
Improving Semi-static Branch Prediction by Code ReplicationAndreas KrallInstitut f�ur ComputersprachenTechnische Universit�at WienArgentinierstra�e 8A-1040 Wienandi@mips.complang.tuwien.ac.atAbstractSpeculative execution on superscalar processors de-mands substantially better branch prediction than whathas been previously available. In this paper we presentcode replication techniques that improve the accurracyof semi-static branch prediction to a level comparable todynamic branch prediction schemes. Our technique usespro�ling to collect information about the correlation be-tween di�erent branches and about the correlation be-tween the subsequent outcomes of a single branch. Us-ing this information and code replication the outcomeof branches is represented in the program state. Our ex-periments have shown that the misprediction rate canalmost be halved while the code size is increased by onethird.1 IntroductionBranch prediction forecasts the direction a conditionalbranch will take. It reduces the branch penalty in a pro-cessor and is a basis for the application of compiler opti-mization techniques. In this paper we are mainly inter-ested in the latter use, since we will apply branch predic-tion to compiler based speculative execution and othercode motion techniques. Static branch prediction reliesonly on information that is obtained by static analysisof the program. Semi-static branch prediction uses pro-�ling [Wal91] to predict the branch direction. Dynamicbranch prediction saves branch directions in hardwarehistory registers and tables and uses this information topredict branches during run time. The mispredictionrate of semi-static branch prediction strategies is about

half that of the best static branch prediction strategies[BL93]. The misprediction rate of the best dynamicbranch prediction strategies is about half that of semi-static branch prediction strategies [YN93].Compile time optimizations like code motion andspeculative execution rely on an accurate branch predic-tion strategy. For many optimizations existing branchprediction strategies are not su�cient. So we lookedfor a method to improve the accuracy of compile timebranch prediction. Our approach replicates a piece ofcode, so that the branches in the replicated code piecesare more predictable than in the original code. This ideawas inspired by the work of Pettis and Hanson [PH90],who use pro�ling for code positioning to improve cachebehaviour, and by the work of Mueller and Whalley[MW92], who use code replication to avoid jumps.Chapter 2 presents existing branch prediction meth-ods. Chapter 3 contains a description of our pro�lingtool and presents the results of pro�ling our benchmarksuite. Chapter 4 describes the techniques for compact-ing the collected history information in order to makeit usable for semi-static branch prediction. Chapter 5explains the code replication techniques and shows thee�ects on the code size.2 Branch Prediction Strategies2.1 Static Branch PredictionSmith [Smi81] explored some simple heuristics and com-pared them with simple dynamic branch predictionstrategies. He uses following static strategies:� predict that all branches will be taken� predict that only certain branch operation codeswill be taken� predict that all backward branches will be taken
1



The misprediction rate of these simple branch pre-diction strategies is about 30%, but some benchmarkprograms have a misprediction rate of 65%.A more sophisticated implementation of static branchprediction has been done by Ball and Larus [BL93].Their branch prediction strategy is based on a controlow analysis of the program to determine loops. Fur-thermore, the code surrounding a branch determines thekind of the branch. They applied di�erent heuristics indi�erent lexicograhic orders. The most successful orderwas:Point pointer comparison (predict not taken)Call avoid branches to blocks which call a subrou-tineOpcode decide the branch direction on the branch in-struction opcodeReturn avoid branches to blocks which return from asubroutineStore avoid branches to blocks which contain a storeinstructionLoop predict that the loop branch will be takenGuard branch to a block which uses the operands ofthe branchWith this heuristics Ball and Larus reach an averagemisprediction rate of 20%, about twice the mispredic-tion rate achieved by pro�le based branch prediction.2.2 Semi-static Branch PredictionSemi-static branch prediction is based on pro�ling[Wal91]. McFarling and Hennessy [MH86] were the �rstto suggest the use of pro�ling for branch prediction andgave some data. Fisher and Freudenberger [FF92] madea comprehensive study of branch prediction based onpro�ling. Instead of using the misprediction rate as ameasure, they gave the average number of executed in-structions per mispredicted branch for the programs ofthe SPEC benchmark suite. Furthermore they stud-ied the inuence of di�erent datasets on the accuracyof the prediction. Fisher and Freudenberger report be-tween 80% and 100% of the prediction rate for the bestprediction using another dataset instead of the referencedata set. The worst prediction varies between 50% and100%.2.3 Dynamic Branch PredictionDynamic branch prediction depends on informationavailable only at run time. Simple strategies have beenstudied by Smith [Smi81]. Among other strategies heproposed the following strategies:

� predict that a branch will take the same directionas on its last execution� associate a counter with a branch and decide on thecounter valueThe counter based strategy increments the counterusing saturation arithmetic if the branch was taken anddecrements it otherwise. If the counter value is in theupper half of the value range, the branch is predictedtaken. If the value is in the lower half, the branch ispredicted not taken. A two bit counter gives the bestresult. The misprediction rate is comparable to the pro-�le based strategies.Today the best dynamic branch prediction strategiesare based on two levels of history information. Onelevel of information represents the outcome of the lastbranches. It is usually implemented as a shift registerin hardware. The second level of history informationcontains the di�erent patterns of history register valuescombined with a two bit counter, which gives the branchprediction for this pattern. Yeh and Patt presented astrategy whith a history register for each branch and apattern table for each branch [YN92]. Pan, So and Rah-meh presented a strategy with a single global historyregister and a pattern table for each branch [PSR92].Since their strategy depends on the correlation of dif-ferent branches, they called it branch correlation. LaterYeh and Patt studied all nine combinations of one globalhistory register, a history register for a set of branchesand a history register for each branch with one globalpattern table, a pattern table for a set of branches or apattern table for each branch [YN93]. The best strat-egy, a history register for each branch and a patterntable for a set of branches, achieved an average mispre-diction rate of about 3% having an implementation costof 128K bits.3 Collecting Branch CorrelationInformationWe are interested in a branch prediction strategy usablefor predictions at compile time. So we tried to adaptthe dynamic branch prediction strategies of [YN93] forsemi-static branch prediction. In contrast to a dynamicbranch strategy we are not restricted by the size of thehistory tables. So we used a pattern table for eachbranch. Furthermore, we used only history registerschemes which are meaningful for code replication. Aglobal history register means that a branch depends onother branches. We will call this strategy correlatedbranch strategy. A history register for each branch (lo-cal history register) means that this branch depends onprevious executions of the same branch. We will call this
2



scheme loop branch strategy and branches which use thisscheme loop branches. For each pattern in the patterntable we predict the more frequent direction.Since no existing pro�ling or trace tool ful�lled ourneeds we developed our own pro�ling and analysis tools.To get a trace of the executed branches we insert code ina program which writes trace information to a �le. Thetrace information contains the branch number and thebranch direction. In compressed form a trace of 5 mil-lion branches occupies about 1MB. In contrast to theQPT pro�ling and tracing tool [Lar93], which insertstrace instructions in the object code of a program, ourtool inserts trace code in the assembly language sourceof a program. The advantage of our method is thataddress calculation and code relocation is done by theassembler. The disadvantage of our method is that wecannot trace system library functions. Furthermore, thetrace tool does a control ow analysis and saves the de-scription of branches, a control ow graph and loop in-formation in a �le. An analysis tool processes the traceand generates tables that describe the branch predictionaccuracy and the e�ects on code size. Programs withtracing enabled are about three times slower than with-out. The analysis of the trace is done in a few seconds.A production version of the pro�ling tool will includethe �rst part of the analysis tool which transforms thetrace data into the pattern table. This enables pro�lingwith an unlimited number of branches.With these tools we evaluated a set of eight bench-mark programs. Since especially integer programs needbetter branch prediction, we included only one oatingpoint program. The programs are:abalone a board game employing alpha-beta searchc-compiler the lcc compiler front end of Fraser & Han-soncompress a �le compression utility (SPEC)ghostview an X postscript previewerpredict our pro�ling and trace toolprolog the minivip Prolog interpreterscheduler an instruction schedulerdoduc hydrocode simulation (oating point)(SPEC)These benchmark programs have been compiled withthe C or Fortran compilers with optimization enabled.We traced the whole program up to a maximum of 10million branch instructions. For the purpose of com-parison we evaluated dynamic and semi-static branchprediction strategies:last direction a branch takes the same direction asthe last time (dynamic)2 bit counter decide on the value of a 2 bit counter(dynamic)

two level 41K bit a 1K entry 9 bit history register anda 16K entry pattern table with 2 bitcounters (dynamic)pro�le predict the most frequent direction(semi-static)6 bit correlation predict using one global 6 bit historyregister (semi-static)6 bit loop use 6 bit history registers for everybranch (semi-static)9 bit loop use 9 bit history registers for everybranch (semi-static)loop{correlation the best of 6 bit correlation and 9 bitloop for each branch (semi-static)Furthermore, we collected information about thestatic number of branches, the number of branches thatwere executed during the run of the program and thenumber of branches that could be improved by the loop-correlation strategy compared to pro�le branch predic-tion. Table 1 gives the results.4 The Branch Prediction StateMachineTable 1 shows that branch prediction strategies usinghistory information signi�cantly improves the predic-tion accuracy. But how can this information be usedin a semi-static branch prediction scheme? As an ex-ample, we consider a branch embedded in a loop thatis alternating between taken and not taken. Figure 1shows the ow graph of an example loop.Basic block \1" contains the branch that can be im-proved by code replication. The loop is duplicated andthe branch switches between the two copies. Each copyof the loop represents a state that remembers the branchdirection of the previous execution of this branch. State\0" has the meaning that the last time the branch wasnot taken, State \1" has the meaning that the branchwas taken. In both copies of the loop the branch is nowpredicted correctly 100% of the time. Basic blocks \2b"and \3a" are not replicated. Since there is no path tothem they have been discarded.This is the scheme we implement for 1 bit history in-formation. Unfortunately, we cannot use this schemefor longer histories, since this would increase the pro-gram size too much. A replicated loop representing a 9bit history would result in 512 copies of the loop. Onthe other hand information in the history tables is verysparse. Table 2 gives the percentage of the pattern ta-ble �ll rate. Only between 0.6 and 21 percent of the9 bit pattern table entrys of the executed branches areused. We therefore construct branch prediction statemachines for loop branches and correlated branches that
3



aba- c-com- com- ghost- pre- pro- sche- do-lone piler press view dict log duler duclast direction 22.9 18.4 18.0 1.27 11.8 14.5 13.8 7.532 bit counter 20.8 14.9 14.5 1.20 7.70 11.3 10.9 3.87two level 41K bit 6.82 12.7 13.7 1.85 4.64 10.7 11.1 0.89pro�le 18.7 13.5 17.2 1.27 7.97 11.3 13.6 3.996 bit correlation 11.6 8.67 14.2 0.31 6.30 7.53 9.28 1.646 bit loop 9.67 9.33 13.4 0.41 5.22 7.18 7.76 1.559 bit loop 6.89 7.79 13.0 0.36 4.12 5.72 5.97 1.33loop{correlation 6.47 6.97 12.6 0.21 3.72 5.35 5.02 1.11static branches 496 3645 170 1399 451 2324 490 665executed branches 311 2183 70 517 345 819 431 487improved branches 209 658 13 84 92 320 242 74Table 1: misprediction rates of di�erent branch prediction strategies in percent

����4����2 ����3����1-��� AAUAAU ��� ����4a����2a����1a
����4b����3b����1b?? ??- �QQQs���+original loop state 0 state 1Figure 1: ow graph of an intra loop branch and a 2 state machine

aba- c-com- com- ghost- pre- pro- sche- do-lone piler press view dict log duler duc1 bit history 92.6 84.2 67.9 68.1 82.9 85.0 86.5 84.12 bit history 84.6 66.1 46.1 42.9 64.6 68.6 75.6 60.93 bit history 74.4 49.5 31.4 25.0 48.2 53.8 65.8 40.44 bit history 62.9 36.1 21.8 14.1 35.8 41.3 56.8 25.25 bit history 52.1 25.8 16.0 7.85 26.7 31.3 48.4 15.16 bit history 42.5 18.2 12.3 4.27 20.0 23.2 39.6 8.797 bit history 34.3 12.7 10.1 2.30 14.8 16.6 30.8 5.058 bit history 27.1 8.70 8.77 1.22 10.6 11.5 22.7 2.859 bit history 21.0 5.89 8.00 0.65 7.28 7.56 15.8 1.58Table 2: �ll rate of the history tables in percent
4



�� �11 �� �1 �� �0
666 � -- ?
�� �11011

��@@�� @@- �@@
1
1 100

0
0 1 0

�� �110�� �110101
1

Figure 2: branch prediction state machine 5/1
�� �00 �� �01�� �10 �� �11�� �001�� �001166 �- � 6@@�� ?? ��1 01 010 0 1 0 1 10 6Figure 3: branch prediction state machine 4/2use fewer states but have nearly the same prediction ac-curacy. Furthermore, we divide loop branches in intraloop branches that occur inside a loop, and exit loopbranches which may leave the loop.4.1 Intra Loop BranchesIntra loop branches do not leave the loop. For intra loopbranches a state represents the last n branch directionsof previous iterations of the loop. It is necessary thateach state can be reached from another state and viaother states from the initial state, i.e. the state usedin the �rst iteration. An example for a valid intra loopstate machine is the state machine 5/1 in �gure 2. Astate is a copy of the loop, e.g. the loop of �gure 1.The digits in the state describe the directions of the lastbranches. \0" means that the branch was not taken, \1"means that the branch was taken. The rightmost digitrepresent the direction of the last iteration. State \1"and state \0" representing only one branch direction areused as catch-all states if more specialized states do not

�� �11 �� �1 �� �0
�� �110 �� �101 �� �0116 - -

- ?6-
?
� ��@@@@@@��
@@@1 1 0 1 0

1010100
Figure 4: branch prediction state machine 3/3/3/1match. An arc labeled \0" describes the state transitionif a branch was not taken. An arc labeled \1" describesthe transition if the branch was not taken. Each statecan be used as an initial state for the �rst iteration.It is also possible to construct state machines wherethe smallest state represents the last two directions ofthe branch. In this case there are four catch-all stateswhich match when specialized states fail. Figure 3shows such a state machine.Another example is the state machine of �gure 4 thathas a loop of three states with size three (the states\110", \101" and \011"). This loop can be reached fromthe catch all state \1" via the state \11". Although astate machine as in �gure 2 usually gives the best resultfor a 6 state machine, we make an exhaustive search inthe pattern table to �nd the best state machine. Foreach 9 bit pattern we collected the number of taken andnot taken branches. This information is used to com-pute the number of taken and not taken branches for allshorter patterns. Adding now the counts for the morefrequent direction of all states of a branch predictionstate machine and taking care that patterns are countednot more than once, we get the number of correct pre-dicted branches for the state machine. The branch pre-diction state machine with the highest number of correctpredicted branches is selected. Table 3 shows the mis-prediction rates of the benchmark programs, where onlya reduced state machine is used instead of the completepattern table. A state machine with 2 states implementsexactly the 1 bit history scheme, so no data for a twobit state machine is presented. A state machine withn states usually needs the history information up to alength n � 1. So we grouped always a history with nbits with a n + 1 state machine to show the e�ect ofaccuracy loss.

5



�� �1 �� �0��� �11�� �111�� �1111
66
6- ?@@@@

@@111 1 ��6@@
000 0

1
0Figure 5: loop exit branch machine4.2 Loop Exit BranchesLoop exit branches are those branches that go from in-side the loop to the surrounding code. Therefore, theyare more restricted than intra loop branches. Loop exitbranch state machines have one initial state that rep-resents the loop exit in the last execution (state \0").The other states represent the loop iterations (the stateswith an increasing number of \1"). Figure 5 shows aloop exit branch machine. It is not necessary that a loopremains in the state with the longest history informa-tion. If a loop has a high probability of an even or oddnumber of iterations, the loop would change betweenthe two states with the longest history information asshown in �gure 5. Such a behavior can be detected us-ing longer history information. The misprediction ratesof loop exit state machines are shown in table 3, too.4.3 Correlated BranchesThe state machines for correlated branches are di�er-ent from the state machines for loop branches. Thestates of a loop branch depend on each other, the statesof a correlated branch are independent. A state in acorrelated branch state machine represents a path fromcorrelated branches to the branch to be predicted. Thecorrelated branch state machine is the set of those pathswhich give the lowest misprediction rate. One state cov-ers the case where the control ow matches none of thepaths. The code replication for correlated branches issimilar to [MW92]. The di�erence is that our aim wasto save information about the branch direction, whereasthe aim of Mueller and Whalley was to avoid uncondi-tional jumps. Table 4 gives the misprediction rate ofcorrelated branches. We used a maximum path lengthof n � 1 for an n state machine to keep the size of the

replicated code small. The table shows that the cor-relation information can be compacted with very smallloss.5 Branch Prediction and Pro-gram SizeTo �nd intra loop, exit loop and other branches, a con-trol ow analysis of the program is performed. Theprogram is divided into basic blocks and a control owgraph is constructed. Natural loop analysis [ASU86] isperformed. With this information the state machinesfor loop exit and intra loop branches are selected. Forall branches all predecessors with a path length less thanthe size of the state machine are collected, and the cor-related branch state machines are selected. The bestavailable strategy for each branch is chosen. Branch pre-diction is deteriorated because only half of the branchesbelong to a loop and because the state machines reducethe accuracy of the branch prediction. Table 5 gives themisprediction rates of the benchmark programs for thedi�erent sizes of the state machine ignoring the e�ectson program size.To study the e�ect of code replication on the codesize, we added states to a program and measured howthe code size increased and the misprediction rate wasreduced. The states were added in such an order thatthe state that predicted the largest number of branchesand that increased the code size by the smallest amountwas choosen �rst. The �rst states reduce the mispredic-tion rate substantially, later ones increase the code sizeconsiderably. The appendix shows graphs of code sizeversus misprediction rate. The asymptotic behaviouris explained by the dependences between branches. Ifbranches are in di�erent loops, the number of states isonly added. If branches are in the same loop, the num-ber of states must be multiplied. Some programs reachthe best misprediction rate within a code size increaseof a factor 1.5, other programs would increase the codesize more than thousand times. With the exception ofabalone every program comes close to the best achieve-able misprediction rate by increasing the code size byless than 30%.An optimizer using code replication for improvingbranch prediction will not improve the whole program,but only certain branches. In general, an optimizationtechnique like branch aligning or speculative executionis not applied to a branch whose prediction accuracy islow. If code replication improves the accuracy of theprediction for this branch, such an optimization can beapplied. A cost function will calculate whether the in-crease in code size (negative impact on instruction cachemiss rate) is worth the gain in execution time.
6



aba- c-com- com- ghost- pre- pro- sche- do-lone piler press view dict log duler ducpro�le 18.7 13.5 17.2 1.27 7.97 11.3 13.6 3.991 bit 16.9 12.4 16.0 0.63 7.36 10.0 10.4 2.272 bit 15.4 11.9 14.6 0.51 7.07 9.23 9.91 1.573 states loop 15.4 12.0 14.7 0.52 7.10 9.26 9.94 1.573 states exit 16.1 12.2 15.7 0.58 7.23 9.66 10.3 2.023 bit 13.6 10.8 14.2 0.48 6.72 8.67 9.67 1.564 states loop 14.4 11.3 14.2 0.48 6.83 8.84 9.73 1.564 states exit 15.4 12.0 15.7 0.57 7.08 9.49 10.2 2.024 bit 12.1 10.3 13.7 0.45 6.23 8.13 9.32 1.555 states loop 13.0 10.7 14.0 0.46 6.41 8.51 9.53 1.555 states exit 15.1 11.8 15.7 0.57 6.84 9.44 10.2 2.025 bit 10.7 9.81 13.5 0.42 5.68 7.67 9.02 1.556 states loop 12.3 10.5 13.8 0.44 6.26 8.21 9.42 1.556 states exit 14.7 11.7 15.7 0.56 6.75 9.39 10.2 2.026 bit 9.67 9.33 13.4 0.41 5.22 7.18 7.76 1.557 states loop 11.3 10.3 13.6 0.42 5.96 7.98 8.49 1.557 states exit 14.6 11.6 15.7 0.56 6.58 9.38 9.37 2.027 bit 8.76 8.78 13.2 0.40 4.74 6.74 7.21 1.558 states loop 10.7 10.1 13.6 0.42 5.76 7.84 8.32 1.558 states exit 14.4 11.6 15.6 0.55 6.48 9.37 9.30 2.028 bit 7.68 8.34 13.1 0.37 4.41 6.26 6.61 1.349 states loop 10.1 9.91 13.5 0.41 5.66 7.73 8.24 1.349 states exit 14.1 11.6 15.6 0.53 6.46 9.36 9.29 2.029 bit 6.89 7.79 13.0 0.36 4.12 5.72 5.97 1.3410 states loop 9.64 9.71 13.4 0.39 5.51 7.61 8.17 1.3410 states exit 13.8 11.6 15.6 0.53 6.46 9.35 9.28 2.02Table 3: misprediction rates of loop and loop exit branches in percent
aba- c-com- com- ghost- pre- pro- sche- do-lone piler press view dict log duler ducpro�le 18.7 13.5 17.2 1.27 7.97 11.3 13.6 3.991 bit 18.6 12.8 17.1 1.22 7.75 10.6 12.0 2.522 states 18.6 12.8 17.1 1.22 7.75 10.6 12.0 2.522 bit 16.2 11.7 17.1 1.05 7.37 9.89 11.1 1.953 states 16.2 11.7 17.1 1.05 7.37 9.90 11.1 1.953 bit 15.1 10.8 15.9 0.62 6.95 9.40 10.8 1.834 states 15.2 10.8 15.9 0.62 7.03 9.43 10.9 1.834 bit 13.9 9.58 15.9 0.38 6.52 8.66 10.1 1.755 states 14.3 9.90 15.9 0.38 6.68 8.77 10.1 1.755 bit 12.7 9.12 15.6 0.34 6.39 8.08 9.61 1.706 states 13.4 9.65 15.6 0.35 6.48 8.31 9.72 1.706 bit 11.6 8.67 14.2 0.32 6.30 7.53 9.28 1.647 states 12.6 9.42 14.2 0.34 6.40 8.02 9.50 1.64Table 4: misprediction rates of correlated branches in percent

7



aba- c-com- com- ghost- pre- pro- sche- do-lone piler press view dict log duler ducpro�le 18.7 13.5 17.2 1.27 7.97 11.3 13.6 3.992 states 16.8 12.5 16.1 0.82 7.58 9.86 11.8 2.333 states 14.6 11.1 14.9 0.59 7.26 9.05 10.8 1.624 states 13.2 10.2 14.0 0.44 6.80 8.59 10.6 1.575 states 11.8 9.29 13.9 0.34 6.24 7.86 9.87 1.566 states 11.0 9.10 13.5 0.31 6.03 7.50 9.47 1.517 states 10.0 8.91 13.4 0.30 5.76 7.29 8.47 1.488 states 9.64 8.80 13.4 0.30 5.60 7.24 8.38 1.489 states 9.26 8.71 13.3 0.30 5.56 7.18 8.34 1.2810 states 8.99 8.68 13.3 0.29 5.45 7.12 8.32 1.28Table 5: best achieveable misprediction rates in percent6 Further WorkA problem of our code replication scheme is that thecode size is multiplied if more than one branch in aloop should be improved. A possible solution treats allbranches of that loop at the same time and constructsa single state machine for all branches using a highernumber of states. In that case the search for the optimalstate machine must be replaced by a branch-and-boundsearch since the search time grows exponentially withthe number of states.Another work to be done is to measure the inuenceof di�erent data sets on the misprediction rate. Weassume that code replicated programs are more sensitiveto di�erent data sets than the original program. Sothe results of Fisher and Freudenberger are not fullyapplicable [FF92].Furthermore we will use the improved semi-staticbranch prediction strategy for our global instructionscheduler and evaluate the e�ects on runtime and in-struction cache behaviour.7 ConclusionWe presented a code replication technique for im-proving the accuracy of semi-static branch prediction.This technique combines di�erent correlation strategies.Therefore, the prediction is sometimes more accuratethan dynamic prediction that uses only a single strat-egy. Since our technique is semi-static, the increasedaccuracy can be used by compile time optimizations likecode motion or speculative execution.

AcknowledgementWe express our thanks to Manfred Brockhaus, An-ton Ertl, Ulrich Neumerkel, Franz Puntigam, and JianWang for their comments on earlier drafts of this pa-per. We would also like to thank the reviewers for theirhelpful suggestions.References[ASU86] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ull-man. Compilers: Principles, Techniques, andTools. Addison-Wesley, 1986.[BL93] Thomas Ball and James R. Larus. Branch pre-diction for free. In 1993 SIGPLAN Conferenceon Programming Language Design and Imple-mentation. ACM, June 1993.[FF92] Joseph A. Fisher and Stefan M. Freuden-berger. Predicting conditional branch direc-tions from previous runs of a program. InFifth International Conference on Architec-tural Support for Programming Languages andOperating Systems. ACM, October 1992.[Lar93] James R. Larus. E�cient program tracing.IEEE Computer, 26(5), May 1993.[MH86] Scott McFarling and John Hennessy. Reducingthe cost of branches. In 13th Annual Interna-tional Symposium on Computer Architecture.ACM, 1986.[MW92] Frank Mueller and David B. Whalley. Avoid-ing unconditional jumps by code replication.In 1992 SIGPLAN Conference on Program-ming Language Design and Implementation.ACM, June 1992.
8



[PH90] Karl Pettis and Robert C. Hansen. Pro�leguided code positioning. In 1990 SIGPLANConference on Programming Language Designand Implementation. ACM, June 1990.[PSR92] Shien-Tai Pan, Kimming So, and Joseph T.Rahmeh. Improving the the accuracy of dy-namic branch prediction using branch corre-lation. In Fifth International Conference onArchitectural Support for Programming Lan-guages and Operating Systems. ACM, October1992.[Smi81] James E. Smith. A study of branch predic-tion strategies. In 8th Annual InternationalSymposium on Computer Architecture. ACM,1981.[Wal91] David E. Wall. Predicting program behaviorusing real or estimated pro�les. In 1991 SIG-PLAN Conference on Programming LanguageDesign and Implementation. ACM, June 1991.[YN92] Tse-Yu Yeh and Yale N.Patt. Alternativeimplementations of two-level adaptive branchprediction. In 19th Annual InternationalSymposium on Computer Architecture. ACM,1992.[YN93] Tse-Yu Yeh and Yale N.Patt. A comparison ofdynamic branch predictors that use two levelsof branch history. In 20th Annual Interna-tional Symposium on Computer Architecture.ACM, 1993.A Misprediction Rate vs. CodeSize

1.25 1.5 1.75

5%

10%

15%

misprediction rate

code sizeFigure 6: abalone

1.25 1.5 1.75

5%

10%

15%

misprediction rate

code sizeFigure 7: c-compiler

1.25 1.5 1.75

5%

10%

15%

misprediction rate

code sizeFigure 8: compress

1.25 1.5 1.75

5%

10%

15%

misprediction rate

code sizeFigure 9: ghostview
9



1.25 1.5 1.75

5%

10%

15%

misprediction rate

code sizeFigure 10: predict

1.25 1.5 1.75

5%

10%

15%

misprediction rate

code sizeFigure 11: prolog

1.25 1.5 1.75

5%

10%

15%

misprediction rate

code sizeFigure 12: scheduler

1.25 1.5 1.75

5%

10%

15%

misprediction rate

code sizeFigure 13: doduc

10


