Improving Semi-static Branch Prediction by Code Replication

Andreas Krall
Institut fiir Computersprachen
Technische Universitat Wien
Argentinierstrafle 8
A-1040 Wien
andi@mips.complang.tuwien.ac.at

Abstract

Speculative execution on superscalar processors de-
mands substantially better branch prediction than what
has been previously available. In this paper we present
code replication techniques that improve the accurracy
of semi-static branch prediction to a level comparable to
dynamic branch prediction schemes. Our technique uses
profiling to collect information about the correlation be-
tween different branches and about the correlation be-
tween the subsequent outcomes of a single branch. Us-
ing this information and code replication the outcome
of branches is represented in the program state. Our ex-
periments have shown that the misprediction rate can
almost be halved while the code size is increased by one
third.

1 Introduction

Branch prediction forecasts the direction a conditional
branch will take. It reduces the branch penalty in a pro-
cessor and is a basis for the application of compiler opti-
mization techniques. In this paper we are mainly inter-
ested in the latter use, since we will apply branch predic-
tion to compiler based speculative execution and other
code motion techniques. Static branch prediction relies
only on information that is obtained by static analysis
of the program. Semi-static branch prediction uses pro-
filing [Wal91] to predict the branch direction. Dynamic
branch prediction saves branch directions in hardware
history registers and tables and uses this information to
predict branches during run time. The misprediction
rate of semi-static branch prediction strategies is about

half that of the best static branch prediction strategies
[BL93]. The misprediction rate of the best dynamic
branch prediction strategies is about half that of semi-
static branch prediction strategies [YN93].

Compile time optimizations like code motion and
speculative execution rely on an accurate branch predic-
tion strategy. For many optimizations existing branch
prediction strategies are not sufficient. So we looked
for a method to improve the accuracy of compile time
branch prediction. Our approach replicates a piece of
code, so that the branches in the replicated code pieces
are more predictable than in the original code. This idea
was inspired by the work of Pettis and Hanson [PH90],
who use profiling for code positioning to improve cache
behaviour, and by the work of Mueller and Whalley
[MW92], who use code replication to avoid jumps.

Chapter 2 presents existing branch prediction meth-
ods. Chapter 3 contains a description of our profiling
tool and presents the results of profiling our benchmark
suite. Chapter 4 describes the techniques for compact-
ing the collected history information in order to make
it usable for semi-static branch prediction. Chapter 5
explains the code replication techniques and shows the
effects on the code size.

2 Branch Prediction Strategies

2.1 Static Branch Prediction

Smith [Smi81] explored some simple heuristics and com-
pared them with simple dynamic branch prediction
strategies. He uses following static strategies:

e predict that all branches will be taken

e predict that only certain branch operation codes
will be taken

e predict that all backward branches will be taken

The misprediction rate of these simple branch pre-
diction strategies is about 30%, but some benchmark
programs have a misprediction rate of 65%.

A more sophisticated implementation of static branch
prediction has been done by Ball and Larus [BL93].
Their branch prediction strategy is based on a control
flow analysis of the program to determine loops. Fur-
thermore, the code surrounding a branch determines the
kind of the branch. They applied different heuristics in
different lexicograhic orders. The most successful order
was:

Point pointer comparison (predict not taken)

Call avoid branches to blocks which call a subrou-
tine

Opcode decide the branch direction on the branch in-
struction opcode

Return avoid branches to blocks which return from a
subroutine

Store avoid branches to blocks which contain a store
instruction

Loop predict that the loop branch will be taken

Guard branch to a block which uses the operands of
the branch

With this heuristics Ball and Larus reach an average
misprediction rate of 20%, about twice the mispredic-
tion rate achieved by profile based branch prediction.

2.2 Semi-static Branch Prediction

Semi-static branch prediction is based on profiling
[Wal91]. McFarling and Hennessy [MHS86] were the first
to suggest the use of profiling for branch prediction and
gave some data. Fisher and Freudenberger [FF92] made
a comprehensive study of branch prediction based on
profiling. Instead of using the misprediction rate as a
measure, they gave the average number of executed in-
structions per mispredicted branch for the programs of
the SPEC benchmark suite. Furthermore they stud-
ied the influence of different datasets on the accuracy
of the prediction. Fisher and Freudenberger report be-
tween 80% and 100% of the prediction rate for the best
prediction using another dataset instead of the reference
data set. The worst prediction varies between 50% and
100%.

2.3 Dynamic Branch Prediction

Dynamic branch prediction depends on information
available only at run time. Simple strategies have been
studied by Smith [Smi81]. Among other strategies he
proposed the following strategies:

e predict that a branch will take the same direction
as on its last execution

e associate a counter with a branch and decide on the
counter value

The counter based strategy increments the counter
using saturation arithmetic if the branch was taken and
decrements it otherwise. If the counter value is in the
upper half of the value range, the branch is predicted
taken. If the value is in the lower half, the branch is
predicted not taken. A two bit counter gives the best
result. The misprediction rate is comparable to the pro-
file based strategies.

Today the best dynamic branch prediction strategies
are based on two levels of history information. One
level of information represents the outcome of the last
branches. It is usually implemented as a shift register
in hardware. The second level of history information
contains the different patterns of history register values
combined with a two bit counter, which gives the branch
prediction for this pattern. Yeh and Patt presented a
strategy whith a history register for each branch and a
pattern table for each branch [YN92]. Pan, So and Rah-
meh presented a strategy with a single global history
register and a pattern table for each branch [PSR92].
Since their strategy depends on the correlation of dif-
ferent branches, they called it branch correlation. Later
Yeh and Patt studied all nine combinations of one global
history register, a history register for a set of branches
and a history register for each branch with one global
pattern table, a pattern table for a set of branches or a
pattern table for each branch [YN93]. The best strat-
egy, a history register for each branch and a pattern
table for a set of branches, achieved an average mispre-
diction rate of about 3% having an implementation cost
of 128K bits.

3 Collecting Branch Correlation
Information

We are interested in a branch prediction strategy usable
for predictions at compile time. So we tried to adapt
the dynamic branch prediction strategies of [YN93] for
semi-static branch prediction. In contrast to a dynamic
branch strategy we are not restricted by the size of the
history tables. So we used a pattern table for each
branch. Furthermore, we used only history register
schemes which are meaningful for code replication. A
global history register means that a branch depends on
other branches. We will call this strategy correlated
branch strategy. A history register for each branch (lo-
cal history register) means that this branch depends on
previous executions of the same branch. We will call this

scheme loop branch strategy and branches which use this
scheme loop branches. For each pattern in the pattern
table we predict the more frequent direction.

Since no existing profiling or trace tool fulfilled our
needs we developed our own profiling and analysis tools.
To get a trace of the executed branches we insert code in
a program which writes trace information to a file. The
trace information contains the branch number and the
branch direction. In compressed form a trace of 5 mil-
lion branches occupies about 1MB. In contrast to the
QPT profiling and tracing tool [Lar93], which inserts
trace instructions in the object code of a program, our
tool inserts trace code in the assembly language source
of a program. The advantage of our method is that
address calculation and code relocation is done by the
assembler. The disadvantage of our method is that we
cannot trace system library functions. Furthermore, the
trace tool does a control flow analysis and saves the de-
scription of branches, a control flow graph and loop in-
formation in a file. An analysis tool processes the trace
and generates tables that describe the branch prediction
accuracy and the effects on code size. Programs with
tracing enabled are about three times slower than with-
out. The analysis of the trace is done in a few seconds.
A production version of the profiling tool will include
the first part of the analysis tool which transforms the
trace data into the pattern table. This enables profiling
with an unlimited number of branches.

With these tools we evaluated a set of eight bench-
mark programs. Since especially integer programs need
better branch prediction, we included only one floating
point program. The programs are:

abalone a board game employing alpha-beta search

c-compiler the lcc compiler front end of Fraser & Han-
son

compress a file compression utility (SPEC)

ghostview an X postscript previewer

predict our profiling and trace tool

prolog the minivip Prolog interpreter

scheduler an instruction scheduler

doduc hydrocode simulation (floating point)
(SPEC)

These benchmark programs have been compiled with
the C or Fortran compilers with optimization enabled.
We traced the whole program up to a maximum of 10
million branch instructions. For the purpose of com-
parison we evaluated dynamic and semi-static branch
prediction strategies:

a branch takes the same direction as
the last time (dynamic)

decide on the value of a 2 bit counter
(dynamic)

last direction

2 bit counter

two level 41K bit a 1K entry 9 bit history register and

a 16K entry pattern table with 2 bit

counters (dynamic)

predict the most frequent direction

(semi-static)

6 bit correlation predict using one global 6 bit history
register (semi-static)

profile

6 bit loop use 6 bit history registers for every
branch (semi-static)
9 bit loop use 9 bit history registers for every

branch (semi-static)
loop—correlation the best of 6 bit correlation and 9 bit
loop for each branch (semi-static)

Furthermore, we collected information about the
static number of branches, the number of branches that
were executed during the run of the program and the
number of branches that could be improved by the loop-
correlation strategy compared to profile branch predic-
tion. Table 1 gives the results.

4 The Branch Prediction State
Machine

Table 1 shows that branch prediction strategies using
history information significantly improves the predic-
tion accuracy. But how can this information be used
in a semi-static branch prediction scheme? As an ex-
ample, we consider a branch embedded in a loop that
is alternating between taken and not taken. Figure 1
shows the flow graph of an example loop.

Basic block “1” contains the branch that can be im-
proved by code replication. The loop is duplicated and
the branch switches between the two copies. Each copy
of the loop represents a state that remembers the branch
direction of the previous execution of this branch. State
“0” has the meaning that the last time the branch was
not taken, State “1” has the meaning that the branch
was taken. In both copies of the loop the branch is now
predicted correctly 100% of the time. Basic blocks “2b”
and “3a” are not replicated. Since there is no path to
them they have been discarded.

This is the scheme we implement for 1 bit history in-
formation. Unfortunately, we cannot use this scheme
for longer histories, since this would increase the pro-
gram size too much. A replicated loop representing a 9
bit history would result in 512 copies of the loop. On
the other hand information in the history tables is very
sparse. Table 2 gives the percentage of the pattern ta-
ble fill rate. Only between 0.6 and 21 percent of the
9 bit pattern table entrys of the executed branches are
used. We therefore construct branch prediction state
machines for loop branches and correlated branches that

aba- c-com- com- ghost- pre- pro- sche- do-

lone piler press view dict log duler duc
last direction 22.9 18.4 18.0 1.27 11.8 145 13.8 7.53
2 bit counter 20.8 14.9 14.5 1.20 770 11.3 109 3.87
two level 41K bit 6.82 12.7 13.7 1.85 464 107 11.1 0.89
profile 18.7 13.5 17.2 1.27 797 11.3 13.6 3.99
6 bit correlation 11.6 8.67 14.2 031 630 7.53 9.28 1.64
6 bit loop 9.67 9.33 13.4 041 522 7.18 7.76 1.55
9 bit loop 6.89 7.79 13.0 036 4.12 572 597 1.33
loop—correlation 6.47 6.97 12.6 0.21 372 535 5.02 1.11
static branches 496 3645 170 1399 451 2324 490 665
executed branches | 311 2183 70 517 345 819 431 487
improved branches | 209 658 13 84 92 320 242 74

Table 1: misprediction rates of different branch prediction strategies in percent

Q§9

origin

al loop

© @
ORO
®

state 1

state 0

Figure 1: flow graph of an intra loop branch and a 2 state machine

aba- c-com- com- ghost- pre- pro- sche- do-

lone piler press view dict log duler duc
1 bit history | 92.6 84.2 67.9 68.1 829 85.0 86.5 84.1
2 bit history | 84.6 66.1 46.1 429 64.6 68.6 75.6 60.9
3 bit history | 74.4 495 314 25.0 482 538 658 404
4 bit history | 62.9 36.1 21.8 141 35.8 413 56.8 252
5 bit history | 52.1 25.8 16.0 785 26.7 313 484 151
6 bit history | 42.5 18.2 12.3 427 20.0 23.2 396 8.79
7 bit history | 34.3 12.7 10.1 230 148 16.6 30.8 5.05
8 bit history | 27.1 8.70 8.77 1.22 106 11.5 227 285
9 bit history | 21.0 5.89 8.00 0.65 7.28 7.56 15.8 1.58

Table 2: fill rate of the history tables in percent

Figure 3: branch prediction state machine 4/2

use fewer states but have nearly the same prediction ac-
curacy. Furthermore, we divide loop branches in intra
loop branches that occur inside a loop, and ezit loop
branches which may leave the loop.

4.1 Intra Loop Branches

Intra loop branches do not leave the loop. For intra loop
branches a state represents the last n branch directions
of previous iterations of the loop. It is necessary that
each state can be reached from another state and via
other states from the initial state, i.e. the state used
in the first iteration. An example for a valid intra loop
state machine is the state machine 5/1 in figure 2. A
state is a copy of the loop, e.g. the loop of figure 1.
The digits in the state describe the directions of the last
branches. “0” means that the branch was not taken, “1”
means that the branch was taken. The rightmost digit
represent the direction of the last iteration. State “1”
and state “0” representing only one branch direction are
used as catch-all states if more specialized states do not

Figure 4: branch prediction state machine 3/3/3/1

match. An arclabeled “0” describes the state transition
if a branch was not taken. An arc labeled “1” describes
the transition if the branch was not taken. Each state
can be used as an initial state for the first iteration.

It is also possible to construct state machines where
the smallest state represents the last two directions of
the branch. In this case there are four catch-all states
which match when specialized states fail. Figure 3
shows such a state machine.

Another example is the state machine of figure 4 that
has a loop of three states with size three (the states
“110”, “101” and “011”). This loop can be reached from
the catch all state “1” via the state “11”. Although a
state machine as in figure 2 usually gives the best result
for a 6 state machine, we make an exhaustive search in
the pattern table to find the best state machine. For
each 9 bit pattern we collected the number of taken and
not taken branches. This information is used to com-
pute the number of taken and not taken branches for all
shorter patterns. Adding now the counts for the more
frequent direction of all states of a branch prediction
state machine and taking care that patterns are counted
not more than once, we get the number of correct pre-
dicted branches for the state machine. The branch pre-
diction state machine with the highest number of correct
predicted branches is selected. Table 3 shows the mis-
prediction rates of the benchmark programs, where only
a reduced state machine is used instead of the complete
pattern table. A state machine with 2 states implements
exactly the 1 bit history scheme, so no data for a two
bit state machine is presented. A state machine with
n states usually needs the history information up to a
length n — 1. So we grouped always a history with n
bits with a n 4+ 1 state machine to show the effect of
accuracy loss.

Figure 5: loop exit branch machine

4.2 Loop Exit Branches

Loop exit branches are those branches that go from in-
side the loop to the surrounding code. Therefore, they
are more restricted than intra loop branches. Loop exit
branch state machines have one initial state that rep-
resents the loop exit in the last execution (state “0”).
The other states represent the loop iterations (the states
with an increasing number of “1”). Figure 5 shows a
loop exit branch machine. It is not necessary that a loop
remains in the state with the longest history informa-
tion. If a loop has a high probability of an even or odd
number of iterations, the loop would change between
the two states with the longest history information as
shown in figure 5. Such a behavior can be detected us-
ing longer history information. The misprediction rates
of loop exit state machines are shown in table 3, too.

4.3 Correlated Branches

The state machines for correlated branches are differ-
ent from the state machines for loop branches. The
states of a loop branch depend on each other, the states
of a correlated branch are independent. A state in a
correlated branch state machine represents a path from
correlated branches to the branch to be predicted. The
correlated branch state machine is the set of those paths
which give the lowest misprediction rate. One state cov-
ers the case where the control flow matches none of the
paths. The code replication for correlated branches is
similar to [MW92]. The difference is that our aim was
to save information about the branch direction, whereas
the aim of Mueller and Whalley was to avoid uncondi-
tional jumps. Table 4 gives the misprediction rate of
correlated branches. We used a maximum path length
of n — 1 for an n state machine to keep the size of the

replicated code small. The table shows that the cor-
relation information can be compacted with very small
loss.

5 Branch Prediction and Pro-
gram Size

To find intra loop, exit loop and other branches, a con-
trol flow analysis of the program is performed. The
program is divided into basic blocks and a control flow
graph is constructed. Natural loop analysis [ASU86] is
performed. With this information the state machines
for loop exit and intra loop branches are selected. For
all branches all predecessors with a path length less than
the size of the state machine are collected, and the cor-
related branch state machines are selected. The best
available strategy for each branch is chosen. Branch pre-
diction is deteriorated because only half of the branches
belong to a loop and because the state machines reduce
the accuracy of the branch prediction. Table 5 gives the
misprediction rates of the benchmark programs for the
different sizes of the state machine ignoring the effects
on program size.

To study the effect of code replication on the code
size, we added states to a program and measured how
the code size increased and the misprediction rate was
reduced. The states were added in such an order that
the state that predicted the largest number of branches
and that increased the code size by the smallest amount
was choosen first. The first states reduce the mispredic-
tion rate substantially, later ones increase the code size
considerably. The appendix shows graphs of code size
versus misprediction rate. The asymptotic behaviour
is explained by the dependences between branches. If
branches are in different loops, the number of states is
only added. If branches are in the same loop, the num-
ber of states must be multiplied. Some programs reach
the best misprediction rate within a code size increase
of a factor 1.5, other programs would increase the code
size more than thousand times. With the exception of
abalone every program comes close to the best achieve-
able misprediction rate by increasing the code size by
less than 30%.

An optimizer using code replication for improving
branch prediction will not improve the whole program,
but only certain branches. In general, an optimization
technique like branch aligning or speculative execution
is not applied to a branch whose prediction accuracy is
low. If code replication improves the accuracy of the
prediction for this branch, such an optimization can be
applied. A cost function will calculate whether the in-
crease in code size (negative impact on instruction cache
miss rate) is worth the gain in execution time.

aba- c-com- com- ghost- pre- pro- sche- do-

lone piler press view dict log duler duc
profile 18.7 13.5 17.2 1.27 797 11.3 13.6 3.99
1 bit 16.9 12.4 16.0 0.63 7.36 10.0 104 227
2 bit 15.4 11.9 14.6 0.51 7.07 9.23 991 1.57
3 states loop 154 12.0 14.7 0.52 710 9.26 9.94 1.57
3 states exit 16.1 12.2 15.7 0.58 7.23 9.66 10.3 2.02
3 bit 13.6 10.8 14.2 048 6.72 8.67 9.67 1.56
4 states loop 14.4 11.3 14.2 048 6.83 884 9.73 1.56
4 states exit 15.4 12.0 15.7 0.57 7.08 949 10.2 2.02
4 bit 12.1 10.3 13.7 045 6.23 813 932 1.55
5 states loop 13.0 10.7 14.0 0.46 6.41 851 9.53 1.55
5 states exit 15.1 11.8 15.7 0.57 6.84 944 10.2 2.02
5 bit 10.7 9.81 13.5 042 568 7.67 9.02 1.55
6 states loop 12.3 10.5 13.8 044 6.26 821 942 1.55
6 states exit 14.7 11.7 15.7 0.56 6.75 9.39 10.2 2.02
6 bit 9.67 9.33 13.4 041 522 718 T7.76 1.55
7 states loop 11.3 10.3 13.6 042 596 798 849 1.55
7 states exit 14.6 11.6 15.7 0.56 6.58 9.38 9.37 2.02
7 bit 8.76 8.78 13.2 040 4.74 6.74 721 1.55
8 states loop 10.7 10.1 13.6 042 576 7.84 832 1.55
8 states exit 14.4 11.6 15.6 0.55 6.48 9.37 930 2.02
8 bit 7.68 8.34 13.1 037 441 6.26 6.61 1.34
9 states loop 10.1 991 13.5 0.41 566 7.73 824 1.34
9 states exit 14.1 11.6 15.6 0.53 6.46 9.36 9.29 2.02
9 bit 6.89 7.79 13.0 036 4.12 5.72 597 1.34
10 states loop | 9.64 9.71 13.4 0.39 5.51 7.61 817 1.34
10 states exit | 13.8 11.6 15.6 0.53 6.46 9.35 9.28 2.02

Table 3: misprediction rates of loop and loop exit branches in percent

aba- c-com- com- ghost- pre- pro- sche- do-

lone piler press view dict log duler duc
profile 18.7 13.5 17.2 1.27 797 11.3 136 3.99
1 bit 18.6 12.8 17.1 1.22 775 106 120 2.52
2 states | 18.6 12.8 17.1 1.22 775 106 120 2.52
2 bit 16.2 11.7 17.1 1.05 737 989 11.1 1.95
3 states | 16.2 11.7 17.1 1.05 737 990 11.1 1.95
3 bit 15.1 10.8 15.9 0.62 6.95 940 10.8 1.83
4 states | 15.2 10.8 15.9 0.62 7.03 943 109 1.83
4 bit 13.9 9.58 15.9 0.38 6.52 866 10.1 1.75
5 states | 14.3 9.90 15.9 0.38 6.68 877 10.1 1.75
5 bit 12.7 9.12 15.6 0.34 6.39 8.08 961 1.70
6 states | 13.4 9.65 15.6 035 6.48 831 972 1.70
6 bit 11.6 8.67 14.2 032 6.30 7.53 9.28 1.64
7 states | 12.6 9.42 14.2 0.34 6.40 8.02 950 1.64

Table 4: misprediction rates of correlated branches in percent

aba- c-com- com- ghost- pre- pro- sche- do-

lone piler press view dict log duler duc
profile 18.7 13.5 17.2 1.27 797 11.3 13.6 3.99
2 states 16.8 12.5 16.1 0.82 7.58 9.86 11.8 2.33
3 states 14.6 11.1 14.9 0.59 7.26 9.05 10.8 1.62
4 states 13.2 10.2 14.0 0.44 6.80 8.59 10.6 1.57
5 states 11.8 9.29 13.9 0.3 6.24 786 9.87 1.56
6 states 11.0 9.10 13.5 0.31 6.03 7.50 947 1.51
7 states 10.0 8.91 134 0.30 5.76 7.29 847 148
8 states | 9.64 8.80 134 0.30 5.60 7.24 838 148
9 states | 9.26 8.71 13.3 0.30 5.56 7.18 834 1.28
10 states | 8.99 8.68 13.3 0.29 545 7.12 832 1.28

Table 5: best achieveable misprediction rates in percent

6 Further Work

A problem of our code replication scheme is that the
code size is multiplied if more than one branch in a
loop should be improved. A possible solution treats all
branches of that loop at the same time and constructs
a single state machine for all branches using a higher
number of states. In that case the search for the optimal
state machine must be replaced by a branch-and-bound
search since the search time grows exponentially with

the number of states.

Another work to be done is to measure the influence

of different data sets on the misprediction rate.

We

assume that code replicated programs are more sensitive
to different data sets than the original program. So
the results of Fisher and Freudenberger are not fully

applicable [FF92].

Furthermore we will use the improved semi-static
branch prediction strategy for our global instruction
scheduler and evaluate the effects on runtime and in-

struction cache behaviour.

7 Conclusion

We presented a code replication technique for im-
proving the accuracy of semi-static branch prediction.
This technique combines different correlation strategies.
Therefore, the prediction is sometimes more accurate
than dynamic prediction that uses only a single strat-
egy. Since our technique is semi-static, the increased
accuracy can be used by compile time optimizations like
code motion or speculative execution.

Acknowledgement

We express our thanks to Manfred Brockhaus, An-
ton Ertl, Ulrich Neumerkel, Franz Puntigam, and Jian
Wang for their comments on earlier drafts of this pa-
per. We would also like to thank the reviewers for their
helpful suggestions.

References

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ull-

[BL93)

[FF92]

[Lar93]

[MHS6]

[MW92]

man. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 1986.

Thomas Ball and James R. Larus. Branch pre-
diction for free. In 1993 SIGPLAN Conference
on Programming Language Design and Imple-
mentation. ACM, June 1993.

Joseph A. Fisher and Stefan M. Freuden-
berger. Predicting conditional branch direc-
tions from previous runs of a program. In
Fifth International Conference on Architec-

tural Support for Programming Languages and
Operating Systems. ACM, October 1992.

James R. Larus. Efficient program tracing.
IEEE Computer, 26(5), May 1993.

Scott McFarling and John Hennessy. Reducing
the cost of branches. In 13th Annual Interna-

tional Symposium on Computer Architecture.
ACM, 1986.

Frank Mueller and David B. Whalley. Avoid-
ing unconditional jumps by code replication.
In 1992 SIGPLAN Conference on Program-

ming Language Design and Implementation.
ACM, June 1992.

[PH90|

[PSR92]

[Smi81]

[Wal91]

[YN92]

[YNO3]

Karl Pettis and Robert C. Hansen. Profile
guided code positioning. In 1990 SIGPLAN
Conference on Programming Language Design
and Implementation. ACM, June 1990.

Shien-Tai Pan, Kimming So, and Joseph T.
Rahmeh. Improving the the accuracy of dy-
namic branch prediction using branch corre-
lation. In Fifth International Conference on
Architectural Support for Programming Lan-
guages and Operating Systems. ACM, October
1992.

James E. Smith. A study of branch predic-
tion strategies. In 8th Annual International
Symposium on Computer Architecture. ACM,
1981.

David E. Wall. Predicting program behavior
using real or estimated profiles. In 1991 SIG-
PLAN Conference on Programming Language
Design and Implementation. ACM, June 1991.

Tse-Yu Yeh and Yale N.Patt. Alternative
implementations of two-level adaptive branch
prediction. In 19th Annual International
Symposium on Computer Architecture. ACM,
1992.

Tse-Yu Yeh and Yale N.Patt. A comparison of
dynamic branch predictors that use two levels
of branch history. In 20th Annual Interna-
tional Symposium on Computer Architecture.
ACM, 1993.

Misprediction Rate vs. Code

Size

misprediction rate

1

0%

5%
code size

\
125 15 175

Figure 6: abalone

misprediction rate

15%
10% L
5%+
codesize
1.‘25 1‘.5 1.‘75
Figure 7: c-compiler
misprediction rate
15% L
10%
5%
codesize
1.‘25 1‘.5 1.‘75
Figure 8: compress
misprediction rate
15%
10%
5%
codesize

\ [\
125 15 175

Figure 9: ghostview

misprediction rate

15%

10%

\H‘\

5%
code size

\
1.25 15 175

Figure 10: predict

misprediction rate

15%

10% 7\¥

5%

code size

\ \ \
125 15 175

Figure 11: prolog

misprediction rate

15%

10% \

5%

code size

\ \ \
125 15 175

Figure 12: scheduler

10

misprediction rate

15%

10%

5%

code size

N

\
125 15 175

Figure 13: doduc

