
Stack Allocation of Objects in the Cacao Virtual Machine

Peter Molnar
Theobroma Systems Design und Consulting GmbH

Wien, Austria
peter.molnar@theobroma-systems.com

Andreas Krall Florian Brandner
Institut für Computersprachen
Technische Universität Wien

{andi,brandner}@complang.tuwien.ac.at

Abstract
Stack allocation of objects reduces the cost of object allocation
and garbage collection and can thus lead to large reductions in
runtime. Escape analysis can statically determine which objects
are eligible to stack allocation by examining the escape behavior
of allocation sites. If objects created at a particular allocation site
do not escape, i.e., are guaranteed not to leave the scope of the
allocation site, stack allocation instead of expensive heap allocation
can be applied.

We have implemented a lightweight and fast escape analysis
within the CACAO Java Virtual Machine to enable stack alloca-
tion. The analysis proceeds in two stages: an intraprocedural anal-
ysis computes escape information for each allocation site within a
single method and builds call-context agnostic summary informa-
tion for the method. The summary information is then used during
interprocedural analysis to capture the escape behavior of method
arguments. The computed escape information is finally used to al-
locate a subset of thread-local Java objects on the call stack.

The implementation has been evaluated using the SPEC JVM98
and the dacapo benchmark suites. For the SPEC benchmarks up
to 90% of all objects allocated at runtime can be allocated on the
call stack, leading to a speed up of up to 69%. The more complex
dacapo benchmarks still show speedups of up to 10%, with up to
20% of all objects being allocated on the stack.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers, Optimization, Memory manage-
ment

General Terms Algorithms, Languages

Keywords object allocation on stack, escape analysis, just-in-time
compiler

1. Introduction
Object allocation on the heap and garbage collection can contribute
a significant part of the runtime of Java programs. Stack allocation
of objects is an effective optimization technique to reduce the
allocation and deallocation costs. Unfortunately not all objects can
be stack allocated: if the lifetime of an object exceeds the lifetime
of its creation site, it must not be allocated on the stack. Escape
analysis is necessary to determine which objects can be safely stack
allocated.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPPJ ’09, August 27–28, 2009, Calgary, Alberta, Canada.
Copyright c© 2009 ACM 978-1-60558-598-7. . . $10.00

Escape analysis in object oriented languages studies the life-
time of objects, more precisely whether the lifetime of an object
is bounded by the lifetime of its creating site, be it the creating
method or the creating thread. The information gained through es-
cape analysis can be used to implement several optimizations in
the domain of synchronization and memory management. The al-
gorithm presented in this work is based on an algorithm by Kotz-
mann [9, 10, 11].

CACAO [12] is an open source Java virtual machine. Its devel-
opment started as a research project at the Vienna University of
Technology. CACAO follows a compile-only approach: all byte-
code gets compiled just-in-time the first time a method is executed.
CACAO initially targeted DEC’s 64bit Alpha architecture, but was
soon ported to MIPS and PowerPC, later to IA32, x86 64, ARM,
SUN Sparc, PowerPC64, IBM S390, and Coldfire architectures.

An additional higher optimizing compiler is under development.
Frequently executed methods are recompiled with more expensive
optimizations. The recompilation framework which supports on-
stack replacement of methods, de-optimization and its use with
adaptive inling has been presented in [15]. In this work we present
results for additional optimizations for the optimizing compiler.

The main contributions presented in this work are:

• A detailed evaluation of the potential of escape analysis and
stack allocation using instrumentation within the CACAO JVM.

• An implementation of a lightweight escape analysis for CA-
CAO following the approach by Kotzmann [9, 11].

• A detailed evaluation of the results of the escape analysis and
the related stack allocation of objects using the SpecJVM98 and
dacapo benchmark suites that shows that our approach achieves
considerable speedups by eliminating memory allocation and
garbage collection overhead.

The optimization potential of stack allocation is evaluated in
section 2. In section 3 we present our escape analysis algorithm
and in section 4 we give an experimental evaluation of our imple-
mentation in the CACAO VM. Section 5 discusses related work.

2. Escape Behavior
Static escape analysis algorithms are inherently conservative: they
are not able to determine the exact escape behavior of objects, but
they approximate the behavior in a way that guarantees that no
escaping object will be falsely identified as non-escaping. Tradi-
tionally, escape analysis algorithms are evaluated by comparing the
number of objects they identify as non-escaping to the number of
total objects allocated in the program. This ratio can be calculated
from either static numbers that are collected during compilation or
using dynamic numbers that are collected at runtime. Static results
only relate the total number of allocation sites to the number of
allocation sites recognized as non-escaping, and is thus generally
not suited to predict possible gains in runtime, e.g., by eliminat-

ing overhead of heap allocation using stack allocation. Dynamic
numbers are much better suited for this purpose. However, even
dynamic numbers only allow the relative comparison of different
escape analysis algorithms, and can not give insights into the ac-
tual potential of a given benchmark.

Because of its conservative nature an escape analysis usually
takes the most pessimistic assumptions possible. During intrapro-
cedural analysis, it is assumed that every branch will be taken and
during interprocedural analysis, it assumes a pessimistic call con-
text. These pessimistic assumptions, which in practice occur rather
rare, increase the gap between the results of the analysis and the
real escape behavior significantly. In order to evaluate the accuracy
of the analysis and to get a better understanding of the interproce-
dural escape behavior, more accurate and realistic escape data is
desirable.

We have extended the CACAO JVM to trace object references at
runtime using code instrumentation. This not only allows to collect
information on the reachability of objects, but also to collect data
on the escape state of objects and even detailed information where
objects actually escape to.

Objects are grouped into non-overlapping regions based on
reachability information that is collected during program execu-
tion. The heap is modeled using a global region (or heap region)
that contains all objects that possibly escape. In addition, every ac-
tive stack frame is modeled using a separate region. Each region
is associated with a lifetime. In the case of the global region this
lifetime is infinite, while stack regions have a shorter lifetime that
is derived from the negated stack depth of the corresponding stack
frame. Note, that we are not interrested in the absolute lifetime of a
region, but rather in the relative lifetime, the negated stack depth is
thus a well suited approximation. Initially newly allocated objects
are assigned to the region of the current stack frame. If an object
becomes reachable from a different region with a longer lifetime,
the object is moved into that region. It is important that objects may
only be moved from regions with short lifetime into a region with
longer lifetime. In addition, recursively all objects reachable from
the original object need to be moved to the new region as well.

When the program terminates the global region contains only
objects that are considered globally escaping. Objects that are left
in regions associated with a stack frame at the time of its destruction
are considered thread-local, as they become unreachable after the
destruction.

During JIT compilation of a Java method, the following inter-
mediate representation constructs are instrumented: method entry,
method exit, exception throw, object allocation, field assignment,
array store, and global variable assignment.

When compared to a static escape analysis algorithm, this algo-
rithm determines the root set of escaping objects in an analogous
conservative way: objects reachable from global variables, thrown
as exceptions and passed to native methods are globally escaping.
The difference is that a static escape analysis identifies all objects
that might get reachable from this root set as globally escaping,
while this algorithm identifies only objects that are reachable from
this root set. A static analysis assumes that every possible control
flow path of a program could be taken, while the data collected
during instrumentation only accounts for paths that are actually ex-
ecuted.

In the first series of measurements, the total number of available
thread-local objects was determined (see Figure 1). The numbers
were counted as follows: upon method exit, after the return value
has been moved into the callers region, all objects that remained in
the method’s region were counted as thread-local.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

sm
all_antlr

sm
all_lusearch

sm
all_jython

sm
all_luindex

sm
all_bloat

default_eclipse

default_antlr

sm
all_pm

d

sm
all_fop

sm
all_xalan

default_luindex

default_jython

default_bloat

default_fop

sm
all_hsqldb

sm
all_eclipse

Total

R
at

io

Global
Local

Figure 1. Number of thread-local objects.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

sm
all_antlr

sm
all_lusearch

sm
all_jython

sm
all_luindex

sm
all_bloat

default_eclipse

default_antlr

sm
all_pm

d

sm
all_fop

sm
all_xalan

default_luindex

default_jython

default_bloat

default_fop

sm
all_hsqldb

sm
all_eclipse

Total

R
at

io
0
1
2
3
4

5+

Figure 2. Number of stack frames objects passed towards the
caller.

Finally, we have investigated how objects that are considered
eligible for stack allocation are passed to other methods. Figure 2
shows the number of call frames objects are passed towards the
caller i.e., returned from methods. It can be seen that a minority
of thread-local objects, around 10 - 20 %, does not move towards
the caller at all. The rest of thread-local objects however does. But
for most benchmarks thread-local objects are typically not returned
more than three stack frames towards the caller.

When designing an intraprocedural analysis with stack alloca-
tion or regions in mind, there are basically three options on han-
dling thread-local objects that are returned towards the caller:

1. An object that is returned from a method is considered always
globally escaping.

2. If a method can return an object up to 1 stack frame upwards,
the caller allocates memory in its stack frame. A specialized
version of the callee is compiled that accepts a pointer to the
reserved memory as an additional parameter.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

sm
all_antlr

sm
all_lusearch

sm
all_jython

sm
all_luindex

sm
all_bloat

default_eclipse

default_antlr

sm
all_pm

d

sm
all_fop

sm
all_xalan

default_luindex

default_jython

default_bloat

default_fop

sm
all_hsqldb

sm
all_eclipse

Total

R
at

io

0
1
2
3
4

5+

Figure 3. Number of frames objects are passed towards the callee.

3. If possible and feasible, the method is inlined into the caller.
This way the returned object gets trapped in the caller and is
not returned.

Considering the results obtained by the experiment in this sec-
tion we can predict how effective each of these options can be in
practice using perfect escape information:

1. If objects returned from a method escape globally, only 20% of
thread-local objects can be considered non-escaping.

2. If thread-local objects returned to a caller can be handled that do
not escaping further, 26% of thread-local objects can be saved
from escaping.

3. Good inlining decisions up to a depth of up to three levels can
save a lot of objects from escaping, usually more than 50% of
thread-local variables.

Similarly, Figure 3 shows the number of call frames objects are
passed down, i.e., passed as arguments to callees. The figure shows
that in most benchmarks the majority of thread-local objects is not
passed more than four stack frames down the call chain. The results
indicate that it is sufficient to traverse only up to four levels of the
call graph in order to achieve good results for an interprocedural
escape analysis in practice.

Also note that, because of Java’s two step object creation pro-
cess: (1) allocation of a block of memory followed by (2) a call to
the class’ constructor, every Java object is passed at least one stack
frame downwards as an argument to the constructor. Arrays consti-
tute an exception to this rule, as they do not have a constructor and
are initialized directly by the VM. Consequently, objects that are
not passed to any callee depicted in Figure 3 are exclusively arrays.

3. Escape Analysis Algorithm
The just-in-time compiler of CACAO is organized in passes. In the
context of this work, several passes were designed, implemented
and adapted as described in this chapter.

First a control flow graph representing regular and exceptional
control flow is created for the compiled method. Then the interme-
diate representation of the method is transformed into static single
assignment form for the purpose of performing escape analysis of
the method. This pass computes escape information for static allo-
cation sites along with summary information for each method that
is subsequently used during interprocedural analysis to capture the

escape behavior of method arguments and return values. The in-
formation computed by this pass is finally used to perform stack
allocation. Special care has to be taken when applying stack alloca-
tion inside loops, because the size of stack frames is not allowed to
changed dynamically in CACAO. Therefore, a static loop analysis
is performed in order to handle stack allocation in these cases. We
will discus details of each of these passes in more detail in the sub-
sequent sections. In addition, requirements to the runtime system
and the VM for the implemented optimizations are discussed.

3.1 Control flow graph
To model intraprocedural control flow in a compiled method, the
JIT compiler constructs a control flow graph (CFG): a directed
graph with nodes consisting of basic blocks and edges representing
control flow transitions between them. Intraprocedural control flow
of a Java method is categorized into two classes:

Regular control flow originates from the execution of a condi-
tional or unconditional branch instruction and transfers control
to a different basic block.

Exception control flow originates from a potential exception-
throwing instruction (PEI) in response to an exceptional condi-
tion and transfers control to an exception handler.

To augment the regular CFG with exceptional control flow, ba-
sic blocks need to be split at every PEI, and an edge from the ba-
sic block fragment to every potential exception handler needs to
be added, leading to a CFG greater in size. A space-efficient rep-
resentation of exceptional control flow can be achieved using the
factored control flow graph (FCFG) [3]. In addition to regular CFG
edges it contains factored edges. A factored edge BB

T−→ EH
from a basic block BB to an exception handler EH annotated
with an exception type T represents all control flow transitions
from PEIs throwing an exception of type T to the respective ex-
ception handler. In CACAO, a variation of the FCFG has been im-
plemented, exceptional control flow is represented using factored
edges, but they are not annotated with an exception type. Instead
a factored edge connects a basic block containing at least one PEI
to every exception handler for that basic block. This leads to a less
precise, but still valid, FCFG.

The reason for this simplification is that for a correct match
of the exception thrown by a PEI and the exception caught by
an exception handler a subtype check is required. This in turn
requires the two exception classes in question to be linked, i.e. fully
initialized in the runtime system. This is not necessarily the case at
compile time, even not at recompilation time, as classes are linked
lazily the first time they are used at runtime.

3.2 Static-single assignment form
The intermediate representation (IR) of a Java method is trans-
formed into static-single assignment form using the algorithm pro-
posed in [14], which is based on abstract interpretation of the IR.
According to Mössenböck, it is better suited than the mainstream
algorithm proposed in [4] for an input program that is in an IR
rather than in the form of source code.

The algorithm traverses the IR once, basic block by basic block,
maintaining a per basic block state array. The state array contains
for every IR variable the definition flowing out of the basic block.
State arrays are merged at join points, which results in φ-functions.

In presence of loops, definitions flow back from the loop body
into the loop header via backward branches and the state array has
to be recomputed. To prevent this, φ-functions for every variable
are created in loop headers in advance, and are eliminated later if
they turn out to be redundant.

3.3 Escape state
The aim of the escape analysis algorithm is to annotate static object
allocation sites, which represent runtime objects, with an escape
state. The state can have one of the following values:

ESCAPE NONE: the object is accessible only from its creating
method. Such an object can be eliminated and replaced with
scalars.

ESCAPE METHOD: the object escapes its creating method, but
does not escape the creating thread. This happens if the object
is passed to a callee, but does not escape further. Such an object
can be allocated on the stack, in addition, synchronization can
be eliminated for the particular object.

ESCAPE METHOD RETURN: the object escapes its creating
method via a return to the caller. Such objects are not further
optimized, however, method inlining can reduce the number of
objects that are returned beforehand.

ESCAPE GLOBAL: the object escapes its creating method and
even its creating thread, i.e., the object becomes accessible via
a static variable or is passed to native code or code that is not
yet analyzed. No optimizations are possible on such an object.

An ordering on the escape state values is defined with ESCAPE NONE
and ESCAPE GLOBAL being the lowest and highest values respec-
tively.

3.4 Intraprocedural escape analysis
The first step of the actual escape analysis operates on the interme-
diate instructions of a method one by one. Intermediate instructions
in CACAO have the form of quadruple code, dst = OP (s1, ..., sn)
where dst and si, i ∈ {1, . . . , n} are intermediate variable indexes.
References to run time objects are stored in intermediate variables
that are annotated with an escape state during intraprocedural es-
cape analysis. The escape information of variables is then back-
propagated to allocation sites and can be used to replace the orig-
inal allocation construct with stack allocation. The escape state of
variables is initialized to ESCAPE NONE and is further refined dur-
ing the analysis such that the escape state increases with respect to
the ordering defined in Section 3.3.

Variables are grouped into equi-escape sets (EES) where all
members share the same escape state. The escape state of vari-
ables is adjusted on copy operations dst = src or φ-functions
dst = φ(s1, ..., sn). The analysis is thus a flow-insensitive Steens-
gaard analysis. For brevity, adjusting the escape states of variables
denotes merging the two EESs of the variables. The escape state of
the newly formed ESS corresponds to the largest escape state of the
variables ESSs with repsect to the previously defined ordering.

If an object s2 is assigned to a field of an object s1, and s1
escapes later, s2 escapes as well. If however s2 escapes at a later
point, s1 won’t, as it is not necessarily accessible via s1. This
dependency can’t be modelled using an EES, as it is unidirectional.
For this purpose, every variable maintains a list of (variable, field
identifier) pairs it possibly references via fields - the dependency
list. If the ESSs of two variables are merged, their dependency lists
are merged as well, because the new set may reference any object
from the union of the two dependency lists. If the escape state of a
variable changes, the escape state of all elements of the dependency
list must be adjusted as well.

The IR is traversed once to construct the EESs. The following
IR constructs are considered:

Method prologue The IR variables containing arguments are ini-
tialized as not escaping.

ICMD NEW, ICMD ...NEWARRAY An object is newly allo-
cated. The source operand for the instruction is a variable, con-
taining a pointer to a class descriptor previously loaded with
an ICMD ACONST instruction. This instruction is looked up to
determine the class of the allocated object. If the class has a fi-
nalizer method, the object escapes globally, because its finalizer
might be called at an undefined time. Otherwise, the destina-
tion is marked as ESCAPE NONE. The class descriptor loaded by
ICMD ACONST might be unresolved, i.e., it is unknown whether
the class has a finalizer. Unresolved classes are generally treated
conservatively, we thus assume that the class defines a finalizer
and that the object escapes globally.

ICMD PUTSTATIC If an object is stored into a static (global)
variable, it becomes accessible from different threads and is
thus marked as globally escaping.

ICMD GETSTATIC If an object is loaded from a static variable,
there is no information available about its allocation site, thus it
must be marked as globally escaping.

ICMD PUTFIELD (s1.f = s2) If s2 is assigned to an instance
field of s1, it inherits the escape state of s1. In particular, if
s1 is reachable from a different thread, s2 will become reach-
able as well. Further, s2 is added to the dependency list of s1.
This is necessary, in order to update the escape state of s2, if at
a later point s1 is found to escape. If s1 contains a method argu-
ment, s2 always escapes globally, because it will get accessible
from the caller method and thus escapes the method.

ICMD GETFIELD (dst = s1.f) If s1 contains a method argu-
ment, dst is marked as being a globally escaping object, as
there is nothing known about its allocation site. Otherwise dst
is initially marked as not escaping and the instruction is added
to a list of getfield instructions for later processing.

ICMD AASTORE Is handled in analogy to ICMD PUTFIELD.

ICMD AALOAD Is handled in analogy to ICMD GETFIELD.

ICMD IF ACMP... If an object reference is compared against a
different object reference, the object must not have been elimi-
nated and must exist at least on the stack. The compared objects
are thus marked as escaping the method.

ICMD IF...NULL, ICMD CHECKNULL If an object reference
is compared against the null constant, the same applies as
for ICMD IF ACMP.... Although not done in CACAO, some
comparisons against null could be evaluated statically. In that
case, adjustment of the escape state is not necessary.

ICMD CHECKCAST, ICMD INSTANCEOF A checked cast
must not be eliminated, unless the compiler can statically de-
termine whether it always succeeds. To perform the cast, the
object must exist at least on the stack, it is thus marked as es-
caping the method.

ICMD INVOKESTATIC, ICMD INVOKESPECIAL For a
method invocation that can be statically bound, i.e. if the called
method is statically known, the escape summaries of interpro-
cedural analysis are used to adjust the escape state of arguments
and the return value. Interprocedural analysis also yields, which
arguments are possibly returned from the callee. The summary
information is then merged with the intraprocedural informa-
tion. If interprocedural analysis data is not available for the
callee, the arguments and the return value must conservatively
be marked as globally escaping.
If the callee is unresolved and the caller has been already exe-
cuted often, it is assumed that it won’t be resolved at all, and the
instruction is ignored. This assumption must be recorded with

the deoptimization framework, and the generated code must be
invalidated once this assumption is found to be invalid.
If the callee is a native method, it can’t be further analyzed. The
arguments and the return value must conservatively be treated
as globally escaping.

ICMD INVOKEVIRTUAL, ICMD INVOKEINTERFACE
These instructions are processed similar to statically bound
method calls, with the notable difference that all possible target
methods have to be considered. Class hierarchy analysis is used
to determine possible target methods. The escape state of the
arguments and return value is again adjusted using interproce-
dural summary information. If the escape summary is missing
for a single target method, it must conservatively be assumed
that all arguments and the return value escape globally.
The set of target methods is again subject to change, if addi-
tional classes are loaded during the execution of the program.
This optimization again has to be registered with the deopti-
mization framework and the code has to be invalidated accord-
ingly.

ICMD ARETURN The escape state of the source operand is ad-
justed to ESCAPE METHOD RETURN. The instruction is further
added to a list of all return instructions for post-processing.

ICMD ATHROW, ICMD GETEXCEPTION Objects that are
thrown as exception are not further tracked and are always
marked as globally escaping.

ICMD COPY A copy of a reference variable of the form dst =
src is treated by merging the ESS of the two variables.

ICMD PHI φ-functions correspond to a set of copy operations, for
example, the φ-function dst = φ(s1, s2) can be treated as two
copy operations dst = s1 and dst = s2. The ESSs are merged
accordingly.

3.5 Interprocedural escape analysis
The intraprocedural escape analysis computes escape states for all
reference variables of a method. In particular incoming arguments
of the method are included in this analysis. The information gath-
ered during this analysis step can thus be used to construct sum-
mary information for a method that can be reused later in the caller
context to adjust the escape state of actual arguments. The summary
information contains:

• The escape state for parameters of reference type. This infor-
mation is derived from the escape state of the local variable that
is associated with the parameter within the method body.

• For every parameter of reference type, whether this parameter
can be returned from the method. However, the escape state
stored in the summary information is not ESCAPE METHOD -
RETURN, but ESCAPE METHOD instead, to reflect the view of the
caller context.

• The escape state of the method’s return value. This is computed
as the maximum escape state of the source operands of all return
statements in the method. If this is ESCAPE METHOD RETURN,
ESCAPE METHOD is set in the summary information, again to
reflect the view of the caller.

3.6 Native methods
Objects passed to native methods have to be marked as globally es-
caping. Empiric evidence has shown that many objects are passed
to native methods, so applying this rule consequently leads to a
large number of escaping objects – often unnecessarily. This is con-
firmed by tables 1 and 2, which show the dynamic ratio of method-
local objects for selected SpecJVM98 and dacapo benchmarks. The

Benchmark Pessimistic Optimistic
202 jess 0.07% 26.54%
228 jack 48.16% 69.18%

Table 1. Dynamic ratio of method-local objects for different as-
sumptions about native methods (SpecJVM98).

Benchmark Pessimistic Optimistic
eclipse 3.37% 3.62%
pmd 0.21% 11.87%
xalan 2.47% 3.73%

Table 2. Dynamic ratio of method-local objects for different as-
sumptions about native methods (dacapo).

results in the first column were obtained using the pessimistic as-
sumption that objects passed to native methods escape globally.
The results in the second column were obtained using the opti-
mistic assumption that objects passed to native methods never es-
cape globally. We thus use hardcoded method summaries for some
important methods of the Java runtime library where the escape
behavior of arguments is known beforehand. Some important ex-
amples are listed in the following:

• java.lang.System.identityHashCode
• java.lang.Object.getClass
• java.lang.Object.clone
• java.lang.System.arraycopy

3.7 Stack-allocation
Once escape analysis has identified method-local allocation sites,
i.e., allocation sites with an escape state less than or equal to
ESCAPE METHOD, these sites are selected for stack allocation. Re-
quirements for stack space are calculated right after escape anal-
ysis. Although stack space could be reused for stack objects with
non-overlapping lifetimes, we do not perform such an optimization,
because the number of stack allocation sites in a method tends to
be rather low.

For every method-local allocation site a fixed amount of stack
space is reserved that can be addressed relative to the methods
stack pointer using a unique offset. The original BUILTIN new
IR instructions of the allocation sites are rewritten into dedicated
STACK NEW IR instructions, which take the offset of the reserved
stack space and a class descriptor as arguments.

The generated machine code for the STACK NEW instruction
is rather trivial: the address of the stack object is calculated by
adding an offset to the stack pointer. Then the object header of the
object is initialized by setting its virtual function table pointer and
initializing the lockword to 0. Finally, all data fields of the object
are zeroed as required by the JVM specification. An example of
code generated for the x86 architecture for stack allocation of a
StringBuilder object with a destination operand %esi is show
in figure 4.

Although it is possible to dynamically grow the stack frame of
an active method, similar to the alloca function in C, this mech-
anism introduces additional runtime overhead. For example, due
to maintaining an additional frame pointer register, additional
overhad for subroutine calls as well as method entry and exit.
To avoid this overhead CACAO uses stack frames of fixed size,
consequently stack space required for object allocation has to be
known at compile time too. The number of stack allocated objects
thus needs to be known statically, which poses a problem for non-
escaping objects inside loops.

; store object pointer into %esi
lea 0x80(%esp),%esi
; set VFTBL pointer
movl $0x854186c ,(% esi)
; set lockword to 0
movl $0x0 ,0x4(%esi)
; zero data fields
; initialize loop counter
mov $0x4 ,%ecx

loop:
; zero 1 data word
movl $0x0 ,0x14(%esi ,%ecx ,1)
; decrement counter
sub $0x4 ,%ecx
; loop
jge loop

Figure 4. Machine code generated for a STACK NEW IR instruction.

Within loops objects can be allocated on the stack only if the
space for the object can be reused on every loop iteration [9]. This
condition is considered holding, if the allocated object is not live-in
in the loop header, i.e. if its definition does not flow back into the
loop along backward edges in the CFG.

If the allocation site is located inside a loop, the alias set of
the allocated object is constructed, by following forward branches
that do not leave the loop. The only way for the object to reach
the loop header is via φ-functions. The object can not be allocated
on the stack, if an element of the alias set is an argument of a
live φ-function at the loop head. If the object in question is stored
into a static field, instance field or an array inside the loop it is
heap allocated, thus there is no need to track memory dependencies
separately. The algorithms described in [1] are used to first detect
all loops in reducible control flow graphs, then determine their
nesting level, organize them in a loop hierarchy, and finally store
the information in a way that supports efficient testing for loop
membership and efficient traversal of loops and nested loops. The
code generated by today’s Java compilers almost always results in
reducible flow graphs, our loop analysis is thus not restrained by
this assumption. However, we verify whether the CFG in question
is reducible, and disable all optimizations for the particular function
if not.

3.8 Optimization framework
The optimizations implemented in this work target CACAOs
second-level compiler and optimization framework which are cur-
rently in development. As this framework is not available at the
time of this writing, the optimizations have been integrated into
CACAO using an ad-hoc recompilation framework.

Initially all code gets compiled with the baseline compiler. Once
enough classes are loaded and thus enough information for op-
timization is available, recompilation of all methods with single-
static assignment form, escape analysis and stack allocation en-
abled is triggered interactively. Finally, after all methods were suc-
cessfully recompiled, runtime statistics are gathered.

Because all methods get compiled at once, a recompilation
order that is favorable for interprocedural escape analysis can be
chosen, i.e., the call graph is traversed in a depth first order starting
from leaf method. This ensures that methods get recompiled before
call sites that invoke them.

Usually, escape analysis and stack allocation require the opti-
mization framework to provide support for deoptimization. How-
ever, CACAOs optimization framework is still in development and
does not yet provide all features required to revert stack allocation
decisions. For example, during interprocedural analysis, it is as-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

_201_com
press

_202_jess

_209_db

_213_javac

_222_m
pegaudio

_227_m
trt

_228_jack

R
at

io

Heap
Stack

(a) Static

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

_201_com
press

_202_jess

_209_db

_213_javac

_222_m
pegaudio

_227_m
trt

_228_jack

R
at

io

Heap
Stack

(b) Dynamic

Figure 5. Ratio of stack allocated objects for SPECjvm98 relative
to static allocation sites and objects allocated at runtime.

sumed that a virtual call targets only those implementations of the
method that are already loaded into the VM. The escaping behav-
ior can however change, if an additional implementation is loaded
during the execution of the program. The optimized code needs to
be invalidated and recompiled in this case, and all objects that cur-
rently reside on the stack need to be promoted to the heap in order
to ensure correctness.

4. Empirical Evaluation
The SPECjvm98 and dacapo benchmark suites were executed on
a Lenovo Thinkpad X60s system in order to evaluate the escape
analysis algorithm and the corresponding stack allocation. The
machine was equipped with an Intel Core Duo L2400 CPU at
1.66GHz and 512 MB of RAM. Debian GNU/Linux 2.6.24-1-
686 served as an operating system with libc6 version 2.7-5. A
development snapshot of CACAO was compiled using gcc version
4.1.3 20070718 (prerelease) (Debian 4.1.2-14), and configured to
use a development snapshot of the GNU Classpath Java runtime
library.

Each benchmark was executed at least 3 times. The first run was
performed without optimizations in order to load enough classes
before the actual measurements. Then, in the second run, when
all classes have been loaded, recompilation with escape analysis
and stack allocation was performed. Finally, during the third run,
the optimized code was executed and final performance results
collected.

4.1 Stack allocated objects
During the first run of the benchmarks, statistics on escaping ob-
jects and stack allocation were collected in order to evaluate the
quality of the escape analysis. Figure 5 and Figure 6 show the ratio
of objects that our analysis identified as not escaping their creating
method, and thus can be allocated on the stack. Static numbers re-
fer to the ratio of method-local allocation sites, while the dynamic
numbers show the ratio of objects allocated on the stack relative to
the overall number of objects allocated at runtime.

We have further compared the results of the escape analysis
against the actual escaping behavior of the benchmarks observed
at runtime. Note, that this is merely a theoretical bound of the re-
sults of the escape analysis, as objects might still escape along (ex-
ceptional) paths of the program that were not executed during the
measurements. For this experiment CACAO was extended to track
objects throughout their lifetime. Arrays are not considered here
because they are never allocated on the stack. The results of this

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

antlr
bloat

fop
hsqldb

jython

luindex

lusearch

pm
d

xalan

R
at

io

Heap
Stack

(a) Static

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

antlr
bloat

fop
hsqldb

jython

luindex

lusearch

pm
d

xalan

R
at

io

Heap
Stack

(b) Dynamic

Figure 6. Ratio of stack allocated objects for dacapo relative to
static allocation sites and objects allocated at runtime.

Benchmark Inlining 1 Inlining 2 Stack allocated
201 compress 30.87 % 44.84 % 8.56 %
202 jess 64.27 % 70.09 % 26.54 %
209 db 94.73 % 99.32 % 94.68 %
213 javac 40.13 % 41.45 % 8.93 %
222 mpegaudio 16.87 % 24.44 % 1.33 %
227 mtrt 93.30 % 94.18 % 55.63 %
228 jack 64.88 % 90.59 % 69.18 %

Table 3. Number of stack allocated objects compared to number
of objects eligible for stack allocation (SpecJVM98).

Benchmark Inlining 1 Inlining 2 Stack allocated
antlr 60.53 % 78.58 % 14.84 %
bloat 61.05 % 78.05 % 1.50 %
fop 59.77 % 79.96 % 18.42 %
hsqldb 21.48 % 31.80 % 0.22 %
jython 7.59 % 60.09 % 0.40 %
luindex 16.23 % 18.33 % 1.22 %
lusearch 36.34 % 66.74 % 6.25 %
pmd 56.21 % 74.79 % 11.87 %
xalan 32.21 % 63.56 % 2.46 %

Table 4. Number of stack allocated objects compared to number
of objects eligible for stack allocation (dacapo).

comparison are shown in Table 3 and Table 4 for the SPECjvm98
and dacapo benchmark suites respectively.

4.2 Execution times
The ultimate goal of stack allocation is to reduce the execution
time by eliminating the cost of allocating and reclaiming memory
on the heap at runtime. To evaluate the impact of our approach
for this purpose, the execution scheme was extended to run every
benchmark 5 times without escape analysis and 5 times with escape
analysis. From these runs the one with the shortest execution time
was taken into account. Note, that all runs were performed after
recompilation with the ad-hoc optimization framework. The results
are listed in Table 5 and Table 6

4.3 Discussion
Considering the data from Figure 5 and 6 we see that the escape
analysis is quite successful in identifying allocation sites where

Benchmark With EA Without EA Speedup
201 compress 8.51 s 8.50 s -0.12 %
202 jess 46.01 s 55.81 s 21.29 %
209 db 28.52 s 42.71 s 49.75 %
213 javac 50.91 s 53.56 s 5.20 %
222 mpegaudio 13.02 s 13.12 s 0.77 %
227 mtrt 20.82 s 35.23 s 69.21 %
228 jack 43.69 s 64.06 s 64.62 %

Table 5. Execution times with and without escape analysis
(SPECjvm98).

Benchmark With EA Without EA Speedup
antlr 34.16 s 37.52 s 9.84 %
bloat 219.34 s 216.95 s -1.09 %
fop 11.95 s 12.64 s 5.77 %
hsqldb 2.77 s 2.90 s 4.69 %
jython 274.30 s 274.54 s 0.09 %
luindex 96.78 s 96.80 s 0.02 %
lusearch 247.07 s 261.70 s 5.92 %
pmd 178.63 s 197.12 s 10.35 %
xalan 73.19 s 73.24 s 0.07 %

Table 6. Execution times with and without escape analysis (da-
capo).

objects do not escape statically. However, for our final goal these
results are only secondary because not all of these allocation sites
are contributing to the overall execution time equally. For example,
we found that a large number of non-escaping allocation sites can
be attributed to exceptional paths that build error messages using
the StringBuilder class.

Especially for the SPECjvm98 benchmarks the good static re-
sults were directly reflected by the dynamic behavior. For jess,
raytrace, db, mtrt the number of stack allocated objects is
extremely high at runtime, which is coupled to a single class.
These extreme allocation sites were already observed in previ-
ous work [9]: In mtrt, temporary Vector objects are allocated
in a loop, in db, two temporary Enumeration objects are used to
compare a pair of database records. However, the high speedups
of more than 69% are not only due to stack allocation. The cur-
rent memory management implementation in CACAO performs
rather poorly: CACAO uses a slow conservative garbage collector
and the new instruction is not inlined but rather implemented in a
C function which in turn is wrapped into a builtin stub. Another
explanation for the extreme speedup is the simple nature of the
SPECjvm98 benchmarks.

The behavior of the dacapo benchmarks is more moderate,
which consequently results in much lower gains of up to 10.35%
in execution time – bloat even experiences a slight slowdown.
The more complex dacapo benchmarks show the limits of our
current whole-program interprocedural analysis. The large program
call graphs lead to unfavorable traversals, such that callees are not
always visited before the respective call sites. This in turn leads
to very conservative results of the escape analysis. Investigation
reveals that for the dacapo benchmarks with very low numbers of
stack allocated objects even StringBuffers are heap allocated
exactly because of this problem.

Many benchmarks profit from stack allocation of StringBuffer
and StringBuilder objects that are used to implement Java string
concatenation. They hardly escape the creating method and can of-
ten be stack allocated. Another family of popular stack objects con-
sist of Enumeration and Iterator objects used in conjunction
with container classes. They usually get allocated when iterating

over a container class and never escape the creating method. These
objects significantly contribute to the number of stack objects in
the benchmarks db (almost all) and jack. Finally, extremely short-
lived objects are chosen for stack allocation, this is particularly true
for the dacapo pmd and bloat benchmarks.

5. Related Work
An early study by Charles McDowell [13] already tried to inves-
tigate the potential of stack allocation using code instrumentation.
However, only four benchmarks were considered, consequently, it
is hard to generalize their measurements to a wider range of pro-
grams. In their study up to 56% of the objects were eligible for
stack allocation, in the general case however only between 5 and
15%.

Escape analysis algorithms can be categorized [8] into two
groups: A Steensgaard analysis merges both sides of an assign-
ment, computing the same solution for each side. An Anderson
analysis in contrast passes a value from the right-hand side of
an assignment to the left-hand side, offering greater precision at
the cost of a higher computational effort. Flow-sensitive analy-
sis take the order of statements in a program into account, while
flow-insensitive analysis merges results along different control flow
paths into a single summary. Similarly, context-sensitive analysis,
in contrast to context-insensitive, distinguishes between the calling
context, i.e., the different call sites of a given function or method
within a program.

A prominent algorithm for escape analysis in Java, which is
adopted by the Java HotSpotTMserver compiler, was proposed by
Choi et. al [5]. The algorithm is context-sensitive and allows for
both a flow-sensitive and a flow-insensitive variant. They propose
a novel program representation, the connection graph (CG) that
is used to represent the escape state of objects allocated within a
method. Later, the nodes in the CG are collapsed into summary
information that can be used in interprocedural analysis at call sites.
The analysis distinguishes between the following escape states:
NoEscape, GlobalEscape – the object escapes the thread, Local
Escape – the object escapes only the currently considered method,
and ArgEscape – the object escapes the method via arguments.
Nodes that are only reachable from NoEscape nodes are eligible
for stack allocation.

Gay and Steensgaard have implemented a whole program inter-
procedural escape analysis for Java programs [7] in an SSA based
IR. An object is considered to escape if it is returned from a method,
thrown as an exception or assigned to a class or instance field.
These rules are encoded as constraints on a type system, which
can be solved in linear time and space in the number of constraints,
e.g., using Rapid Type Analysis. Fresh methods return a newly al-
located object, similarly fresh variables refer to newly allocated
objects that are either created by a new or returned from a fresh
method. For each fresh variable it must be determined whether that
assigned value may escape. At a method invocation site all possi-
ble target methods are considered and constraints are added. If a
parameter can be returned from the callee, it is handled as an as-
signment of the parameter to the left-hand side of the variable.

A different analysis technique based on abstract interpretation
was developed by Blanchet [2]. He directly operates on Java byte-
code instructions and thus models the Java runtime stack for the ab-
stract representation. Information is propagated both forwards and
backwards. Forward propagation occurs when instructions are an-
alyzed following the normal flow of control – as in the approach
of Choi et al. [5]. Backwards propagation is performed by inter-
pretively executing the bytecode instructions along the reverse of
control flow paths. The combination of forwards and backwards
analysis passes enables much more precise results to be obtained.
Blanchet uses a quite different domain of values to represent the

escape state of objects. He represents each class type by an inte-
ger, which is the context for what may escape from an instance
of that class. His abstract values are equations (or context trans-
formers) which map from the contexts of the arguments and result
of a method to the escape contexts of concrete values. Instead of
manipulating a collection of graphs, as Choi et al. do, Blanchet ma-
nipulates sets of equations.

There has not been a qualitative comparison between the two
approaches of Choi et al. and Blanchet. Blanchet states that Choi’s
approach is more time consuming, he also claims bigger speed-
ups for his set of sample programs. However, Blanchet performs
extensive inlining of small methods. As shown in Section 2 inlining
already up to a level of three can drastically improve the results of
escape analysis.

In [9, 10, 11], Kotzmann presents an escape analysis algorithm
tailored for a virtual machine performing adaptive optimizations.
The results of the analysis are used to peform synchronization re-
moval on thread-local objects, stack allocation of thread-local ob-
jects and elimination of method-local objects. Intraprocedural and
interprocedural analysis use the same principles as the algorithm
presented in this work. In contrast to our work, which is a whole-
program analysis, his approach proceeds incrementally: the com-
piler gathers information method by method and uses the collected
data to improve the machine code. The analysis is supported by a
mature optimization framework, i.e., only hot methods are recom-
piled with escape analysis. Summary escape information for meth-
ods that were not yet compiled is approximated through a fast and
conservative abstract interpretation of the Java bytecode. A com-
plete deoptimization framework is able to rematerialize eliminated
objects and undo synchronization elimination. Inlining is used to
improve the impact of escape analysis.

In [6] a memory allocator supporting thread-local heaps was
developed. The aim is to partition the global heap among threads.
Each thread can then allocate memory in its own partition with-
out synchronization. Also garbage collection can be applied to
each partition separately. An analysis is required that assignes ob-
jects to the proper partition, i.e., thread-local objects are alloacted
within thread-local heaps, while all other objects are alloacted on
the shared global heap. Static escape analysis is able to perform
such a partitioning, however, the authors prefer runtime monitoring
of heap allocated objects over static analysis. All objects carry a
global bit that indicates, if the object belongs to the global heap or
not. Most objects are created on the thread-local heap and thus their
global bit is initially cleared. The bits are automatically updated on
stores into static or member fields. If the store causes a local ob-
ject to become reachable from the global heap or a static field, the
global bit is set accordingly. Similarly, all objects reachable from
that particular object are migrated into the global heap.

6. Conclusion
Stack allocation of objects is very effective in reducing the cost
of object allocation and garbage collection. We have presented a
detailed evaluation of the potential of stack allocation. We found
that most applications show high potential for stack allocation in
their dynamic behavior. However, escape analysis is not always
able to prove this behavior statically, because (1) interprocedural
analysis is too costly on a large scale and thus requires conservative
assumptions, (2) the observed runtime behavior may not always
execute all possible paths, e.g., exception handler, that need to
be considered during static analysis. Our study also shows that
inlining, even for a moderate call depth of three, has a very high
potential to improve the results of static escape analysis.

Finally, we have implemented a fast and lightweight static es-
cape analysis within the CACAO JVM that conservatively deter-
mines which objects can safely be allocated on the stack. Up to

95% of the potentially stack allocatable objects are recognized by
the conservative analysis leading to speedups of up to 69% for the
SpecJVM98 benchmark suite. Even for the more complex dacapo
benchmarks an improvement of up to 10% can be observed.

References
[1] Andrew W. Appel. Modern Compiler Implementation in C: Basic

Techniques. Cambridge University Press, New York, NY, USA, 1997.

[2] Bruno Blanchet. Escape analysis for object oriented languages:
Application to Java. In Proceedings of the 14th Annual Conference on
Object-Oriented Programming Systems, Languages and Applications,
pages 20–34, Denver, November 1999. ACM.

[3] Jong-Deok Choi, David Grove, Michael Hind, and Vivek Sarkar.
Efficient and precise modeling of exceptions for the analysis of Java
programs. SIGSOFT Softw. Eng. Notes, 24(5):21–31, 1999.

[4] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment
form and the control dependence graph. ACM Trans. Program. Lang.
Syst., 13(4):451–490, 1991.

[5] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C.
Sreedhar, and Sam Midkiff. Escape analysis for Java. In Proceedings
of the 14th Annual Conference on Object-Oriented Programming Sys-
tems, Languages and Applications, pages 1–19, Denver, November
1999. ACM Press.

[6] Tamar Domani, Gal Goldshtein, Elliot K. Kolodner, Ethan Lewis,
Erez Petrank, and Dafna Sheinwald. Thread-local heaps for Java.
SIGPLAN Not., 38(2 supplement):76–87, 2003.

[7] David Gay and Bjarne Steensgaard. Fast escape analysis and stack
allocation for object-based programs. In CC ’00: Proceedings of
the 9th International Conference on Compiler Construction, pages
82–93, London, UK, 2000. Springer-Verlag.

[8] Richard Jones and Andy C. King. A fast analysis for thread-local
garbage collection with dynamic class loading. In SCAM ’05:
Proceedings of the Fifth IEEE International Workshop on Source
Code Analysis and Manipulation, pages 129–138, Washington, DC,
USA, 2005. IEEE Computer Society.

[9] Thomas Kotzmann. Escape Analysis in the Context of Dynamic
Compilation and Deoptimization. PhD thesis, Johannes Kepler
University Linz, 2005.

[10] Thomas Kotzmann and Hanspeter Mössenböck. Escape analysis in
the context of dynamic compilation and deoptimization. In VEE
’05: Proceedings of the 1st ACM/USENIX international conference
on Virtual Execution Environments, pages 111–120, New York, NY,
USA, 2005. ACM.

[11] Thomas Kotzmann and Hanspeter Mössenböck. Run-time support for
optimizations based on escape analysis. In CGO ’07: Proceedings of
the International Symposium on Code Generation and Optimization,
pages 49–60, Washington, DC, USA, 2007. IEEE Computer Society.

[12] Andreas Krall. Efficient JavaVM just-in-time compilation. In
Jean-Luc Gaudiot, editor, International Conference on Parallel
Architectures and Compilation Techniques, pages 205–212, Paris,
October 1998. IFIP,ACM,IEEE, North-Holland.

[13] Charles Edward McDowell. Reducing garbage in Java. SIGPLAN
Notices, 33(9):84–86, 1998.

[14] Hanspeter Mössenböck. Adding static single assignment form and
a graph coloring register allocator to the Java HotSpotTM client
compiler. Technical report, Johannes Kepler University Linz, 2000.

[15] Edwin Steiner, Andreas Krall, and Christian Thalinger. Adaptive
inlining and on-stack replacement in the CACAO virtual machine. In
International Conference on Principles and Practice of Programming
in Java, pages 221–226, Monte de Caparica/Lisbon, Portugal,
September 2007.

