are only considered if there is a natural mapping. It requires
that no rearranging of the slots is necessary. However, this case
can still occur. Loops that swap elements in the array have already
pairs for loading and storing. The later steps ensure that appropriate
unpacking is done.

The definition of the pair x = load(p,i), y = load(p,i+1)
leads to two uses: z = x << 4 and w = y << 3. This forms a new
pair. The algorithm proceeds not only in forward direction, but also
in backward direction following uses to definitions.

The previous steps are executed until there is no new candidate
found that could be added to the list of pairs. A fix point has been
found, leading to another maximization step. Pairs are extended to
packs (as described earlier).

7.3 Splitting extended packs
Given the list of packs, a machine vector register will not always
be able to hold a pack. Assuming that the vector register v could be
able to hold three elements. Then there would be three possibilities
for v to fill it with a sub part of five elements a, b, c, d, e. Either of
v = {a, b, c}, v = {b, c, d}, v = {c, d, e} would be valid.

Even more combinations would be possible if it was allowed to
only include lesser elements than the vector can actually hold.

PyPy’s heuristic always splits the leftmost elements of the pack.
It would choose v = {a, b, c} leaving d, e in the pack. {a, b, c}
form a new vector instruction that is later assigned a hardware
register. As for d, e, the pack is discarded because it cannot fill
all slots of the vector register. If it could fill the vector register, the
pack is reduced until it is empty or too few elements are left.

The decision how many elements are necessary to fill v is solely
based on the type information gathered in an earlier step. Packs
and their elements are typed (int, float), give hint about their size in
bytes and if they are signed (integer case). In this step the hardware
architecture leaks information and provides it to the optimizer.

Transforming a half full pack into a vector operation would not
be harmful for load operations. It is more problematic for some
arithmetic operations (e.g. division by zero) and store operations.
The former would terminate the process, the latter could corrupt
memory.

These splitting steps are done in a greedy fashion for each
pack. It does neither consider that the previous decision needs
additional unpacking steps nor that the following packs cannot be
used anymore.

In all observed traces in the NumPyPy library it is seldom a
restriction. Most of the time unpacking is not done.

7.4 Scheduling
This processes the intermediate instruction. Hereafter they are sim-
ply called nodes. Scheduling completes to emit the scalar and vec-
tor instructions by walking all nodes that do not have any prede-
cessor. Nodes are linked to their packs they reside in (or not linked



label(i,a,b,c,d,n)
x = load(a, i)
y = load(b, i)

z = load(c, i)
r = d + z
t = x + y

store(c, i, t)
j = i + 1

guard(j < n)

jump(j,a,b,c,r,n)

x = load(a, i)
y = load(b, i)

z = load(c, i)
r = d + z
t = x + y

store(c, i, t)
j = i + 1

guard(j < n)

u = load(a, j)

v = load(b, j)

w = load(c, j)
s = r + w
t1 = u + v
store(c, j, t1)
k = j + 1

guard(k < n)

j = i + 1

guard(j < n)
k = j + 1

guard(k < n)

x = load(a, i)
y = load(b, i)

z = load(c, i)
r = d + z
t = x + y

store(c, i, t)
u = load(a, j)

v = load(b, j)

w = load(c, j)
s = r + w
t1 = u + v
store(c, j, t1)

label(i,a,b,c,v_d,n)
k = i + 2
guard(k < n) {..., v_d, ...}

x,u = vec_load(a, i)
y,v = vec_load(b, i)

z,w = vec_load(c, i)
v_r = v_d + [z,w]
[t,t1] = [x,u] + [y,v]

vec_store(c, j, [t,t1])

jump(k,a,b,c,v_r,n)
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Figure 3. Vectorization example. Calculates sum(c) and c[:] = a[:] + b[:]. [a,b] denotes a vector with two elements. Vari-
ables that are prefixed with v_ denote vector variables. Vector addition is simply written as v_a + [c,d]. Step three covers PRE-
PARE,BUILDDEPENDENCYGRAPH, INITPAIRS and EXTEND. Step 4. handles COMBINE and SCHEDULE.

if they are not packed). This can delay the scheduling of a packed
node until all predecessors of all nodes in the pack are emitted.

While transforming a pack, it is merged into a single instruction.
Several cases can trigger the scheduling of unpacking instructions
and even constant/scalar expanded values.

It handles the following cases for each vector argument:

1. The argument can be immediately reused

2. Vector cropping. The size of the input vector is too big/small.
This happens frequently for integer sign extensions. Some op-
erations require a specific input type (e.g. 32-bit integer, but not
64-bit integer).

3. Gather values. The conversion from 64-bit to 32-bit float must
merge two 32-bit value to four 32-bit values to fill up v.

4. Vector slot movement. This happens for conversion of e.g. 32-
bit floating point, to 64-bit floating point. Four values can reside
in v, but the conversion needs to move the upper two to the
lower position to execute the conversion.

5. Invariant scalar/constant expansion. A dedicated vector register
is allocated before the loop is entered.

6. Inline scalar/constant expansion. Values are assembled before
they are used.

8. Evaluation
The evaluation is split into two different parts. The first part mea-
sures the time spent in the trace loops that have been vectorized
and is compared to the scalar trace loops. The second part shows
programs that do not stress the vectorization algorithm, but try to
evaluate the gain the optimization is able to achieve.

Although PyPy supports many different CPU architectures, only
SSE 4.1 for x86 is implemented and used as vectorization target.
The next targeted ISA is AVX, the successor of SSE. Still, SSE was
chosen as a first goal because of its omnipresence in x86 CPUs.

The vectorizer does not use platform specifics and can be used
on different architectures as well. Thus other possibilities include
NEON on ARM, AltiVec on PPC and the vector extension on
s390x.

Count Instruction Unroll Microseconds Variance
count factor

6 12-16 2 101.47 9.90
5 17-19 4 158.46 4.57
2 17 8 224.03 2.20
2 17 16 396.60 1.24

Table 1. Optimization time measured. Instruction count is the
number before the transformation and unrolling has been applied.

8.1 Trace loop benchmarks
The following programs have been evaluated using the following
configuration: Intel i7-4550U CPU @ 1.50GHz with 2 cores, Linux
Kernel 4.0.6.

The garbage collector “incminimark” was prevented to be run
in the trace loop benchmarks by setting the minimum memory
threshold to 4GB of allocated memory to avoid collection during
benchmarking.

For the following measurements, the tracer and JIT compiler
has been instrumented4 to measure the time elapsed in traces. The
function to time the execution was clock gettime. It records the
CPU time spent in the process.

Table 1 shows the micro seconds that have been spent in the
optimization pass. It excludes all other optimizations.

Figure 4 shows several different vector calculations. The hori-
zontal line shows the baseline of the normal trace. Every program
run iterates the operation for 1000 executions. The vector operands
are sized four times the tracing threshold. The following listing
shows a sample program that is used in Figure 4.

def bench(vector_a , vector_b ):
for i in range (1000):

numpy.multiply(vector_a , vector_b ,
out=vector_a)

Single floating point operations don’t show a significant speedup
to their scalar trace loops. The reason for this behavior is that float-
ing point operations are always done on the biggest floating point

4 The revision a026d96015e4 was used for this benchmark run. It imposes
a significant performance penalty when exiting or entering traces.
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Figure 4. Speedup of the vectorized trace loops. Horizontal line is the baseline for the calculated speedup values (speedup = scalar
vector

).

type available. The language semantics of Python make the size of
floating point numbers platform specific, thus the tracer does not
emit floating point operations for single floats, but casts them to
double floats.

The theoretical maximum speedup can be observed for loops
with double float multiply operations. Other loops show about half
of the expected speedup. Considering that it is currently not possi-
ble to use aligned vector statements the results are quite satisfying.

Integer addition for 16/8 bits don’t show very good results due
to the small vector size. It has been observed that on bigger vector
sizes these data types perform better. In any case these instructions
are not expected to be used very frequently in NumPy programs.

8.2 NumPy benchmark suite
The following evaluates vectorization (henceforward called Ve-
cOpt) on small to medium sized numerical kernels. The latter con-
figuration is a mobile CPU chip. For these benchmarks a hard-
ware configuration was used that offers more performance. Intel(R)
Core(TM) i7-2600 CPU @ 3.40GHz, 4 cores, Linux 4.1.5. Python
2.7.10 and NumPy version v1.9.2rc1 has been used as a base line
implementation. VecOpt uses PyPy with the optimization enabled
(revision 3742fae37).

Table 3 shows a NumPy benchmark suite5. The source code was
forked and modified. The modifications executes the kernel several
times to warm up the JIT compiler. Each benchmark is repeated
five times and the mean value is displayed in the table. For PyPy the
benchmark kernel is executed twenty times in the warm up phase.
Table 2 shows the loop count of the kernels.

Table 3 shows that for some benchmarks only minor improve-
ments can be achieved. The current weakness both PyPy and Ve-
cOpt suffers from is related to the allocation of memory in the
benchmark kernel. CPython’s GC uses reference counting which
immediately frees NumPy arrays. PyPy’s GC might keep memory
for many more cycles. In Section 8.3 we will see custom written
kernels, that do not allocate memory within the kernel loop.

Table 3 indicates that CPython most of the time is a better
choice than PyPy. The only reason why CPython has such good
results is because a significant fraction of time is spent in native
code, removing all interpretative overhead. Furthermore note that

5 https://github.com/planrich/numpy-benchmarks. Aug. 2015

Name Loop Warm up
diffusion 20 5
allpairs-distances 30 20
vibr-energy 100 20
l2norm 100 20
rosen 30 10

Table 2. The loop count and warm up iteration count for the
benchmark programs in Table 3. All kernels that are not listed loop
50 times and warm up 20 iterations.

the NumPyPy library has not completely implemented all features
offered by NumPy.

8.3 Pure Python loops and other kernels
To show that there are really more significant improvements than
presented in the previous section, a list of benchmarks has been
compiled6:

• som - Self Organizing Maps7.
• dot - Matrix vector dot product.
• any - Micro benchmark stressing the any NumPy operation.
• fir* - Finite impulse response.
• add* - Addition of a Python array.
• sum* - Summation of a Python array.
• rgbtoyuv* - RGB to Y’UV converions using Python arrays.

All benchmarks that end with an asterisk symbol (*) are pure
Python implementations. Indeed the optimizer makes no distinction
between NumPy and Python traces, but is currently by default
deactivated for the latter.

6 https://github.com/planrich/pypy-simd-benchmark Aug. 2015
7 This implementation is not complete. It only simulates the “find nearest
neighbor” and “update weight vector” step of the algorithm. Is a numeric
application that makes heavy use of vector subtractions, multiplications,
distance and summation. Similar to principal component analysis this pro-
cedure can be employed as a pre step for machine learning.



Name CPython (C1) PyPy (C2) VecOpt (C3) SpeedupC1
C3

SpeedupC2
C3

allpairs-distances 0.9868 2.57 2.534 0.39 1.0
allpairs-distances-loops 1.826 4.287 4.177 0.44 1.0
arc-distance 0.07898 0.1813 0.1608 0.49 1.1
diffusion 0.5603 5.665 3.889 0.14 1.5
evolve 0.1967 1.815 1.728 0.11 1.1
fft 0.9507 0.2981 0.2955 3.2 1.0
harris 0.3485 3.119 1.504 0.23 2.1
l2norm 0.564 1.73 1.634 0.35 1.1
lstsqr 0.3844 1.506 1.39 0.28 1.1
multiple-sum 0.1432 0.6341 0.5768 0.25 1.1
rosen 0.5795 3.498 3.438 0.17 1.0
specialconvolve 0.4713 3.876 2.649 0.18 1.5
vibr-energy 0.2784 0.7552 0.699 0.4 1.1
wave 2.191 1.114 1.166 1.9 0.96
wdist 2.927 1.202 1.179 2.5 1.0

Table 3. Benchmark suite. C1, C2 and C3 show the CPU clock time spent. C1/C3 and C2/C3 show the speedup. C2/C3 additionally marks
the improvements introduced by VecOpt.
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execute any computation in native code and thus takes far to long to complete the benchmark run. The speedup of VecOpt in these cases uses
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Name Vector size Repeat count
som 256 4000
dot 1000 1000
any 1024 1000
add* 2500 10000
sum* 2500 10000
fir* 200 3000
rgbtoyuv* 1024 ∗ 768 500

Table 4. The vector size and the repetition count of the kernel
benchmark programs in Figure 5. All programs are run ten times
and the mean value is used to calculate the speedup value.

9. Conclusion
It has been shown that a tracing JIT compiler can indeed use SIMD
instructions to speed up numerical loops. This is not only true for
the NumPyPy standard library, but also for any other traces that ad-

heres the pattern the transformer understands. It additionally shows
that the optimization time is reasonably fast and the implementa-
tion complexity is rather low. The contributions do not only en-
hance PyPy, but for any other virtual machine written in RPython.
This opens up new possibilities to write a virtual machine that ef-
ficiently executes numerical computations using all the comfort a
dynamic language provides.
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