
Minimizing cost of local variables access for DSP{processorsErik Eckstein and Andreas KrallAtair Software GmbHEsslinggasse 18A{1010 WienEckstein@atair.co.atInstitut f�ur ComputersprachenTechnische Universit�at WienArgentinierstra�e 8A{1040 Wienandi@complang.tuwien.ac.atAbstractRecent work on compilation for DSP-processors dealswith optimizing access to local variables of functions.The common way is to use one or more address registersas pointers into the functions stack frame and modifyit with post modify addressing modes (which are some-times the only addressing modes). Additionally to pre-vious work we present an algorithm which assigns framepointer values over a whole procedure. Our algorithmalso deals with basic blocks, which have no accesses tolocal variables. The algorithm works with a new datastructure, the control ow line graph, which is derivedfrom the control ow graph. In our experiments, thealgorithm showed improvements to similar algorithms.1 IntroductionMany DSPs contain addressing units, which can postincrement and post decrement address registers afteraccessing the memory. An addressing mode which canaccess the memory with a constant (immediate) o�setto the address register is very rare in DSP architectures('register + o�set' addressing mode).A high level language with subroutines like C re-quires to allocate memory for local variables. These

variables are stored in the function frame which usu-ally is allocated on the program stack to minimize theamount of memory needed for local variables and toallow recursive functions. Most C compilers store theframe address in a frame pointer register and access lo-cal variables with a 'register + o�set' addressing mode.Due to a limited amount of address registers on a DSPand the missing of a 'register + o�set' addressing modethis concept is hard to apply on DSP compilers. Itwould require to waste one register for the frame pointerand to explicitly execute an address computation in-struction for every memory access.Many DSP compilers overcome this problem withstatic function frames. Instead of allocating the func-tion frames on the program stack they are allocatedstatic. The program stack is only used for passing func-tion arguments. This approach has three signi�cantdisadvantages:� No recursive functions are allowed. Although re-cursive functions are very rare in DSP applica-tions, it makes the compiler non compliant to thelanguage standard (e.g. ANSI-C).� Local variables must be accessed with immediateaddress loads. On most DSP architectures thisaddressing mode is slower than accessing variablesvia address registers.� By static function frame allocation much spaceis wasted, because frames of function siblings arenot active simultaneously. Global call tree analy-sis combined with sharing of function frames can



avoid this disadvantage.Our approach is to use a oating frame pointer. Aoating frame pointer is not constant inside a functionbut points to the next memory location to be accessed.After the memory access the frame pointer is modi-�ed using post increment/decrement addressing modes.This approach saves one register for the constant frameaddress and saves the instructions necessary for an ex-plicit address computation at every memory access.We describe related work in section 2. After pre-sentation of the problem description in section 3, weintroduce a new data structure, the control ow linegraph (CFLG) in section 4. We show that the oatingframe pointer problem can be solved more easily on aCFLG than on the original program and present a con-crete algorithm. Section 5 gives an empirical evaluationof our algorithm.2 Related workThe placement of variables in memory has a signi�-cant impact on code size and run time on DSP proces-sors which only support autoincrement/autodecrementaddressing modes. The optimization of placement ofvariables has been �rst studied by Bartley [Bar92]. Hesolved the simple o�set assignment problem (SOA) whereoptimal frame o�sets of variables within a function arecomputed using only one address register and only au-toincrement and autodecrement addressing modes. Bart-ley based his algorithm on �nding a maximum-weightHamiltonian path on the access graph.Liao et al. [LDK+96] showed that the simple o�-set assignment problem is equivalent to the maximumweighted path covering problem and proved that it isNP-complete. They showed that the solution can be ex-tended to the general o�set assignment problem (GOA)which handles a �xed number of address registers andproposed an e�cient heuristic to solve the problems.Sudarsanam et al. [SLD97] studied the o�set assignmentproblem with autoincrement/autodecrement values big-ger than one and a �xed number of address registers.Leupers and Marwedel [LM96] extended the workdone by Liao et al. by proposing a tiebreaking heuris-tic and a variable partitioning strategy. They also usedmodify registers to reduce the the access costs of vari-ables. Leupers and David [LD98] proposed a geneticalgorithm to solve the general o�set assignment prob-lem for increment/decrement values greater than one.Rao and Pande [RP99] present techniques to opti-mize the access sequence of variables by applying alge-braic transformations on expression trees to obtain theleast cost o�set assignment.

In his thesis Liao [LDK+96] also developed heuristicsfor o�set assignment across basic blocks. He extendedthe simple o�set assignment algorithm taking into ac-count the usage counts of basic blocks and control owedges. A problem with Liaos algorithm is that it doesnot deal with basic blocks without stack frame memoryaccesses. On load/store architectures it is quite com-mon that basic blocks do not contain stack frame mem-ory accesses, because all local variables are in registers.But even for these blocks a frame pointer value mustbe assigned. Liao's algorithm computes an optimal so-lution for a local region in the control ow graph byevaluating the costs of all possible placements of mod-ify instructions for that region. This leads to an optimalsolution for the whole function with the condition thatevery basic block contains at least one memory access.3 Problem descriptionThe target architecture of our compiler (NEC uPD77016DSP) is a load/store architecture. The addressing unitof the DSP can address two di�erent memory spaces andsupports post modi�cation of address registers with 16bit immediate values. This makes it possible to reachany data location with a single post modify instruction.Therefore, it is not necessary to perform a storage as-signment algorithm, like SOA and GOA, previous toour algorithm. The compiler uses two address registersfor stack access, one for each memory space.The purpose of our algorithm is to calculate thevalue of the frame pointer for every location (every sin-gle instruction) in the function. This implies that theframe pointer value is de�ned and unique at a given lo-cation in the function (i.e. it can not be di�erent in twoiterations of a loop at a certain location). The framepointer value at funtion's entry has to be equal to theone when returning from the function. Assignment ofmemory spaces and stack frame o�sets must be doneprior to our algorithm. The algorithm runs for eachaddress register separatly.At every instruction where the frame pointer is used,the frame pointer has to hold a speci�c value (i.e. theaddress of a local variable). At all other instructions inthe function, the algorithm is free to select any value forthe frame pointer. Values should be selected in a wayto minimize the necessary frame pointer modi�cationinstructions. Fortunately most DSP architectures pro-vide post increment/decrement addressing modes withwhich the frame pointer can be modi�ed without anyperformance losses. Therefore, the algorithm shouldmodify the frame pointer at memory accesses accord-ing to the following memory access.Not all frame pointer modi�cations can be combined



with memory accesses. There are instructions, which re-quire the frame pointer to hold a speci�c value, but cannot post modify the frame pointer(e.g. function calls).In this case it can be necessary to insert an explicitframe pointer modify instruction. If the frame pointermodi�cation is needed before a memory access, it hasto be made explicit, too.A function consists of a set of local variables anda control ow graph (CFG). The nodes of the CFGare basic blocks, which consist of a list of assemblerinstructions. There are three types of instructions:1. instructions, which do not need and do not modifythe frame pointer.2. instructions, which need the frame pointer to holda speci�c value, but can not modify the framepointer.3. instructions, which need the frame pointer to holda speci�c value and can modify the frame pointer.These instructions are all instructions which accessmemory in the stack frame.We will call instructions of type 2 or 3 frame pointerinstructions. Basic blocks which contain at least oneframe pointer instruction are called frame pointer useblocks (FPU blocks), all other blocks are called non-FPU blocks.Each basic block has an attribute use-estimate, whichholds the estimated basic block usage count. This countis either estimated or computed by pro�ling. For codesize optimization the count is set to one.4 The algorithmFirst all FPU blocks are handled, which contain twoor more frame pointer instructions, because in the fol-lowing algorithm we want to concentrate on the framepointer behavior between blocks and not within a block.The frame pointer instructions within a basic block arelocated in a linear chain and therefore it is very easy tocalculate the increment instructions between them:The instruction list of the basic block is traversedfrom the �rst to the last but one frame pointer instruc-tion. At each frame pointer instruction which can mod-ify the pointer, the modi�cation value is set to the dif-ference to the next frame pointer instruction's value. Ifthe frame pointer instruction can't modify the pointer,an explicit modify instruction must be inserted.After this �rst step, all FPU blocks can be seen torequire a frame pointer value at the entry of a block (=frame pointer value of the �rst frame pointer instructionof the block) and to hold a frame pointer value at exit

of block exit (= frame pointer value of the last framepointer instruction of the block).We de�ne the in-value of a basic block as the framepointer value at the beginning of the block and the out-value of a basic block as the frame pointer value at theend of the block.The frame pointer value at the end of a basic block bis propagated to all successor blocks of block b. There-fore the frame pointer in-value of all successor blocksof a block b is the same as the out-value of block b.Similarly the frame pointer out-value of all predecessorblocks of a block b is the same as the in-value of blockb. To deal with these constraints the algorithm doesn'twork on a control ow graph but on a control ow linegraph.4.1 The Control Flow Line GraphThe control ow line graph (CFLG) is constructed fromthe control ow graph. The CFG edges are partitionedinto edge classes. A relation R over the CFG edges isde�ned as follows: For CFG edges f and g, f R g if andonly if f and g have the same predecessor block or havethe same successor block. R* is the transitive closure ofthe relation R. An edge class contains all edges whichare equal corresponding to the equivalence relation R*.For each edge class a CFLG node is created.A CFLG edge corresponds to a CFG node whichconnects two CFG edge classes. The de�nition of theCFLG makes it impossible, that a CFLG edge (= CFGnode) connects more than two CFLG nodes (= CFGedge classes). Intuitively it can be said, that the CFLGis the CFG with reversed meaning of nodes and edges.An example of an CFG and its corresponding CFLG isshown in �gure 1 and 2.

b5b4
b2 b3b1b0

?
-@@R ��	��	 @@R?

e0e2 e2e1 e1e0 e0
Figure 1: Control ow graphBuilding the CFLG is quite simple. The nodes ofthe CFLG are found by starting at one CFG edge and



e2e1
e0entry exit- ???
? -b2 b3b4 b1b0 b5

Figure 2: Control ow line graphrecursively collecting all edges of the successor edges ofthe edge's predecessor block and the predecessor edgesof the edge's successor block in the CFG. This proce-dure is repeated until all edges of the CFG are handled.In a second step for each CFG node a CFLG edge iscreated, which is connected to the appropriate CFLGnodes (= CFG edge classes). A pseudo code of a pro-cedure BuildCFLG is shown in �gure 3.4.2 Calculating the frame pointer valuesA frame pointer value has to be assigned for each CFLGnode. The CFG blocks, which correspond to the CFLGedges have to expect the frame pointer value of the pre-decessor CFLG node as in-value and the frame pointervalue of the successor CFLG node as out-value. If thein-value of a block di�ers from the value of the �rstinstruction of the block, an explicit frame pointer mod-i�cation instruction must be added at the beginning ofthe block. The same holds for the end of a block: Ifthe out-value of a block di�ers with the value of thelast instruction of the block, a modi�cation instructionmust be added at the end of the block. But if the lastinstruction can modify the frame pointer with a post-modify addressing mode, no overhead is generated.The method of constructing a CFLG assumes thatit is not possible to create explicit frame pointer mod-i�cation instructions on critical CFG edges. A criti-cal CFG edge is an edge where the predecessor blockhas more than one successor and the successor blockhas more than one predecessor. Inserting an instruc-tion on a critical edge requires to create a new blockon this edge. This results in an additional jump in-struction in the compiled program, if the critical edgeis not an fall-through edge. If the block layout is al-ready known, basic blocks can be inserted in criticalfall-through edges without additional jump costs. Thismakes the fall-through edge non-critical. In the usedframework due to other optimizations the �nal basicblock layout is determined at a later stage. Therefore it

is not known, which edges are fall-through edges. Ex-periments showed that inserting additional basic blockson critical edges is a bad choice. An algorithm, whichcould insert modi�cation instructions on critical edges,produced results which were not much better or evenworse than a naive algorithm performing on a CFLG.An arbitrary algorithm can be used to assign framepointer values to CFLG nodes. It should be said, thatthe correctness of the result does not depend on the se-lected algorithm. Regardless, which values are assignedto CFLG nodes, the compiled programwill always work.The �rst attempt could be to assign the value 0 to allCFLG nodes. Our goal is to �nd a near optimal al-gorithm. Optimal means that the amount of explicitframe pointer modi�cation instructions, weighted bythe use-estimates of the container block, will be reducedto a minimum.4.3 AlgorithmWe implemented an iterative algorithm similar to iter-ative dataow problem solving algorithms [ASU86].In the following CFLG edges, which are associatedto FPU blocks are called FPU edges, all other edgesare called non-FPU edges. Each CFLG node holdsa current frame pointer value, in the following calledvalue, and a current use-estimate. First all CFLG nodesare initialized to a pseudo-value 'unde�ned' with use-estimate zero. Each CFLG edge has an in- and an out-value. For non-FPU edges both values are initialized to'unde�ned'. For FPU edges, the in-value is set to the�rst frame pointer value of the associated block. Theout-value is set to 'unde�ned', if the last instruction ofthe associated block can modify the frame pointer, elsethe out-value is set to the last frame pointer value of theblock. Intuitively it can be said that all CFLG edges,connected to a node with a de�ned value, 'require' thatvalue in the node, otherwise an explicit increment in-struction must be inserted.The main loop visits all CFLG nodes and continuesuntil no more changes are made on the CFLG. At eachnode a new value for the node is calculated. This isdone by collecting all in-values of outgoing edges andall out-values of incoming edges, which are not unde-�ned. If all such values are unde�ned, the node valueis kept unde�ned and no further processing is done forthis node in this iteration. Otherwise the values areweighted with the use-estimates of the correspondingblocks (use-estimates of equal values are added up).If the maximum use-estimate is greater than the cur-rent use estimate of the CFLG node, the value with themaximum use-estimate is taken as the new value forthe CFLG node and the use-estimate of the node is setto the new use-estimate. Taking the maximum means,



that the penalty for explicit frame pointer modi�cationinstructions, which must be inserted at the node's con-nected edges, is kept to a minimum.If the new assigned node value di�ers from the oldnode value, the changed ag is set and the new value ispropagated along the non-FPU edges. That means thatthe in-values of all predecessor non-FPU edges and theout-values of all successor non-FPU edges are set to thenew node value.The use-estimate of a node can be at most the sum ofthe use-estimates of all connected CFLG edges. On theother hand the use-estimate of the node in a successiveiteration of the algorithm is higher than in a previousiteration, because a new value is only set if the newuse-estimate is greater than the old use-estimate of thenode. This means that the use-estimate of the nodevalue is always increasing, but limited to a maximumvalue. Therefore it is guaranteed, that the algorithmwill terminate within a limited number of iterations. Inpractice only very few iterations are necessary, becausein most cases an already set value will not change toanother value in successive iterations.After no more changes occur during the main loop,the frame pointer modi�cation instructions can be in-serted. There can be three cases, where explicit modi-�cation instructions are necessary:� for FPU edges, where the in-value di�ers from thevalue of the connected predecessor node: A modi-�cation instruction must be inserted at the begin-ning of the edge's associated block. The modi�-cation value is the di�erence between in-value andpredecessor node value.� for FPU edges, where the out-value di�ers from thevalue of the connected successor node and the lastframe pointer instruction of the associated blockcan not modify the frame pointer: A modi�ca-tion instruction must be inserted at the end of theedge's associated block. The modi�cation value isthe di�erence between successor node value andout-value.� for non-FPU edges, where the out-value di�ersfrom the in-value: A modi�cation instruction mustbe inserted in the associated block. The modi�ca-tion value is the di�erence between the out-valueand the in-value.Figure 4 shows the algorithm in pseudo code form.5 ResultsWe tested our algorithm with various benchmark pro-grams. Our benchmarks include important DSP appli-cations: FIR, IIR, Viterby and FFT algorithms. Beside

this we took standard benchmark algorithms: the sievealgorithm to compute prime numbers, binary search,quick sort and heap sort. In addition the benchmarkincludes a set of 911 general ANSI C test �les from avalidation suite. We made two test cases: �rst we letthe compiler put local variables into registers (as usual),which minimized the stack access frequency. Secondlywe modi�ed the compiler, so that it put all local vari-ables onto the stack. With this test we simulated thememory access behavior of a direct memory access ar-chitecture, which has a high stack access frequency.We compared our algorithm, named heuristic2, totwo simpler algorithms. The naive algorithm puts theframe pointer to the value 0 at basic block borders. Thesecond algorithm, named heuristic1, calculates correctvalues at basic block borders, but does not take non-FPU blocks into account. All of the test algorithmsperform the oating frame pointer technique within ba-sic blocks.If we compare our algorithm (heuristic2) to the naivealgorithm, the improvements are higher, if all local vari-ables are on stack (corresponds to a direct memory ac-cess architecture). When local variables are in registers(load store architecture), only few stack accesses aremade, especially in the inner loops. Therefore the im-pact of an oating frame pointer algorithm is not sohigh.On the other hand, if we compare our algorithm(heuristic2) to the heuristic1 algorithm, we observe thatthe improvements are higher, when the compiler can al-locate variables in registers. This is because in the othercase - all variables on the stack - nearly every basic blockcontains at least one stack access and there are hardlyno non-FPU blocks. In this case the two algorithms arenearly equivalent.6 ConclusionWe showed a method of transforming the CFG of afunction into a new data-structure, a CFLG. Then wesolved the oating frame pointer problem on the CFLGusing a heuristic algorithm which solves the problemwith an iterative approach.The concept of the CFLG can be used to solve aclass of related problems. These are all problems likeplacement of mode changes inside a function. With aCFLG it is guaranteed that no mode changes have to beput on CFG edges (which is clearly impossible) ratherthan on CFG blocks.The algorithm both showed good test results and isvery easy to implement.



procedure BuildCFLG (CFG cfg)e:node := nil 8 edges e 2 cfgfor each edge e 2 cfg doif e:node = nil thencreate CFLG-node nodeAppendSourceEdges(e, node)AppendTargetEdges(e, node)for each blocks b 2 cfg docreate CFLG edge e between node of �rst predecessor edge of band node of �rst successor edge of be:block := bprocedure AppendSourceEdges(e, node)e:node := nodefor each successor edges se 2 predecessor block of edge e doif se:node = nil thenAppendTargetEdges(se, node)procedure AppendTargetEdges(e, node)e:node := nodefor each predecessor edges pe 2 successor block of edge e doif pe:node = nil thenAppendSourceEdges(pe, node)Figure 3: Pseudocode for control ow line graph construction
naive heuristic1 heuristic2 gain(1/naive) gain(2/1)FIR 3546 3546 3546 0% 0%IIR 5077 5076 4954 2.42% 2.40%Viterby 766 771 747 2.48% 3.11%FFT 39873 39098 38845 2.58% 0.65%sieve 313643 313643 313642 0% 0%binsearch 6683 6719 6683 0% 0.54%qsort 677032 690598 666341 1.58% 3.51%hsort 839058 828435 808611 3.63% 2.39%suite 908625647 932556639 896404241 1.35% 3.88%average 1.56% 1.94%Table 1: Execution time in cycles, local variables in registers



procedure AssignFramePointerValues(CFLG ceg)for all edges e do:if e.block is FPU thene.invalue = first value of eif can modify last value of e.block thene.outvalue = undefinedelsee.outvalue = last value of e.blockendifelsee.invalue = undefinede.outvalue = undefinedendifendforfor all nodes n do:n.value = undefinedn.useestimate = 0endforchanged = truewhile changed do:changed = falsefor all nodes n do:initialize vector V to all elements zerofor all successor edges se of n do:if se.invalue is not undefined then add se.useestimate to element value of Vendforfor all predecessor edges pe of n do:if pe.outvalue is not undefined then add pe.useestimate to element value of Vendforfind element (maxvalue) with maximum useestimate (maxuseestimate) in Vif maxvalue != n.value and maxuseestimate > n.useestimate thenchanged = truen.value = maxvaluen.useestimate = maxuseestimatefor all successor edges se of n do:if se.block = non-FPU then se.invalue = maxvalueendforfor all predecessor edges pe of n do:if pe.block = non-FPU then pe.outvalue = maxvalueendforendifendforendwhile Figure 4: Pseudocode for frame pointer value assignment



naive heuristic1 heuristic2 gain(1/naive) gain(2/1)FIR 62084 57485 57485 7.41% 0%IIR 21800 20449 20449 6.20% 0%Viterby 1224 1151 1127 7.92% 2.09%FFT 53419 52838 52838 1.09% 0%sieve 536969 487304 487303 9.25% 0%binsearch 7316 7236 7236 1.09% 0%qsort 927001 880805 876237 5.48% 0.52%hsort 1231951 1164716 1159392 5.89% 0.46%suite 1010759169 998438385 962288465 4.80% 3.62%average 5.49% 0.74%Table 2: Execution time in cycles, local variables on stackReferences[ASU86] Alfred V. Aho, Ravi Sethi, and Je�rey D.Ullman. Compilers: Principles, Techniques,and Tools. Addison-Wesley, 1986.[Bar92] D. H. Bartley. Storage assignment to de-crease code size. Software { Practice & Ex-perience, 22(2):101{110, 1992.[Ell85] John R. Ellis. Bulldog: A Compiler forVLIW Architectures. MIT Press, 1985.[LD98] Rainer Leupers and Fabian David. A uni-form optimization technique for o�set as-signment problems. In ISSS '98, December1998.[LDK+96] Stan Liao, Srinivas Devadas, Kurt Keutzer,Stevent Tjiang, and Albert Wang. Stor-age assignment to decrease code size. ACMTransactions on Programming Languagesand Systems, 18(3):235{253, 1996.[Lia96] Stan Liao. Code Generation and Optimiza-tion for embedded Digital Signal Processors.PhD thesis, Massachusetts Institut of Tech-nology, 1996.[LM96] Rainer Leupers and Peter Marwedel. Algo-rithms for address assignment in dsp codegeneration. In International Conference onComputer-Aided Design (ICCAD), Novem-ber 1996.[RP99] Amit Rao and Santosh Pande. Storageassignment optimizations to generate com-pact and e�cient code on embedded dsps.In 1999 SIGPLAN Conference on Program-ming Language Design and Implementation.ACM, June 1999.

[SLD97] Ashok Sudarsanam, Stan Liao, and SrinivasDevadas. Analysis and evaluation of addressarithmetic capabilities in custom dsp archi-tectures. In Design Automation Conference,pages 287{292. ACM/IEEE, 1997.


