Minimizing cost of local variables access for DSP—processors
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Abstract

Recent work on compilation for DSP-processors deals
with optimizing access to local variables of functions.
The common way is to use one or more address registers
as pointers into the functions stack frame and modify
it with post modify addressing modes (which are some-
times the only addressing modes). Additionally to pre-
vious work we present an algorithm which assigns frame
pointer values over a whole procedure. Our algorithm
also deals with basic blocks, which have no accesses to
local variables. The algorithm works with a new data
structure, the control flow line graph, which is derived
from the control flow graph. In our experiments, the
algorithm showed improvements to similar algorithms.

1 Introduction

Many DSPs contain addressing units, which can post
increment and post decrement address registers after
accessing the memory. An addressing mode which can
access the memory with a constant (immediate) offset
to the address register is very rare in DSP architectures
(’register + offset’ addressing mode).

A high level language with subroutines like C re-
quires to allocate memory for local variables. These

variables are stored in the function frame which usu-
ally is allocated on the program stack to minimize the
amount of memory needed for local variables and to
allow recursive functions. Most C compilers store the
frame address in a frame pointer register and access lo-
cal variables with a ’register + offset” addressing mode.
Due to a limited amount of address registers on a DSP
and the missing of a 'register + offset’ addressing mode
this concept is hard to apply on DSP compilers. It
would require to waste one register for the frame pointer
and to explicitly execute an address computation in-
struction for every memory access.

Many DSP compilers overcome this problem with
static function frames. Instead of allocating the func-
tion frames on the program stack they are allocated
static. The program stack is only used for passing func-
tion arguments. This approach has three significant
disadvantages:

e No recursive functions are allowed. Although re-
cursive functions are very rare in DSP applica-
tions, it makes the compiler non compliant to the
language standard (e.g. ANSI-C).

e Local variables must be accessed with immediate
address loads. On most DSP architectures this
addressing mode is slower than accessing variables
via address registers.

e By static function frame allocation much space
is wasted, because frames of function siblings are
not active simultaneously. Global call tree analy-
sis combined with sharing of function frames can



avoid this disadvantage.

Our approach is to use a floating frame pointer. A
floating frame pointer is not constant inside a function
but points to the next memory location to be accessed.
After the memory access the frame pointer is modi-
fied using post increment/decrement addressing modes.
This approach saves one register for the constant frame
address and saves the instructions necessary for an ex-
plicit address computation at every memory access.

We describe related work in section 2. After pre-
sentation of the problem description in section 3, we
introduce a new data structure, the control flow line
graph (CFLG) in section 4. We show that the floating
frame pointer problem can be solved more easily on a
CFLG than on the original program and present a con-
crete algorithm. Section 5 gives an empirical evaluation
of our algorithm.

2 Related work

The placement of variables in memory has a signifi-

cant impact on code size and run time on DSP proces-

sors which only support autoincrement/autodecrement

addressing modes. The optimization of placement of

variables has been first studied by Bartley [Bar92]. He

solved the simple offset assignment problem (SOA) where
optimal frame offsets of variables within a function are

computed using only one address register and only au-

toincrement and autodecrement addressing modes. Bart-
ley based his algorithm on finding a maximum-weight

Hamiltonian path on the access graph.

Liao et al. [LDK96] showed that the simple off-
set assignment problem is equivalent to the maximum
weighted path covering problem and proved that it is
NP-complete. They showed that the solution can be ex-
tended to the general offset assignment problem (GOA)
which handles a fixed number of address registers and
proposed an efficient heuristic to solve the problems.
Sudarsanam et al. [SLD97] studied the offset assignment
problem with autoincrement/autodecrement values big-
ger than one and a fixed number of address registers.

Leupers and Marwedel [LM96] extended the work
done by Liao et al. by proposing a tiebreaking heuris-
tic and a variable partitioning strategy. They also used
modify registers to reduce the the access costs of vari-
ables. Leupers and David [LD98] proposed a genetic
algorithm to solve the general offset assignment prob-
lem for increment/decrement values greater than one.

Rao and Pande [RP99] present techniques to opti-
mize the access sequence of variables by applying alge-
braic transformations on expression trees to obtain the
least cost offset assignment.

In his thesis Liao [LDK*96] also developed heuristics
for offset assignment across basic blocks. He extended
the simple offset assignment algorithm taking into ac-
count the usage counts of basic blocks and control flow
edges. A problem with Liaos algorithm is that it does
not deal with basic blocks without stack frame memory
accesses. On load/store architectures it is quite com-
mon that basic blocks do not contain stack frame mem-
ory accesses, because all local variables are in registers.
But even for these blocks a frame pointer value must
be assigned. Liao’s algorithm computes an optimal so-
lution for a local region in the control flow graph by
evaluating the costs of all possible placements of mod-
ify instructions for that region. This leads to an optimal
solution for the whole function with the condition that
every basic block contains at least one memory access.

3 Problem description

The target architecture of our compiler (NEC uPD77016
DSP) is a load/store architecture. The addressing unit
of the DSP can address two different memory spaces and
supports post modification of address registers with 16
bit immediate values. This makes it possible to reach
any data location with a single post modify instruction.
Therefore, it is not necessary to perform a storage as-
signment algorithm, like SOA and GOA, previous to
our algorithm. The compiler uses two address registers
for stack access, one for each memory space.

The purpose of our algorithm is to calculate the
value of the frame pointer for every location (every sin-
gle instruction) in the function. This implies that the
frame pointer value is defined and unique at a given lo-
cation in the function (i.e. it can not be different in two
iterations of a loop at a certain location). The frame
pointer value at funtion’s entry has to be equal to the
one when returning from the function. Assignment of
memory spaces and stack frame offsets must be done
prior to our algorithm. The algorithm runs for each
address register separatly.

At every instruction where the frame pointer is used,
the frame pointer has to hold a specific value (i.e. the
address of a local variable). At all other instructions in
the function, the algorithm is free to select any value for
the frame pointer. Values should be selected in a way
to minimize the necessary frame pointer modification
instructions. Fortunately most DSP architectures pro-
vide post increment/decrement addressing modes with
which the frame pointer can be modified without any
performance losses. Therefore, the algorithm should
modify the frame pointer at memory accesses accord-
ing to the following memory access.

Not all frame pointer modifications can be combined



with memory accesses. There are instructions, which re-
quire the frame pointer to hold a specific value, but can
not post modify the frame pointer(e.g. function calls).
In this case it can be necessary to insert an explicit
frame pointer modify instruction. If the frame pointer
modification is needed before a memory access, it has
to be made explicit, too.

A function consists of a set of local variables and
a control flow graph (CFG). The nodes of the CFG
are basic blocks, which consist of a list of assembler
instructions. There are three types of instructions:

1. instructions, which do not need and do not modify
the frame pointer.

2. instructions, which need the frame pointer to hold
a specific value, but can not modify the frame
pointer.

3. instructions, which need the frame pointer to hold
a specific value and can modify the frame pointer.
These instructions are all instructions which access
memory in the stack frame.

We will call instructions of type 2 or 3 frame pointer
instructions. Basic blocks which contain at least one
frame pointer instruction are called frame pointer use
blocks (FPU blocks), all other blocks are called non-
FPU blocks.

Each basic block has an attribute use-estimate, which
holds the estimated basic block usage count. This count
is either estimated or computed by profiling. For code
size optimization the count is set to one.

4 The algorithm

First all FPU blocks are handled, which contain two
or more frame pointer instructions, because in the fol-
lowing algorithm we want to concentrate on the frame
pointer behavior between blocks and not within a block.
The frame pointer instructions within a basic block are
located in a linear chain and therefore it is very easy to
calculate the increment instructions between them:

The instruction list of the basic block is traversed
from the first to the last but one frame pointer instruc-
tion. At each frame pointer instruction which can mod-
ify the pointer, the modification value is set to the dif-
ference to the next frame pointer instruction’s value. If
the frame pointer instruction can’t modify the pointer,
an explicit modify instruction must be inserted.

After this first step, all FPU blocks can be seen to
require a frame pointer value at the entry of a block (=
frame pointer value of the first frame pointer instruction
of the block) and to hold a frame pointer value at exit

of block exit (= frame pointer value of the last frame
pointer instruction of the block).

We define the in-value of a basic block as the frame
pointer value at the beginning of the block and the out-
value of a basic block as the frame pointer value at the
end of the block.

The frame pointer value at the end of a basic block b
is propagated to all successor blocks of block b. There-
fore the frame pointer in-value of all successor blocks
of a block b is the same as the out-value of block b.
Similarly the frame pointer out-value of all predecessor
blocks of a block b is the same as the in-value of block
b. To deal with these constraints the algorithm doesn’t
work on a control flow graph but on a control flow line
graph.

4.1 The Control Flow Line Graph

The control flow line graph (CFLG) is constructed from
the control flow graph. The CFG edges are partitioned
into edge classes. A relation R over the CFG edges is
defined as follows: For CFG edges f and g, f R g if and
only if f and g have the same predecessor block or have
the same successor block. R* is the transitive closure of
the relation R. An edge class contains all edges which
are equal corresponding to the equivalence relation R*.
For each edge class a CFLG node is created.

A CFLG edge corresponds to a CFG node which
connects two CFG edge classes. The definition of the
CFLG makes it impossible, that a CFLG edge (= CFG
node) connects more than two CFLG nodes (= CFG
edge classes). Intuitively it can be said, that the CFLG
is the CFG with reversed meaning of nodes and edges.
An example of an CFG and its corresponding CFLG is

shown in figure 1 and 2.
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Figure 1: Control flow graph

Building the CFLG is quite simple. The nodes of
the CFLG are found by starting at one CFG edge and
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Figure 2: Control flow line graph

recursively collecting all edges of the successor edges of
the edge’s predecessor block and the predecessor edges
of the edge’s successor block in the CFG. This proce-
dure is repeated until all edges of the CFG are handled.
In a second step for each CFG node a CFLG edge is
created, which is connected to the appropriate CFLG
nodes (= CFG edge classes). A pseudo code of a pro-
cedure BuildCFLG is shown in figure 3.

4.2 Calculating the frame pointer values

A frame pointer value has to be assigned for each CFLG
node. The CFG blocks, which correspond to the CFLG
edges have to expect the frame pointer value of the pre-
decessor CFLG node as in-value and the frame pointer
value of the successor CFLG node as out-value. If the
in-value of a block differs from the value of the first
instruction of the block, an explicit frame pointer mod-
ification instruction must be added at the beginning of
the block. The same holds for the end of a block: If
the out-value of a block differs with the value of the
last instruction of the block, a modification instruction
must be added at the end of the block. But if the last
instruction can modify the frame pointer with a post-
modify addressing mode, no overhead is generated.
The method of constructing a CFLG assumes that
it is not possible to create explicit frame pointer mod-
ification instructions on critical CFG edges. A criti-
cal CFG edge is an edge where the predecessor block
has more than one successor and the successor block
has more than one predecessor. Inserting an instruc-
tion on a critical edge requires to create a new block
on this edge. This results in an additional jump in-
struction in the compiled program, if the critical edge
is not an fall-through edge. If the block layout is al-
ready known, basic blocks can be inserted in critical
fall-through edges without additional jump costs. This
makes the fall-through edge non-critical. In the used
framework due to other optimizations the final basic
block layout is determined at a later stage. Therefore it

is not known, which edges are fall-through edges. Ex-
periments showed that inserting additional basic blocks
on critical edges is a bad choice. An algorithm, which
could insert modification instructions on critical edges,
produced results which were not much better or even
worse than a naive algorithm performing on a CFLG.

An arbitrary algorithm can be used to assign frame
pointer values to CFLG nodes. It should be said, that
the correctness of the result does not depend on the se-
lected algorithm. Regardless, which values are assigned
to CFLG nodes, the compiled program will always work.
The first attempt could be to assign the value 0 to all
CFLG nodes. Our goal is to find a near optimal al-
gorithm. Optimal means that the amount of explicit
frame pointer modification instructions, weighted by
the use-estimates of the container block, will be reduced
to a minimum.

4.3 Algorithm

We implemented an iterative algorithm similar to iter-
ative dataflow problem solving algorithms [ASUS6].

In the following CFLG edges, which are associated
to FPU blocks are called FPU edges, all other edges
are called non-FPU edges. Each CFLG node holds
a current frame pointer value, in the following called
value, and a current use-estimate. First all CFLG nodes
are initialized to a pseudo-value 'undefined’ with use-
estimate zero. Each CFLG edge has an in- and an out-
value. For non-FPU edges both values are initialized to
'undefined’. For FPU edges, the in-value is set to the
first frame pointer value of the associated block. The
out-value is set to 'undefined’, if the last instruction of
the associated block can modify the frame pointer, else
the out-value is set to the last frame pointer value of the
block. Intuitively it can be said that all CFLG edges,
connected to a node with a defined value, 'require’ that
value in the node, otherwise an explicit increment in-
struction must be inserted.

The main loop visits all CFLG nodes and continues
until no more changes are made on the CFLG. At each
node a new value for the node is calculated. This is
done by collecting all in-values of outgoing edges and
all out-values of incoming edges, which are not unde-
fined. If all such values are undefined, the node value
is kept undefined and no further processing is done for
this node in this iteration. Otherwise the values are
weighted with the use-estimates of the corresponding
blocks (use-estimates of equal values are added up).
If the maximum use-estimate is greater than the cur-
rent use estimate of the CFLG node, the value with the
maximum use-estimate is taken as the new value for
the CFLG node and the use-estimate of the node is set
to the new use-estimate. Taking the maximum means,



that the penalty for explicit frame pointer modification
instructions, which must be inserted at the node’s con-
nected edges, is kept to a minimum.

If the new assigned node value differs from the old
node value, the changed flag is set and the new value is
propagated along the non-FPU edges. That means that
the in-values of all predecessor non-FPU edges and the
out-values of all successor non-FPU edges are set to the
new node value.

The use-estimate of a node can be at most the sum of
the use-estimates of all connected CFLG edges. On the
other hand the use-estimate of the node in a successive
iteration of the algorithm is higher than in a previous
iteration, because a new value is only set if the new
use-estimate is greater than the old use-estimate of the
node. This means that the use-estimate of the node
value is always increasing, but limited to a maximum
value. Therefore it is guaranteed, that the algorithm
will terminate within a limited number of iterations. In
practice only very few iterations are necessary, because
in most cases an already set value will not change to
another value in successive iterations.

After no more changes occur during the main loop,
the frame pointer modification instructions can be in-
serted. There can be three cases, where explicit modi-
fication instructions are necessary:

o for FPU edges, where the in-value differs from the
value of the connected predecessor node: A modi-
fication instruction must be inserted at the begin-
ning of the edge’s associated block. The modifi-
cation value is the difference between in-value and
predecessor node value.

o for FPU edges, where the out-value differs from the
value of the connected successor node and the last
frame pointer instruction of the associated block
can not modify the frame pointer: A modifica-
tion instruction must be inserted at the end of the
edge’s associated block. The modification value is
the difference between successor node value and
out-value.

e for non-FPU edges, where the out-value differs
from the in-value: A modification instruction must
be inserted in the associated block. The modifica-
tion value is the difference between the out-value
and the in-value.

Figure 4 shows the algorithm in pseudo code form.

5 Results

We tested our algorithm with various benchmark pro-
grams. Our benchmarks include important DSP appli-
cations: FIR, IIR, Viterby and FFT algorithms. Beside

this we took standard benchmark algorithms: the sieve
algorithm to compute prime numbers, binary search,
quick sort and heap sort. In addition the benchmark
includes a set of 911 general ANSI C test files from a
validation suite. We made two test cases: first we let
the compiler put local variables into registers (as usual),
which minimized the stack access frequency. Secondly
we modified the compiler, so that it put all local vari-
ables onto the stack. With this test we simulated the
memory access behavior of a direct memory access ar-
chitecture, which has a high stack access frequency.

We compared our algorithm, named heuristic2, to
two simpler algorithms. The naive algorithm puts the
frame pointer to the value 0 at basic block borders. The
second algorithm, named heuristicl, calculates correct
values at basic block borders, but does not take non-
FPU blocks into account. All of the test algorithms
perform the floating frame pointer technique within ba-
sic blocks.

If we compare our algorithm (heuristic2) to the naive
algorithm, the improvements are higher, if all local vari-
ables are on stack (corresponds to a direct memory ac-
cess architecture). When local variables are in registers
(load store architecture), only few stack accesses are
made, especially in the inner loops. Therefore the im-
pact of an floating frame pointer algorithm is not so
high.

On the other hand, if we compare our algorithm
(heuristic2) to the heuristicl algorithm, we observe that
the improvements are higher, when the compiler can al-
locate variables in registers. This is because in the other
case - all variables on the stack - nearly every basic block
contains at least one stack access and there are hardly
no non-FPU blocks. In this case the two algorithms are
nearly equivalent.

6 Conclusion

We showed a method of transforming the CFG of a
function into a new data-structure, a CFLG. Then we
solved the floating frame pointer problem on the CFLG
using a heuristic algorithm which solves the problem
with an iterative approach.

The concept of the CFLG can be used to solve a
class of related problems. These are all problems like
placement of mode changes inside a function. With a
CFLG it is guaranteed that no mode changes have to be
put on CFG edges (which is clearly impossible) rather
than on CFG blocks.

The algorithm both showed good test results and is
very easy to implement.



procedure BuildCFLG (CFG cfg)
e.node := nil V edges e € cfg
for each edge e € cfg do
if e.node = nil then
create CFLG-node node
AppendSourceEdges(e, node)
AppendTargetEdges(e, node)
for each blocks b € cfg do
create CFLG edge e between node of first predecessor edge of b
and node of first successor edge of b
e.block :=b

procedure AppendSourceEdges(e, node)
e.node := node
for each successor edges se € predecessor block of edge e do
if se.node = nil then
AppendTargetEdges(se, node)

procedure AppendTargetEdges(e, node)
e.node := node
for each predecessor edges pe € successor block of edge e do
if pe.node = nil then
AppendSourceEdges(pe, node)

Figure 3: Pseudocode for control flow line graph construction

| | naive [ heuristicl | heuristic2 | gain(1/naive) | gain(2/1) |
FIR 3546 3546 3546 0% 0%
IIR 5077 5076 4954 2.42% 2.40%
Viterby 766 771 747 2.48% 3.11%
FFT 39873 39098 38845 2.58% 0.65%
sieve 313643 313643 313642 0% 0%
binsearch 6683 6719 6683 0% 0.54%
qsort 677032 690598 666341 1.58% 3.51%
hsort 839058 828435 808611 3.63% 2.39%
suite 908625647 | 932556639 | 896404241 1.35% 3.88%
average 1.56% 1.94%

Table 1: Execution time in cycles, local variables in registers




procedure AssignFramePointerValues(CFLG ceg)
for all edges e do:
if e.block is FPU then
e.invalue = first value of e
if can modify last value of e.block then
e.outvalue = undefined
else
e.outvalue = last value of e.block
endif
else

e.invalue = undefined
e.outvalue = undefined
endif
endfor
for all nodes n do:
n.value = undefined
n.useestimate = 0
endfor
changed = true
while changed do:
changed = false
for all nodes n do:
initialize vector V to all elements zero
for all successor edges se of n do:
if se.invalue is not undefined then add se.useestimate to element value of V
endfor
for all predecessor edges pe of n do:
if pe.outvalue is not undefined then add pe.useestimate to element value of V

endfor
find element (maxvalue) with maximum useestimate (maxuseestimate) in V
if maxvalue != n.value and maxuseestimate > n.useestimate then

changed = true
n.value = maxvalue
n.useestimate = maxuseestimate
for all successor edges se of n do:
if se.block = non-FPU then se.invalue = maxvalue
endfor
for all predecessor edges pe of n do:
if pe.block = non-FPU then pe.outvalue = maxvalue
endfor
endif
endfor
endwhile

Figure 4: Pseudocode for frame pointer value assignment



| |  naive | heuristicl | heuristic2 | gain(1/naive) | gain(2/1) |
FIR 62084 57485 57485 7.41% 0%
IR 21800 20449 20449 6.20% 0%
Viterby 1224 1151 1127 7.92% 2.09%
FFT 53419 52838 52838 1.09% 0%
sieve 536969 487304 487303 9.25% 0%
binsearch 7316 7236 7236 1.09% 0%
qsort 927001 880805 876237 5.48% 0.52%
hsort 1231951 1164716 1159392 5.89% 0.46%
suite 1010759169 | 998438385 | 962288465 4.80% 3.62%
average 5.49% 0.74%

Table 2: Execution time in cycles, local variables on stack
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