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DSPs find wide use in systems for real
time processing of audio, video, and commu-
nication tasks. Typically, such systems must be
inexpensive and consume little power, but pro-
vide high performance. These constraints,
along with a relatively narrow application
domain, have led designers to create special
architectural features, as found in the Harvard
architecture, VLIW (very long instruction
word) architectures, and special addressing
modes. Traditionally, software developers have
programmed DSPs in assembly language for
efficiency. This implies time-consuming pro-
gramming, extensive debugging, and little or
no code portability. With more complex
embedded systems and higher costs for soft-
ware development, programming such systems
without the support of high-level programming
languages becomes impractical. However, code
generation for DSPs has high quality standards.

Despite extensive work on code generation
for DSPs and embedded processors,1 existing
compilers do not generate target code that has
acceptable efficiency, for two major reasons.
First, identifying special functional units brings
architectural information into the compiler,

thus impacting compiler retargetability. The
second problem that hardware specialization
exposes is a lack of compilation algorithms for
such architectures, and the computational
hardness of known algorithms. In other words,
applications that demand high computation-
al performance at low cost usually require spe-
cialized architectures, which in turn frequently
affects programmability. The tradeoff between
performance and programmability spans solu-
tions ranging from a complete hardware solu-
tion using an application-specific IC (ASIC)
to a general-purpose processor.

Our new DSP architecture, xDSPcore, is a
codesign of a C compiler and a DSP proces-
sor. Our approach is to introduce a hardware
feature only if the compiler can support it.
The goal of this technology is to make DSP
applications programmable entirely in a high-
level programming language like C, instead
of assembly language.

Compiler-friendly DSP architectures
DSP application development in high-level

programming languages is efficient only if the
architecture fulfills the requirements of the
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language and the corresponding compiler.
Before, instruction sets increased complexity
to close the semantic gap between hardware
and software. Now, with advances in chip
technology, RISC design principles are in
common use; returning to some of them
would simplify an architecture and make it
more compiler friendly. For example, instruc-
tion set architectures should be simple and
regular for efficient use by compilers and for
easy exploitation of hardware resources. All
arithmetic operations should only operate on
registers. Instructions should perform mem-
ory access via separate load and store opera-
tions. However, indirect addressing with
offsets is necessary to support access to values
held in a stack frame and to members of struc-
tures. Hardware pipelining should increase
parallelism, but it also lengthens branch
delays. With compiler support, instructions
can move into delay slots, making the static
prediction of the branch direction exploitable.
Dynamic branch prediction would be very
accurate, but needs more hardware resources.

To satisfy the computational demand of
DSP applications, any architecture must
exploit massive amounts of parallelism. Super-
scalar processor implementations and VLIW
or vector architectures can use parallel func-
tional units. Superscalar processor implemen-
tations, like the Intel Pentium IV or the AMD
Opteron, execute instructions out of order and
achieve the highest performance, but have a
high implementation cost. VLIW architec-
tures, like the Multiflow Trace or the Cydra 5,
use compiler techniques for instruction
reordering to reduce the hardware cost but
result in bloated code size. Current DSPs, like
the C60 series from Texas Instruments, the
Blackfin from Analog Devices, or the SC140
from Starcore, use variable-length VLIW
instruction sets. Short-vector parallelism is
exploitable using single instruction multiple
data (SIMD) instructions and the use of long
registers to hold several short data values. The
PowerPC’s Altivec extension and the x86 archi-
tecture’s SSE2 extension use this technique. 

Many DSPs rely on SIMD extensions. The
Intel Itanium is one of the fastest architec-
tures, but a high-quality compiler is necessary
to achieve peak performance. The compiler
reorders instructions using predicated execu-
tion for exploiting the full range of parallelism

in VLIW instructions. Itanium uses a very
large rotating register file to keep all data for
large software pipelined loops in registers.

DSPs typically have extensions for applica-
tion-specific requirements. For example,
audio and video data is often shorter than the
common data size of 32 bit, and special-pur-
pose instructions support such data. Addi-
tionally, 16- and 32-bit fixed-point arithmetic
needs fewer resources than floating-point
arithmetic, so DSPs are more likely to provide
fixed-point than the floating-point arithmetic.
Streaming access to data buffers is also very
important for digital signal applications. So
DSPs usually support special addressing
modes with automatic updating to provide
efficient access to circular buffers. Bit-reversed
addressing speeds up fast Fourier transforma-
tions (FFTs), while parallel comparisons sup-
port Viterbi decoders that save the index.

State of the art
Current architectural approaches to DSPs

fall into three groups: traditional architectures
for DSP cores, scaleable core architectures,
and architecture description languages. Each
approach lacks certain characteristics for suc-
cess in terms of their support for easy appli-
cation-specific programming.

Traditional DSP core architectures
The Starcore SC1200 and SC14000 are the

latest products based on traditional DSP core
architectures. These products are also notable
because they result from the cooperative work
of several typically competitive companies—
Motorola, Agere, and Infineone Technologies—
that builds upon the Blackfin DSP, which is, in
turn, the outcome of a cooperation between
Analog Devices and Intel. Both Starcore con-
cepts are RISC-based load-store architectures,
claiming to be efficiently programmable in
high-level languages like C or C++.

In such traditional designs, the instruction
set architecture (ISA) and the microarchitec-
ture are fixed. This prevents the application-
specific modifications necessary to closing the
gap between hard-wired implementations and
software-based solutions.

Scalable core architectures
The best known examples of architectures

with scaleable cores are from Tensilica and
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ARC. However, both have their basis in tradi-
tional microcontroller architectures. There-
fore, efficient implementation of traditional
DSP algorithms is difficult and issues such as
minimizing the worst-case execution time do
not receive attention. Software support for
using DSP-specific features is inadequate. The
philosophy of using “just an additional multi-
ply-accumulate unit” directs the focus toward
increasing theoretical performance, instead of
an analysis of the overall system performance. 

Architecture description languages
The Language for Instruction Set Archi-

tecture (LISA) from Coware, mainly a devel-
opment of Rheinisch-Westfälische Technische
Hochschule-Aachen, is the best known archi-
tecture description language. More recent pro-
jects include ArchC in Brazil. The concept of
defining your own specific core architecture
to fulfill the requirements of your application
code sounds unbeatable at first glance. How-
ever, automatic generation of a core micro-
architecture from only a behavioral-level
description results in poorly used silicon.

In the very large solution space provided by
an architectural description language, very
many core architectures are definable, but
only a few are compatible with the develop-
ment of an optimizing high-level language
compiler. In addition, using an architecture
description language like LISA to generate
efficient solutions requires a deep knowledge
of the processor architecture.

Design space exploration is necessary when
supporting scalability or configuring a core
architecture; it has to have its basis in a high-
level language compiler. Unfortunately, auto-
matic generation of high-level language
compilers is still infeasible. Even with
approaches like Compiler Development Sys-
tem, a software product from Associated Com-
puter Experts, the quality of the code that an
automatically generated compiler produces is
poor. The poor quality of the generated code
can mislead designers into making poor deci-
sions regarding architectural modifications. 

Our approach
In summary, the problem is that under-

standing how the application requirements
affect the core architecture requires an efficient
high-level language compiler that produces

high-quality code. Such a compiler is imprac-
tical to generate for each core architecture;
automatically generating such a compiler is
also not possible using current methods. 

Our xDSPcore approach attempts to solve
these problems by providing a general-purpose
DSP core architecture that has its basis in a
RISC load-store model and enables efficient
execution of traditional DSP algorithms. We
include system aspects like the possibility of
minimizing the worst-case execution time. To
close the gap between hard-wired ASIC imple-
mentations and software-based solutions, the
core concept enables scaling of the main archi-
tectural features, while the microarchitectural
model remains unchanged. We defined the
microarchitecture to satisfy the requirements
for developing an optimizing C compiler,
which would support design space exploration
of specific application code. To keep the vali-
dation and verification effort low, we use a
unique configuration file based on the Exten-
sible Markup Language (XML). This lets us
scale core features while ensuring the effects of
all changes propagate to the hardware, tools,
and documentation.

xDSPcore architecture
Requirements

Four assumptions influence the design
requirements for the xDSPcore architecture:

• Application developers will program the
processor only in a high-level program-
ming language like C, C++, or Java.

• Implementations can have a different
number of registers or pipeline stages.

• Mobile, embedded DSP applications will
use the architecture. Therefore, the
processor has to be area efficient—that
is, have a minimal area for program
memory, the DSP core, and data memo-
ry. It also must be energy efficient and
have available the computational
resources for executing DSP applications.

• Additionally, control-intensive applications
must have efficient support.

These requirements led us to choose the fol-
lowing architectural features:

• dual Harvard load-store architecture,
• variable-length VLIW architecture,
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• predicated execution,
• orthogonal instruction set,
• separate register files,
• register file access in the corresponding

pipeline stage,
• SIMD instructions, and
• DSP data types and extensions.

Architecture description
We based the xDSPcore on a modified, dual

Harvard load-store architecture. Figure 1 gives
a brief top-level overview of the xDSPcore
architecture. VLIW is the programming
model. Static scheduling allows shifting
dependency resolution into the C compiler
and therefore reduces the complexity of the
core architecture. However VLIW produces
poor code density, a problem that leads us to
introduce xLIW.2 We base xLIW on a vari-
able-length execution set (VLES), which
enables decoupling of fetch and execution
bundles. Compared to VLES, xLIW permits
reducing the size of the program memory port

(and therefore reduces the wiring effort) with-
out limiting the core architecture’s peak per-
formance. To speed up the execution of the
inner loops of DSP algorithms, we introduced
an instruction buffer that overcomes the pos-
sible bandwidth mismatch resulting from the
reduced size of the program memory port.3 A
typical program memory port size would be
four instruction words, whereas an xLIW
instruction can use up to 10 instruction
words. The buffer also reduces transition
activity at the program memory port during
execution of hardware and software loops. If
the loop body is fetched, no further program
memory access is necessary, reducing dynam-
ic power dissipation.

Two independent data buses connect the
data memories with xDSPcore. Performance
reasons dictate the use of small physical mem-
ory blocks, and interleaved addressing reduces
the likelihood of hazards where two address
pointers simultaneously access the same phys-
ical memory block. If hazards do take place,
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xDSPcore identifies this problem at run-time
and serializes the two data memory accesses.
The hardware hazard detection gives the com-
piler the opportunity to place two memory
access operations, which usually access differ-
ent memory blocks but in rare cases access the
same block, in the same instruction. The
widths of the data buses are scaleable for
adapting memory bandwidth to application-
specific requirements.

For load-store architectures, the register file
is a central part of the core architecture. Sep-
arate instructions help move data between a
register file and data memory; all arithmetic
instructions use operands stored in the regis-
ter file. The register file of xDSPcore splits
into three parts: data register file; address reg-
ister file, including modifier registers; and a
separate branch file (which is not fully visible
to the instruction set architecture). 

The data register file supports three types of
register sizes. Data registers are 16 bits wide,
whereas long registers are 32 bits wide and
accumulator registers are either 40 or 64 bits
wide, depending on the core variant. Two con-
secutive data registers are accessible as one long
register. The long register and the additional
guard bits for an increased range of fixed-point
values form the accumulator register. We use
64-bit-wide accumulator registers for xDSP-
core variants that execute the four operations
of a SIMD instruction in parallel.

The structure of the register file is orthogo-
nal. There are no restrictions on the usage of
registers for special instructions. The same is
true for the address register. Each 32-bit-wide
address register has a modifier register for mod-
ulo addressing and bit-reversal address mode
(necessary for efficient FFT implementation). 

The third part of the register file, the branch
file, contains status information about the reg-
ister contents (like a sign and zero flag for each
register of the data register file). It also con-
tains dynamic information updated by the
data flow (like overflow flags or flags indicat-
ing loop status). The core static information
is updated each time the register content
changes. Therefore during interrupt handling
or task switching, it is unnecessary to update
static information. However the user must
handle and sometimes modify dynamic infor-
mation. We chose a separate branch file to
relax the number of read or write ports asso-

ciated with the register files, a resource already
stressed by the orthogonality requirements.

Status information in the branch file is for
conditional branch instructions and control-
ling predicated execution. The xDSPcore sup-
ports a rich set of predicated or conditional
execution instructions, thus reducing the fre-
quency of branch instructions and conse-
quently avoiding branch delays.4 When
executing control code, predicated execution
can significantly reduce the number of unused
branch delay slots.

The xDSPcore features a RISC-like
pipeline with three phases: instruction fetch,
decode, and execute. Each phase can be split
into several clock cycles, which results in high-
er clock frequencies. However, splitting the
instruction fetch into several clock cycles
increases the number of branch delays.

Spending several clock cycles on the execu-
tion phase increases load- and define-use
dependencies. Compensation methods for the
arising drawbacks (bypasses and branch pre-
diction) are available but increase core com-
plexity and silicon area.

Instructions access register operands in the
pipeline stages where the core uses or com-
putes them. The core can save register values
internal to a pipeline stage during an inter-
rupt. This reduces register pressure and makes
software pipelining possible without the need
for rotating register files and modulo variable
renaming, as we explain later.

Code density measures how efficiently an
algorithm can use the chosen core architec-
ture. To increase code density and exploit
available parallelism, the xDSPcore supports
SIMD instructions. Executing two multiply-
accumulate instructions in parallel (adding
the results of the two multiplications into
one accumulator) can speed up filter opera-
tions. In many cases, this eliminates the need
for accumulator splitting and reduces the
pressure on registers. The arithmetic logic
units’ (ALUs’) data paths can execute two
instructions in parallel on the same data path
(like two 16-bit additions taking place on the
same adder structure). SIMD on the ALU
paths both increases code density and
reduces the number of clock cycles necessary
to execute an algorithm. To reduce the num-
ber of move operations between registers in
the register file, the instruction set supports
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SIMD cross operation. The high and low
words of long registers are usable for SIMD
operations, combining one high operand
with one low operand in a crosswise manner,
and vice versa.

For higher code density, it is possible to
adapt the instruction set architecture to appli-
cation-specific requirements. We can optimize
the mapping of the chosen instruction set to
binary coding in order to reduce switching
activity at the program memory port. The size
of the native instruction word is scaleable. The
native instruction word of xDSPcore contains
three bits to indicate operation class and con-
taining alignment information. The remain-
ing bits are for instruction coding. An
additional parallel word is available for cod-
ing long immediate values or offsets.

Exploration methodology
The xDSPcore allows parameterization of

core features to meet application-specific
requirements more efficiently (in terms of area
consumption and power dissipation). Along
with the architectural design of xDSPcore, we
also developed a methodology for design space
exploration called DSPxPlore.5 Figure 2 gives
a top level view of the relevant tools and the
flow of information between them.

A central part of DSPxPlore is an XML-
based configuration file. This file defines an
architectural instantiation within the design
space. An XML schema checks validity of the
definition during the edit of the XML file. The
various tools in the tool chain (compiler,
assembler, linker, and interpreting and com-
piling simulator) all obtain their configuration
parameters from this file, guaranteeing con-
sistency. The different tools automatically gen-
erate statistical and profiling information; an
analysis system subsequently processes the
information to render it more intelligible to
the system designer (allowing the visualization
of code size, the display of resource utilization
and histograms of, for example, immediate val-
ues and the identification of hotspots).

At this time, the system designer reasons
about possible improvements and makes the
necessary architectural changes. However,
because of the defined work flow and the
available XML tool sets, an automatic rea-
soner is possible at this stage of the explo-
ration. Whenever the system designer is
satisfied, he can fix the configuration and gen-
erate the main parts of the hardware descrip-
tion as well as system documentation. 

Our experiences with an implemented pro-
totype show that when the source code is sta-
ble and we’ve properly configured the tool
chain workflow, the exploration process can
iterate very quickly. We spend the most time
in the reasoning process, because setting up a
new architectural instance is straightforward
when using a validating XML editor. Never-
theless, DSPxPlore is still just an expert sys-
tem; the system designer still needs a profound
knowledge of the architecture.

Compiler optimizations
Part of the xDSPcore project is the imple-

mentation of hardware-dependent compiler
passes and optimizations. For the hardware
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independent parts, we use the open compiler
environment from Atair, which provides a C
compiler front end. It builds an intermediate
representation based on an abstract syntax tree,
which serves as the basis for our optimizations.

Our optimizations (which include instruc-
tion selection, instruction scheduling, and reg-
ister allocation) mainly target code quality, a
crucial requirement for the compiler. If the
generated code is not good enough, embed-
ded-system designers would neither accept nor
use the compiler, and revert to manual assem-
bly coding. Our goal is to generate code that
has about a 5 to 10 percent overhead (in terms
of size and cycles) as compared to handwrit-
ten and manually optimized assembly code.

To evaluate the performance of our compi-
lation techniques, we assembled a test suite of
DSP benchmarks and typical DSP applica-
tions as C programs for compilation. Our
benchmarks include typical DSP routines
used in the real world such as dot product,
matrix operations, and filtering. C imple-
mentations of typical DSP applications in our
experiments include those for a Global Sys-
tem for Mobile communication codec, fast
Fourier transform, and Blowfish.

Register allocation
Register allocation is an important opti-

mization during code generation by an opti-
mizing compiler. The state-of-the-art
algorithms for solving this problem have their
basis in graph coloring. This approach best
suits highly regular, general-purpose RISC
architectures. In embedded systems, howev-
er, we often deal with irregular architectures.
One common irregularity occurs with shared
registers. This means that a register is address-
able either as one 32-bit register or as two half
registers of 16 bits each. Without proper mod-
eling, traditional register allocators introduce
unnecessary spill code for shared registers.
Therefore, we need to extend the model and
the available algorithms to consider these
architectural constraints. Proposals range from
a multigraph approach to a weighted graph,
and to a more generalized approach.6

Another approach for solving the coloring
problem and minimizing spill code uses a
mathematical model called partitioned boolean
quadratic programming (PBQP).7 Cost vectors
and cost functions encode constraints (archi-

tectural and interference) on symbolic regis-
ters, and a solver delivers an optimal register
assignment with optimal spilling decisions.

In a previous work, we compared the results
of an extended graph-coloring register alloca-
tor against the results of a PBQP-based regis-
ter allocator for different register file sizes. The
results indicate that PBQP clearly outper-
forms graph coloring; the latter is acceptable
only for large register files because few spills
occur. Table 1 shows the accumulated spilling
costs (number of executed spill instructions)
for more than 200 different C functions from
our benchmark suite.

The main problem with the PBQP
approach is its excessive runtime for some irre-
ducible interference graphs, sometimes even
resulting in degeneration to an nonpolynomi-
al-complete enumeration. Therefore we per-
form a prepass recognition of those graphs,
based on heuristics in our previous work.8 As
a result, the compiler usually performs PBQP
register allocation, in which case the register
assignments are optimal, but falls back to
graph coloring if the allocator identifies an irre-
ducible problem. The heuristics and experi-
ments are still at an early stage of development.

A key point of the xDSPcore architecture is
its scalability. This affects the size and the lay-
out of the register file, which has a major impact
on the implementation of the register alloca-
tors. Maintaining several different source code
versions of the register allocators for different
architecture variants is infeasible. Therefore,
we decouple the algorithms from architectur-
al issues. Architectural information for graph
coloring is encapsulated into a generic method
interface, whereas the allocator dynamically cre-
ates the cost models for PBQP. Both of these
approaches use the same information from the
XML configuration file. The runtime overhead
of the configuration step is negligible compared
to that of the total runtime.
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Table 1. Comparison of spill costs for graph coloring and PBQP

dynamic spill instructions.

No. of dynamic spill instructions executed
No. of registers Graph coloring PBQP

4 2,550 1,760
8 1,210 1,040

16 94 57



SIMD generation
Embedded processors for media applica-

tions usually have SIMD instructions, which
improve program execution performance by
performing the same type of computation on
different data items in parallel. 

In load-store architectures, load and store
are the only instructions that interact with the
main memory, while arithmetic and logical
instructions can only access registers and con-
stants. This leaves two principal directions for
optimizing SIMD code: first, we can use arith-
metic and logical SIMD instructions to par-
allelize independent computations, and
second, we can use load and store operations
to efficiently access data vectors in memory.

To create SIMD instructions, our compil-
er framework has a special optimization based
on algorithms in our earlier work.9 The algo-
rithm operates on individual C functions,
using the machine-independent intermediate
representation. It detects innermost loops, in
which SIMD instructions will be generated,
and unrolls these loops K times, where K
depends on the data types. For the unrolled
loop, we build an acyclic data dependence
graph. The nodes of the graph are s nodes,
statements executed in each loop iteration, and
b nodes, basic blocks that are not executable in
each loop iteration. The algorithm then col-

lects the def or use information for every node;
it adds an edge between two nodes if there is
a def-use, use-def, or def-def dependency
between them. The algorithm schedules the
nodes of the graph in a top-down manner. It
also combines structurally equivalent s nodes
into one SIMD instruction if there are no true
or output dependencies between them.

Figure 3c shows the use of SIMD instruc-
tions to compute the dot product for two
short arrays into a long accumulator. (To
understand Figure 3, it helps to know that the
bkrep instruction stands for a zero-overhead
hardware loop, and fmac and fdmac are mul-
tiply-accumulate and double multiply-accu-
mulate instructions.) The SIMD optimized
code, in Figure 3c, is two times faster than the
compilation without the SIMD optimization
in Figure 3b, because of the long load and the
use of the double multiply-accumulate of the
xDSPcore architecture.

If number of iterations N in the original
loop is not a multiple of K, the unrolled loop
is preceded or followed (depending on the
alignment information about pointers within
the original loop) by a copy of the original
loop executed N mod K times. If a statement
in the original code contains a scalar expres-
sion, the SIMD optimization computes a suit-
able K-dimensional nonscalar expression to
replace it. The elements of an expanded scalar
equal the value of the scalar from which the
expression was expanded.

Another common operation is computing
the sum of an array’s elements. This operation
is not directly vectorizable, and a K element
auxiliary array is necessary. Its elements accu-
mulate partial sums in parallel, from which
another addition can compute the final sum.

To use a block of data for SIMD load and
store instructions, it must be verifiable either
statically or dynamically if the block is aligned,
that is, if it starts at an address that is the zero
modulo of the block size. For example, to use
SIMD load for the code in Figure 3a, pointers
a and b require alignment. (We must assume
this requirement for the code in Figure 3c.)
Our alignment verification mechanism takes
care of the alignment requirements, integrat-
ing both a static alignment analysis9 and
dynamic check. The static analysis is a con-
text-sensitive interprocedural analysis, having
intra- and interprocedural parts.
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a) C code
for (i=0;i<32;i++) sum += a[i]*b[i];

b) base assembly code (executed in 97 cycles)
clr A0 || bkrep 31,loopend

ld (R0)+,D2 || ld (R1)+,D3
nop
fmac D2,D3,A0

loopend:

c) SIMD optimized code (executed in 49 cycles)
clr A0 || bkrep 15,loopend

ld (R0)+,L1 || ld (R1)+,L2
nop
fdmac L1,L2,A0

loopend:

d) software pipelining code (executed in 18 cycles)
ld (R0)+,L1 || ld (R1)+,L2 || clr A0
ld (R0)+,L1 || ld (R1)+,L2 || rep 13

ld (R0)+,L1 || ld (R1)+,L2 || fdmac L1,L2,A0
fdmac L1,L2,A0
fdmac L1,L2,A0

Figure 3. Loop that computes the dot product for two arrays with 32 short
values to a long accumulator.



The intraprocedural alignment algorithm
traverses the procedure’s control flow graph
and calculates for all pointer definitions a set
of the possible values of the least-significant
bits (called may analysis). If the set is the sin-
gleton set then this produces exact alignment
information. The interprocedural analysis fol-
lows the sequence of functions in the pro-
gram, for each function storing call alignment
information for global pointers, actual point-
er arguments, and function return pointers.
We use intraprocedural analysis to compute
the intraprocedural information sets for the
function until we reach a function call. We
then use the information sets to update the
corresponding interprocedural sets. Our algo-
rithm handles addition, subtraction, and mul-
tiplication operations (like pointer arithmetic)
common in address calculation. Experimen-
tal results show that this alignment algorithm
can use static analysis to determine about 50
percent of the pointers.

To use the alignment information for SIMD
optimization within a function body, the algo-
rithm merges all possible calling contexts for
that function. If the context merging leads to
an excessive loss of precision in the alignment
information for a function, it is possible to
introduce copies of the function with differ-
ent calling contexts. In addition, the alignment
analysis enables further code optimizing trans-
formations, which adjust unaligned buffers to
fit the alignment requirements.

To evaluate the SIMD performance, we use
the suite of benchmarks mentioned earlier. Four
different compilations in Table 2 present aver-
ages of the evaluation results. In this table, the
result labeled “base” does not use any SIMD
instructions; “short load” uses only arithmetic
and logical SIMD instructions, but not load
and store; “dynamic” generates any possible
SIMD instructions using dynamic checks; and
“static” generates any possible SIMD instruc-
tions using static alignment information. We
normalize the figures with respect to the results
of the non-SIMD compilation (base).

The experiments indicate that our method
for SIMD instruction generation can signifi-
cantly improve code quality, and that increas-
ing the degree of SIMD parallelism can reduce
the number of cycles. Removing the dynam-
ic checks can reduce the code size by up to a
factor of 4.5.

Software pipelining
Software pipelining is an important opti-

mization for pipelined VLIW architectures.
The xDSPcore performs a register operand read
at the start of the pipeline stage and a register
operand write at the end of the pipeline stage,
whenever this operand is necessary. A multi-
ply-accumulate instruction reads its multiply
operands at the start of the multiply stage, and
reads the accumulator at the start and writes to
it at the end of the accumulate stage. We exploit
this feature to generate software-pipelined loops
with minimum register requirements. With-
out this feature, it would be necessary to make
copies of the register and perform modulo vari-
able renaming, thus increasing the code size
and register requirements.

With software pipelining, the loop body in
Figure 3d can execute in one cycle resulting in
18 cycles overall. Two cycles are necessary to
set up the loop and load the operands for the
multiply (prolog). There is a load delay of one
cycle. The values that are loaded into registers
L1 and L2 in the first line of the prolog are
available in the first iteration of the loop body.
The second iteration of the loop body uses the
values that are loaded in the second line of the
prolog. The multiplication in iteration n + 2
uses the values that were loaded in the loop in
iteration n. Two cycles are necessary to execute
the remaining multiplications after the loop
has exited (epilog). The value in accumulator
A0 is usable with a one-cycle delay after the
last fmac operation in the epilog.

Our software pipelining algorithm is based
on iterative modulo scheduling,10 which esti-
mates the minimum initiation interval (the
number of cycles necessary to execute the loop
kernel). The instruction scheduler tries to find
a valid schedule for this initiation interval. If
it does not, it increments the initiation inter-
val until it finds a solution or the number of
cycles exceeds the cycle count for the original
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Table 2. Evaluation of the SIMD performance.

Cycles Code size 
Compilation (percentage of base) (percentage of base)
Base 100 100
Short load 83 132
Dynamic 61 324
Static 58 120



loop. As we mentioned, the xDSPcore features
help avoid the modulo variable renaming.

Power saving
Energy consumption and power dissipation

are also important issues in embedded-systems
design. Attacking these factors from a hard-
ware-only perspective is insufficient because
the software that executes on the system has a
major impact. There is significant potential
for reducing energy consumption with soft-
ware methods. Compiler optimizations can
help reduce dynamic power dissipation.

Previous work has shown that dynamic
switching activity is the main cause of power
dissipation in current microprocessors.11

Additionally, memories and buses consume a
bigger fraction of the energy needs than the
functional units inside the data path. There-
fore, we can expect a considerable reduction
in power dissipation from reducing memory
accesses and switching on buses.

Traditional compiler optimizations focus
mainly on minimizing data memory access-
es. The Harvard architecture of xDSPcore
allows the separate optimization of data and
program memory accesses. To optimize pro-
gram memory accesses, the scalable instruc-
tion buffer and the align unit are the
important architectural features that span the
optimization space.

The instruction buffer is a cache structure
that facilitates the efficient execution of inner
loops. The core fetches the instructions of the
loop body only once from program memory.
Afterwards, fetching stalls until the loop fin-
ishes. Thus the size of the instruction buffer
is a parameter that affects loop optimizations.
In the reverse direction, the code size of inner
loops affects the choice of instruction buffer
size. These two parameters form a feedback
loop for architectural exploration that requires
support by the tool chain. Our latest experi-

ments show that embedded applications typ-
ically spend up to 90 percent of their cycles in
inner loops that fit into buffers of 16 to 32
entries (quite a reasonable size).

The align unit is part of the VLIW code
compression method used in the xDSPcore
architecture. It decouples the program counter
and fetch counter, reassembles the individual
execution bundles, and performs instruction
predecoding. This allows the arbitrary order-
ing of the instructions within a VLIW.

We implemented a compiler optimization
that finds the best global ordering (for one
function) of instructions, so that switching on
the program memory bus is minimal. The
algorithm runs in two phases; the first one
searches for local optimization candidates (per
basic block), and the second chooses those
local candidates that yield the global mini-
mum. The advantage of our approach over
others is that unaligned bundles, as well as
operand swapping, can occur during opti-
mization. Our solution is therefore a general-
ization of the previous work mentioned. Table
3 shows the mean switching reduction for over
200 different C functions from our bench-
mark suite. The first column gives the maxi-
mum VLIW width, in number of functional
units. We offer an exhaustive description and
evaluation in another work.12

Instruction encoding
Code size is important in embedded sys-

tems because of its effect on chip area and
therefore on chip costs. In addition to the
quality of the compiled code (the mapping of
the program to a specific instruction set), the
binary coding of the instruction set also pro-
vides crucial opportunities for optimization. 

There are several factors that influence the
instruction encoding, for example, number of
different instructions, number of registers,
width of offset fields, and type of code com-
pression. The xDSPcore features an instruc-
tion encoding based on two different
instruction word lengths. A native word
encodes the most frequently used operations
and offsets. A long word that has twice the size
of a native word is for the remaining instruc-
tions. In addition, there are two special cases
for instruction encoding, a 16- and a 20-bit
native word. Which encoding is best depends
on the type of application. Table 4 shows a
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Table 3. Reduction of switching on the 

program memory port.

VLIWmax Switching reduction (percentage)
3 -7.8
4 -10.0
5 -10.4
6 -11.1



total code size comparison for an enhanced
full rate coder (EFR).

Besides total code size, the binary encoding
also affects switching activity on the program
memory bus. Smaller native words reduce the
width of the bus and thus the wiring effort. Bit
transitions are reducible if there is a minimum
Hamming distance between instructions in
pairs that are frequently fetched in succession.

Our digital signal processing architecture’s
hardware design is based on up-to-date

DSP features. The joint development of the C
compiler and the architecture helps efficient-
ly exploit the features in a high-level pro-
gramming language. New register allocation
techniques use multiple banked register files.
Register accesses at the corresponding pipeline
stages makes software pipelining simpler and
more efficient. Because the hardware handles
conflicting parallel memory accesses, the com-
piler can apply optimistic placement of paral-
lel memory access instructions. A three-input
adder helps avoid accumulator splitting. Archi-
tecture exploration supports customizing the
architecture to suit the application. 

In another project, we are working on an
automatic encoding generator. An abstract
description of the instructions and their nec-
essary coding fields as well as statistical code
information (ranges of offsets and instruction
histograms) serve as input to the generator.
Using this input, the generator creates a con-
crete instance of a binary coding that the sim-
ulator can evaluate. MICRO
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