
Execution Models for Processors and Instructions
Florian Brandner

COMPSYS, LIP, ENS de Lyon
UMR 5668 CNRS – ENS de Lyon – UCB Lyon – INRIA

Email: florian.brandner@ens-lyon.fr

Viktor Pavlu and Andreas Krall
Institute of Computer Languages
Vienna University of Technology

Email: {vpavlu,andi}@complang.tuwien.ac.at

Abstract—Modeling the execution of a processor and its in-
structions is a challenging problem, in particular in the presence
of long pipelines, parallelism, and out-of-order execution. A naive
approach based on finite state automata inevitably leads to an
explosion in the number of states and is thus only applicable to
simple minimalistic processors.

During their execution, instructions may only proceed forward
through the processor’s datapath towards the end of the pipeline.
The state of later pipeline stages is thus independent of potential
hazards in preceding stages. This also applies for data hazards,
i. e., we may observe data by-passing from a later stage to an
earlier one, but not in the other direction.

Based on this observation, we explore the use of a series
of parallel finite automata to model the execution states of
the processor’s resources individually. The automaton model
captures state updates of the individual resources along with
the movement of instructions through the pipeline. A highly-
flexible synchronization scheme built into the automata enables
an elegant modeling of parallel computations, pipelining, and
even out-of-order execution. An interesting property of our
approach is the ability to model a subset of a given processor
using a sub-automaton of the full execution model.

I. INTRODUCTION

Formal models of the dynamic behavior of processors and
instructions during their execution find applications in a wide
range of development, design, validation, and verification
tasks. For example, cycle-accurate instruction set simulators
rely on an execution model in order to efficiently emulate
the processor’s behavior during the execution of a program.
During the simulation pipeline effects, resource-, control-, and
data-hazards need to be detected and faithfully modeled in
order to guarantee correctness. The validation and verification
of a processor poses similar requirements. Here the processor
designer seeks for a proof that the behavior of the processor
actually reflects the properties stated by a formal specification.
In addition, processor models can help to build software devel-
opment and analysis tools, such as worst-case execution time
(WCET) analysis tools, code profiling tools, code certification
tools, and compilers.

Naive approaches based on finite state automata (FSA)
inevitably lead to a rapid growth in the number of states.
In particularly when multiple instructions are executed in
parallel, as is the case for pipelined, superscalar, or explicitly
parallel processors such as VLIW machines. Stalls due to
various kinds of data hazards, long memory latencies, shared
resources, etc. further increase the number of states, rendering
this approach impractical for many application scenarios. For

example, the Pentium 4 allows up to 128 instructions to be
in-flight simultaneously [1].

We thus propose a partitioning of the resources of the pro-
cessor’s datapath, where each resource is assigned a dedicated
sub-automaton that is (largely) independent of the automata
of other resources. This allows the reduction of the overall
number of automaton states, but requires a coordinated proce-
dure in order to model state transitions among the individual
automata. However, for most pipelined processors this parti-
tioning can be derived readily from the pipeline organization
based on the following observation: During execution the state
of a resource depends only on the current instruction it is
executing, its successors in the datapath where the current
instruction will proceed after finishing its computations at
the resource, as well as the next instruction that the resource
will receive from one of its predecessors in the datapath. A
similar interaction pattern can be observed for data by-passing,
where register values are forwarded from instructions that are
executed late in the pipeline to instructions in early pipeline
stages. It is thus possible to model the state of the processor
by a series of parallel finite automata (PFA) [2], which are
synchronized in order to perform state updates according to
the datapath and the processor’s pipeline structure.

Furthermore, our approach allows to derive execution mod-
els of individual instructions or groups of instructions using
sub-automata that include only those resources that are re-
quired for the execution of the considered instructions. This
is particularly interesting for analysis and verification tasks
where the reduced size of the sub-automata is expected to be
beneficial.

The rest of this paper is organized as follows. First, we
will present previous work on execution models in Section II,
followed by an introduction to the basic concepts of parallel
finite automata in Section III. Section IV introduces our exe-
cution model for processors based on parallel finite automata.
Next, we present how execution models for a subset of the
processor’s instruction set can be derived down to the level of
individual instructions. Finally, we will conclude by shortly
discussing the merits our new approach in Section VI.

II. RELATED WORK

Execution models for processors are often developed in
combination with processor description languages (PDL) [3].
Lisa [4] models pipeline effects using extended reservation
tables called L-charts that contain operations and the activation

978-1-4244-8973-2/10/$26.00 c©2010 IEEE

n1start

n2 n3

n4

λ

a

b

c

Fig. 1. A parallel finite automaton accepting a∗ (b∗ ‖ c) - see Example 1.

relations between them to support dynamic scheduling for
simple in-order pipelined processors. MADL uses extended
finite state machines with tokens [5]. The token manager,
however, is implemented in C/C++, so the formal model
remains incomplete. The approach presented in this paper
was also designed in conjunction with a PDL [6], [7]. The
language relies on hypergraphs [8] in order to specify the
hardware structure of a processor. Due to the close relationship
between hypergraphs and PFAs it is straightforward to derive
an execution model from a processor specification.

Furthermore, processor models are used in software and
hardware verification tools, analysis tools, and instruction set
simulators. Reshadi and Dutt use Reduced Colored Petri Nets
to formally model the pipeline of processors. They are able
to synthesize efficient instruction set simulators [9] for a wide
range of processor architectures. Thesing [10] uses finite state
machines in order to capture the execution state of a processor
for worst-case execution time (WCET) analysis. Synchronous
Transition Systems are used by Damm and Pnueli [11] to verify
machines with out-of-order execution by showing that they
reach the same final state as purely sequential machines.

III. PARALLEL FINITE AUTOMATA

Parallel finite automata (PFA) are related to traditional finite
state automata, but allow multiple nodes of the automaton
to be active simultaneously. Stotts and Pugh showed that
PFAs are equivalent to finite state automaton (FSA) [2], i.e.,
it is possible to construct a regular FSA from any given
PFA. However, this transformation may lead to an exponential
growth in the number of states. PFAs thus allow a more
compact representation of certain classes of regular languages.

Definition. A parallel finite automaton is defined by a
tuple M = (N,Q,Σ, µ, q0, F), where N is a set of nodes,
Q ⊆ P(N) is a finite set of states, Σ a finite input alphabet,
µ : P(N)×(Σ∪{λ})→ P(N) is a transition function, q0 ∈ Q
a start state, and F ⊆ N a set of final nodes.

Very similar to traditional automata, the execution of a
PFA is described by repeated transitions from one state to
another. The difference is that multiple nodes can be active on
each state before and after every transition. Consequently, the
transition function µ provides an extended semantics covering
multiple nodes of the automaton. Transitions with multiple
target nodes are termed parallel transitions, while those having

multiple source nodes are termed synchronization transitions.
A transition can be applied, or is enabled, if all its source
nodes are active in the current state and the current input
symbol matches the transition’s label. The new state after the
execution of a transition is derived by first deactivating all
source nodes and then activating all its target nodes. At the
same time the current input symbol is consumed, unless the
label represents the special symbol ‘λ‘. In that case the current
input symbol is not consumed, nevertheless the transition is
still considered enabled. The automaton accepts its input when
all the input symbols have been consumed and a final state
has been reached, i.e., when all final nodes in F are active.
A formal definition of PFAs and their execution is presented
in [2].

A PFA can be represented as a labeled directed hyper-
graph [8] H = (V,E), consisting of a set of vertices V
and hyperedges e ∈ E ⊆ P(V) × P(V) × (Σ ∪ {λ}). The
automaton’s nodes are represented by vertices of the graph,
i. e., V = N , and the transitions in µ correspond to labeled
hyperedges.

The language accepted by a PFA can be represented using
an extended form of regular expressions, with the common
operators ?, ∗, +, and |. An additional operator ‖ represents
the interleaving of the languages specified by the respective
sub-expressions.
Example 1. Consider the PFA depicted in Figure 1. The node
n1 is the start node, while nodes n2 and n4 are final nodes. The
figure shows a hypergraph representation, where the hyperedge
labeled ‘λ‘ is a parallel transition that does not consume any
symbol. The two sub-automata represented by n2 as well as
n3 and n4 may proceed independently. The PFA thus accepts
the language a∗ (b∗ ‖ c), where the sub-expressions b∗ and c
are processed independently from each other.
The automaton rejects the word ′′abb′′, because the non-
final node n3 is activated after consuming the input symbol
‘a‘ but never deactivated thereafter. Final node n4 is never
activated and thus no final state is reached. The word ′′abbc′′

is, however, accepted. In terms of the automaton’s execution
this word is equivalent to any other interleaving, e. g., ′′abcb′′

or ′′acbb′′.

IV. PROCESSOR EXECUTION MODELING

Initially, lets assume that the processor, for which an ex-
ecution model is to be developed, is composed by a set of
resources, each of which is able to process one instruction at
a time. Furthermore, assume that instructions traverse a subset
of the resources during their execution - note that it is possible
that one instruction uses several resources at the same time. In
the following, we will show how parallel automata can be used
to model the execution state of the processor, its resources, and
its instructions.

A. Modeling Resources

A resource is modeled using four kinds of nodes in the
automaton: (1) a ready node, (2) an accept node, (3) a
complete node, and (4) two synchronization nodes. A local

synci

rdy

startstart

acpt

synco

cmplt

ε

ρ

ω
cycle start

cycle end

enter

leave

Fig. 2. Nodes and transitions representing the state of a resource in the
parallel automaton.

view of the nodes and transitions of a resource is shown in
Figure 2, the interaction with other automata of the execution
model is indicated by the gray transitions.

The synchronization nodes separate transitions logically
belonging to one execution cycle from those of the next cycle.
The synchronization node at the center of Figure 2 serves as
a token that ensures that only a single action is performed
by a resource on every cycle. The activation of the second
synchronization node on the other hand indicates that the
resource has performed its action for the current cycle and
is ready to proceed to the next cycle. The gray transactions
leading to and from those nodes represent a synchronization
among all the resources of the processor.

The other nodes represent the current status of the resource
itself. The ready node is initially active and indicates that the
resource is currently ready to accept instructions for execution.
The node is deactivated whenever an instruction is accepted for
execution by the resource, and may only be reactivated when
the currently executing instruction has completed. When the
resource is idle a transition may immediately re-activate the
ready node – as indicated by transition ε. If an instruction
has been accepted, it proceeds by performing the computation
represented by the transition labeled ρ leading from the accept
node to the complete node. Finally, when an instruction is
blocked, i. e., it cannot proceed to another resource due to
a hazard, it has to stall. This is represented by transition ω,
leading from the complete node back to itself. Note that all
these resource-local transitions disable the synci node and in
turn enable synco.

B. Instruction Execution

The sub-automata of the individual processor resources are
chained together using inter-resource transitions as indicated
by the enter and leave transitions in Figure 2. These transitions

rdya

cmplta

τ

acptb

rdyb

acptc

rdyc

Fig. 3. Nodes and transition modeling a connection among multiple resources
of the processor.

model the movement of instructions through the datapath and
in addition perform arbitration of the involved resources.

Figure 3 depicts an inter-resource transition modeling an
instruction that after completing its execution at resource
a moves on to resources b and c, which then process the
instruction in parallel. The transition is enabled only when the
complete node of the source resource is active and at the same
time both ready nodes of the targets are active too. When the
transition is executed, the source resource becomes ready and
at the same time the target resources leave the ready node and
transition into the accept nodes. This effectively models how
an instruction advances through the datapath from resource
to resource. Furthermore, mutual exclusive use of resources
is guaranteed, since the ready nodes of the target resources
are properly deactivated when an instruction is accepted for
execution.

C. Cycle Synchronization

Every resource is allowed to perform a single resource-local
transition per cycle, since all resource-local transitions require
the synci node to be active. The synci node thus logically
marks the beginning of a cycle. Similarly, all resource-local
transitions activate the synco node, which logically marks the
end of a cycle in the view of a resource. Once all synco nodes
of all resources are active a global synchronization transition
is enabled, which re-activates all synci nodes and signals the
transition from one execution cycle to the next.

Furthermore, advanced arbitration schemes can be realized
using the synchronization nodes by keeping the synci nodes of
certain resources inactive and selectively enabling them when
appropriate. This can be particularly valuable in pipelined
processors where resources late within the pipeline control the
behavior of other resources that appear earlier in the pipeline,
as for example for data by-passing and other forms of data
and control hazards.

D. Transition Guards

The model presented so far is already able to express
datapaths with structural hazards. In the presence of data or
control dependencies, the transitions have to be augmented
with guard functions. Similarly, dynamic scheduling of mod-
ern superscalar processors and shared resources might require
additional guard functions. The guard functions inspect vari-
ables that are associated with the sub-automata of individual
resources. These variables represent control decisions, data,
or input operands processed by the instructions currently ex-
ecuted by the respective resources. The structure of the guard
functions is highly dependent on the application scenario an
execution model is applied to. However, our model generally
simplifies the guard functions since the synchronization nodes
and transitions provide a consistent view of the currently active
resources and instructions.

V. INSTRUCTION-LEVEL MODELS

An interesting property of the approach presented in the
previous section is that an instruction is represented as a set
of active nodes in the automaton throughout its execution. The
movement of an instruction through the datapath is resembled
by the deactivation and activation of nodes by corresponding
transitions.

It is thus possible to deduce a sub-automaton consisting
of only those nodes that are potentially activated during the
execution of an instruction. The result is an execution model
of the given instruction, which is considerably smaller than the
full processor model. This idea can also be extended to pairs
of instructions or more general groups of instructions, such as
all arithmetic instructions or all floating-point instructions of
a processor.

VI. DISCUSSION AND CONCLUSION

PFAs offer a number of advantages for the modeling of
processors. The processor itself is inherently parallel, so the
modeling with PFAs is quite natural and easy to understand.
PFA-based processor models are very visual and can be
organized in order to match common graphical representations
of processors such as pipeline diagrams. The movement of
instructions through the pipeline is explicitly visible, which
simplifies the development and debugging of PFA models.

A major advantage of PFAs over FSAs is the decoupling of
states and nodes. PFAs thus consist of fewer nodes compared
to equivalent regular FSA modeling the same processor. Still,
the PFA implicitly encodes the same number of states. The
expressive power does not change since PFAs and FSAs are
equivalent. The implicit encoding of all possible processor
states also simplifies the construction of PFA models, i.e.,
it is no longer required to pre-compute all possible states to
construct the automaton.

A. Application Scenarios

The presented approach was initially intended as a flexible
and generic execution model for instruction set simulators.
Interpreting simulators can immediately reuse the PFA by

associating its transitions with simulation functions that update
the emulated processor state. In comparison to interpreters
based on FSAs this will most likely induce a performance
hit, since multiple transitions are required in order to sim-
ulate a single execution cycle. However, in the context of
compiling simulators, which are orders of magnitudes faster
than interpreting simulators, this additional information has
the potential to unveil optimization opportunities, e.g., by
eliminating unused code via tracing [12].

In addition to instruction set simulation, PFA-based execu-
tion models might also prove valuable for the development
of verification and analysis tools. With PFAs it is possible
to derive sub-automata of individual instructions, pairs of
instructions or groups of instructions. These sub-automata are
much smaller than the original automaton of the processor’s
full execution model. This opens the possibility for formal
verification methods at the instruction level to proceed in two
steps. The analysis first operates on the smaller instruction-
level sub-automaton in order to detect possible fault condi-
tions, such as data loss or race conditions. During the second
phase the partial results obtained during the first phase are
applied to the full execution model and further extended to
cover the state of the complete processor. This reduces the
number of processor states that have to be examined during
the analysis considerably.

REFERENCES

[1] J. L. Hennessy and D. A. Patterson, Computer Architecture - A Quan-
titative Approach, 4th ed. Morgan Kaufmann, 2006.

[2] P. D. Stotts and W. Pugh, “Parallel finite automata for modeling
concurrent software systems,” J. Syst. Softw., vol. 27, no. 1, pp. 27–
43, 1994.

[3] P. Mishra and N. Dutt, Processor Description Languages. Morgan
Kaufmann Publishers Inc., 2008, vol. 1.

[4] A. Hoffmann, H. Meyr, and R. Leupers, Architecture Exploration for
Embedded Processors with Lisa. Kluwer Academic Publishers, 2002.

[5] W. Qin and S. Malik, “Flexible and formal modeling of microprocessors
with application to retargetable simulation,” in DATE ’03: Proceedings
of the Conference on Design, Automation and Test in Europe. IEEE
Computer Society, 2003, pp. 556–561.

[6] F. Brandner, D. Ebner, and A. Krall, “Compiler generation from
structural architecture descriptions,” in CASES ’07: Proceedings of the
International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems. ACM, 2007, pp. 13–22.

[7] F. Brandner, “Compiler backend generation from structural processor
models,” Ph.D. dissertation, Institut für Computersprachen, Technische
Universität Wien, 2009.

[8] J. A. Bondy and U. S. R. Murty, Graduate texts in mathematics - Graph
theory. Springer, 2007, vol. 244.

[9] M. Reshadi and N. Dutt, “Generic pipelined processor modeling and
high performance cycle-accurate simulator generation,” in DATE ’05:
Proceedings of the Conference on Design, Automation and Test in
Europe. IEEE Computer Society, 2005, pp. 786–791.

[10] S. Thesing, “Safe and precise WCET determination by abstract inter-
pretation of pipeline models,” Ph.D. dissertation, Naturwissenschaftlich-
Technische Fakultät der Universität des Saarlandes, 2004.

[11] W. Damm and A. Pnueli, “Verifying out-of-order executions,” in Pro-
ceedings of the IFIP WG 10.5 International Conference on Correct
Hardware Design and Verification Methods. Chapman & Hall, Ltd.,
1997, pp. 23–47.

[12] F. Brandner, “Precise simulation of interrupts using a rollback mecha-
nism,” in SCOPES ’09: Proceedings of the 12th International Workshop
on Software and Compilers for Embedded Systems. ACM, 2009, pp.
71–80.

