
Monitors and Exceptions: How to implement Java e�cientlyAndreas Krall and Mark ProbstInstitut f�ur ComputersprachenTechnische Universit�at WienArgentinierstra�e 8A-1040 Wienhttp://www.complang.tuwien.ac.at/andi/http://www.unix.cslab.tuwien.ac.at/~schani/AbstractE�cient implementation of monitors and exceptions iscrucial for the performance of Java. One implemen-tation of threads showed a factor of 30 di�erence inrun time on some benchmark programs. This arti-cle describes an e�cient implementation of monitorsfor Java as used in the CACAO just-in-time compiler.With this implementation the thread overhead is lessthan 40% for typical application programs and can becompletely eliminated for some applications. This ar-ticle also gives the implementation details of the newexception handling scheme in CACAO. The new ap-proach reduces the size of the generated native code bya half and allows null pointers to be checked by hard-ware. By using these techniques, the CACAO systemhas become the fastest JavaVM implementation for theAlpha processor.1 IntroductionJava's [AG96] main success as a programming languageresults from its role as an Internet programming lan-guage through the machine independent distribution ofprograms with the Java virtual machine [LY96]. Addi-tional reasons for its success are:� easy to use object-oriented language� security and safety (bound checks and exceptionhandling)� support for multithreading� integrated garbage collectionSome of these features of Java can decrease theperformance of Java applications drastically if imple-mented in the wrong way. A bad decision in the object

layout can lead to an unnecessary indirection for a �eldaccess. If run time bound checks are not removed theycan consume a large percentage of the run time. Ine�-cient implementation of synchronization can also leadto a huge performance degradation. The next sectionintroduces basic implementation techniques for Java.The remaining parts of this article give the details ofthe thread and exception implementations.1.1 JavaVM implementation basicsFor portability reasons, the �rst JavaVM implementa-tions were interpreter based and have therefore beenvery slow. Faster implementations are possible usingjust-in-time compilers which translate Java byte codeon demand into native code. We developed such aJIT-based JavaVM system called CACAO, which is de-scribed in [KG97]. CACAO is freely available via theworld wide web.Conventional compilers are designed for producinghighly optimized code without paying much attentionto their compile time performance. The design goalsof Java just-in-time compilers are di�erent: they mustproduce fast code in the smallest possible compilationtime. CACAO uses a very fast linear time algorithm fortranslating JavaVM byte code to high quality machinecode for RISC processors. It has three passes: basicblock determination, stack analysis and register pre-allocation, �nal register allocation and machine codegeneration. The most important optimization is elimi-nation of unnecessary copy operations and is done im-plicitly during stack analysis. Stack analysis tracks thede�nition and use of local variables, establishing corre-spondances between stack locations and local variables.Register allocation afterwards uses local variables in-stead of stack locations.The SUN JDK represents an object by a cell with twopointers: the �rst points to the instance data of the ob-ject, the second to the class descriptor [HGH96]. CA-1



CAO's representation eliminates one unnecessary indi-rection [KG97]. The object itself contains the pointerto the class descriptor and the instance data. In ad-dition to other information, the class descriptor con-tains the virtual function table and, at negative o�sets,pointers to the interface virtual function tables.2 Threads2.1 IntroductionThreads are an integral part of the Java programminglanguage. A Java Runtime Environment (JRE) hasto implement threads to be compliant. A thread im-plementation includes the creation, execution, switch-ing, killing and synchronization of threads. In Javathe latter is provided by monitors. Monitors ensurethat, for a given object, only one thread at a timecan execute certain methods, known as synchronizedmethods, and blocks which are marked by the keywordsynchronized.Monitors are usually implemented using mutex (mu-tual exclusion). A mutex is a data structure which con-tains the necessary information to guarantee that onlyone unit of execution can perform a critical section atthe same time [Sta95].As we show in section 2.4 a fast implementation ofthe synchronization mechanism is crucial for the e�-ciency of Java. One implementation produced morethan 800% overhead in one of our tests.2.2 Related workJava threads can be implemented using threads pro-vided by the operating system kernel, as user-level li-braries, or as a combination of the two. There exista number of articles describing di�erent thread imple-mentation aspects but none captures the problem ofe�cient monitor operations for objects.Sun's �rst implementation of the JavaVM on Solariswas based on user-level threads. The current imple-mentation uses a combination of kernel and user-levelthreads. Some of the advantages of this approach areoutlined in [Jav97].The freely available JavaVM implementation kaffeby Tim Wilkinson uses user-level threads [Wil97]. Un-til version 0.9, each object contained the complete mu-tex data structure. This enabled a fast monitor imple-mentation but used a lot more memory than necessary.Apart from thread implementations used inJavaVM's there are many other thread standards and

implementations, the most notable being the IEEEPOSIX extension [POS96].In [Mue93], Mueller describes a library implementa-tion of POSIX threads on a standard UNIX system.This library is a user-level implementation which needno support from the operating system. A very pop-ular library of user-level primitives for implementingthreads is QuickThreads by David Keppel, describedin [Kep93].Bershad et al. present a fast mechanism for mutualexclusion on uniprocessor systems [BRE92]. They havea software solution for the implementation of an atomictest-and-set operation which is faster than the corre-sponding hardware instruction. However, their imple-mentation relies on assistance from the operating sys-tem.2.3 Implementation basicsA complete thread implementation for Java has to pro-vide:� thread creation and destruction,� low level thread switching (usually implemented inassembly language),� thread scheduling,� synchronization primitives,� a thread safe non-blocking input/output library.Cacao's current implementation of threads is basedmainly on the threading code of kaffe version 0.7,which has been released under a BSD-style licenseand can thus be used freely [Wil97]. As mentionedabove, kaffe's threads are completely user-level, whichmeans, for example, that they cannot take advantageof a multiprocessor system.There are several reasons why we chose this ap-proach:� Thread support di�ers from operating system tooperating system. Not only do some operating sys-tems provide di�erent APIs to other systems, buteven if they do provide the same interface (mostoften in the form of POSIX threads), the costs ofvarious operations are often very di�erent acrossplatforms.� It was a complete implementation, tailored for theuse in a JavaVM and thus made it possible for usto get thread support up and running quickly.2



mutex test tree testrun time in secs call cost run time in secs call costMachine JavaVM no sync sync in �s no sync sync in �sDEC 21064A 289MHz OSF JDK port (1.0.2) 1.20 4.14 9.8 8.37 34.69 9.8DEC 21064A 289MHz DEC JDK interpreter 1.71 12.80 36.97 12.25 143.10 39.93DEC 21064A 289MHz DEC JDK JIT 1.06 11.05 33.30 7.80 130.50 37.45Pentium-S 166MHz Linux JDK 1.1.3 0.96 1.69 2.43 7.93 16.12 2.50DEC 21064A 289MHz Cacao 0.28 0.40 0.40 1.46 4.71 0.99Table 1: Overhead for calling synchronized methods (one object)� Parts of Cacao are not yet thread-safe (most no-tably the compiler and the garbage collector), thusmaking it di�cult to use a kernel-supported solu-tion.Each thread in a Java program corresponds to an in-stance of the java.lang.Thread class. In order for theJava run time environment (JRE) to associate platformspeci�c information with such an instance, it has a pri-vate member called PrivateInfo of type int, whichcan be used by the JRE. Ka�e version 0.7 used thismember as a pointer to a context structure. Sincepointers are 64-bit values on the Alpha, we use an ar-ray of context structures. PrivateInfo is then used asan index into this array.A �xed-size stack is allocated for each thread. Thestack size for ordinary threads can be speci�ed as acommand-line parameter. Special threads (such as thegarbage collector) have their own stack sizes. In orderto catch stack overows without the burden of checkingthe stack top at each method entry, we simply guardthe stack top with one or more memory pages. Thememory protection bits of these pages are modi�ed tocause a memory protection violation when accessed.The number of guard pages can be speci�ed on thecommand-line.Thread switching is implemented straightforwardly,namely by saving callee-save registers to the stack,switching to the new stack, restoring callee-save reg-isters and performing a subroutine return.Scheduling is very simple in Cacao: higher prior-ity threads always get precedence over lower prioritythreads, and threads of the same priority are sched-uled with a round-robin algorithm.I/O in user-level threads is a problem since UNIXI/O calls are, by default, blocking. They would blocknot just the current thread but the whole process. Thisis undesirable. It is thus common practice for threadlibraries to use non-blocking I/O and, in the case of anoperation which would block, suspend the correspond-ing thread and perform a multiplexed I/O operation

(select(2) in UNIX) on all such blocked �les regu-larly, especially if there are no runnable threads avail-able.2.4 MotivationTo optimize an implementation it is necessary to �ndthe parts which are critical to performance. There-fore, we analysed the cost of monitors with two smalltest programs. The mutex test program simply invokeda method 300000 times, once with the method beingdeclared synchronized and once without. The othertest, tree test, allocated a balanced binary tree with65535 elements and recursively traversed it 50 timesusing a method, again once being synchronized andonce being not.Table 1 shows the di�erences in run-time for the twoversions of the programs for several JavaVM's. Thetable includes the run times for both versions of theprograms in seconds. The column `call cost' gives theoverhead of a call of a synchronized method comparedto a call of a non-synchronized one. From these num-bers it is obvious that calls to synchronized methods,or monitors in general, are much slower than ordinarymethod calls.The question that arises is now whether this has anyinuence on common Java programs. To answer thisquestion, we have used a modi�ed version of kaffe togather statistics about monitor usage. The results aresummarized in table 2.Javac is an invocation of Sun's javac on the Tobasource �les [PTB+97] and is thus single-threaded. Ex-ecution of this program takes only a few seconds us-ing Cacao with threads disabled. Biss is a more orless typical working session with the Java developmentenvironment of the Biss-AWT [Meh97]. It is slightlymultithreaded. Jigsaw invokes the HTTP server Jig-saw [Jig97] of the World Wide Web Consortium andlets it serve identical parallel requests from seven hosts,amounting to about one megabyte split across 200 �les3



Application Objects allocated Objects with mutex Monitor operations Parallel Mutexesjavac 111504 13695 840292 5Biss 84939 13357 1058901 12Jigsaw 215411 23804 855691 25Table 2: Mutual exclusion statisticsfor each request. This application is highly multi-threaded.The table contains the number of objects allocatedduring execution and the number of objects for whicha monitor has been entered. The `Monitor operations'column gives the total number of operations performedon monitors, while the numbers in the `Parallel Mu-texes' column show the greatest number of mutexesthat were locked simultaneously.These numbers demonstrate that the performance ofmonitor operations is of paramount importance for afast JavaVM implementation. We did not include thenumber of blocking monitor operations because therewere just two of them, namely in the Biss application.It was only after we modi�ed kaffe to switch to an-other thread before each monitorenter operation thatthe Biss and Jigsaw applications performed a few thou-sand blocking monitorenters.2.5 Mutex implementationOur mutex data structure includes a pointer to thethread that has currently locked the mutex (holder).If the mutex is not locked at all, this is a null pointer.Because one thread can lock the same mutex multipletimes, we need a count of how many lock operationswithout corresponding unlocks have been performed onthe mutex (count). When it goes down to zero, themutex is not locked by any thread. Furthermore, weneed to keep track of the threads which have tried tolock the mutex but were blocked and are now waitingfor it to become unlocked (waiters).The data structure is de�ned as follows:struct mutex {int count;thread *holder;thread *waiters;} The locking of a mutex can now be speci�ed as in�gure 1.The macro disablePreemption() simply sets aglobal ag indicating that a critical section is currently

void lockMutex (struct mutex *mux) {disablePreemption();if (mux->holder == NULL) {mux->holder = currentThread;mux->count = 1;} else if (mux->holder == currentThread) {mux->count++;} else {blockUntilMutexIsNotLocked(mux);mux->holder = currentThread;mux->count = 1;}enablePreemption();} Figure 1: Code for lockMutex()being executed and that preemption must not takeplace. enablePreemption() unsets the ag and checkswhether a thread switch is necessary (see below). Ona multiprocessor system this would need to be imple-mented using a test-and-set instruction, or some equiv-alent.The inverse operation, namely the unlocking of themutex, can be expressed as in �gure 2.The function resumeThread() sets a ag which re-sults in a thread switch to the given thread after pre-emption has been re-enabled.These algorithms are simple, straightforward andreasonably e�cient.2.6 Object-Mutex relationSince the JavaVM speci�cation states that each objecthas a mutex associated with it, the obvious solutionseems to be to include the mutex structure in eachobject. The mutex structure could be reduced to alength of eight bytes if we used thread numbers in-stead of pointers. But, using such a solution, the javacapplication would allocate nearly one megabyte of mu-tex data, just for a few seconds of execution. This isunacceptable.4



void unlockMutex (struct mutex *mux) {disablePreemption();--mux->count;if (mux->count == 0) {mux->holder = NULL;if (mux->waiters != NULL) {thread *next = mux->waiters;mux->waiters = next->next;resumeThread(next);}}enablePreemption();} Figure 2: Code for unlockMutex()On the other hand, the �gures show that it is veryseldom that more than 20 mutexes are locked at thesame time. This suggests that using a hash table, in-dexed by the address of the object for which a monitoroperation is to be performed could be very e�cient.This is exactly what Cacao does.We use a hash function which uses the 2n least signif-icant bits of the address where 2n is the size of the hashtable. This function can be implemented in four RISCinstructions. Since we ran into performance problemswith overow handling by internal chaining, we nowuse external chaining with a preallocated pool of over-ow entries managed by a free list.An entry in the hash table has the following struc-ture:struct entry {object *obj;struct mutex mux;struct entry *next;} In order to minimize the overhead of the lock-ing/unlocking operations, we should strive for codesequences small enough to be inlined, yet powerfulenough to handle the common case. We have chosen tohandle the �rst entry in the collision chain slightly dif-ferently from the rest by not destroying the associatedmutex when the count goes down to zero. Instead thedecision is deferred until when a mutex with the samehash code gets locked and would thus use this location.The major bene�t of this approach is that the code tolock the mutex need not (in the common case) checkfor the location to be free, since each hash table loca-tion will, during the course of execution, only be freeat the beginning of the program and will then never

1 void monitorenter (object *o)2 {3 entry *e;4 disablePreemption();56 e = firstChainEntry(o);7 if (e->obj == o8 && e->mux.holder9 == currentThread)10 e->mux.count++;11 else12 lockMutexForObject(e,o);1314 enablePreemption();15 } Figure 3: Code of monitorenter()1 void monitorexit (object *o)2 {3 entry *e;4 disablePreemption();56 e = firstChainEntry(o);7 if (e->obj == o)8 e->mux.count--;9 else10 unlockMutexForObject(e,o);1112 enablePreemption();13 } Figure 4: Code of monitorexit()be freed again. The unlocking code is simpli�ed by thefact that the code need not check whether the hash ta-ble location should be freed. Based on the experiencethat a recently locked mutex is likely to be locked againin the near future, this technique also improves overallperformance.See �gures 3 and 4 for the code of the correspond-ing JavaVM instructions. These functions handle(as we show below) the most common case anddepend on the two functions for the general casepresented in �gures 5 and 6 (we now assume thatenablePreemption()/disablePreemption() pairscan be nested).Even if they are not short enough to be inlined in ev-ery synchronized method, these functions are certainlysmall enough to make the e�ort of coding them asspecially tailored, assembly language functions worth-while. This bypasses the standard subroutine linkageconventions, gaining a little extra speed.5



1 void lockMutexForObject (entry *e,2 object *o) {3 disablePreemption();45 if (e->obj != NULL)6 if (e->mux.count == NULL)7 claimEntry(e,o);8 else9 while (e->obj != o) {10 if (e->next == NULL) {11 e = e->next = allocEntry(o);12 break;13 }14 e = e->next;15 }16 else17 e->obj = o;1819 lockMutex(&e->mux);2021 enablePreemption();22 } Figure 5: Code for lockMutexForObject()
1 void unlockMutexForObject (entry *e,2 object *o) {3 disablePreemption();45 if (e->obj == o)6 unlockMutex(&e->mux);7 else {8 /* Assuming entry is there */9 while (e->next->obj != o)10 e = e->next;11 unlockMutex(&e->next->mux);12 if (e->next->mux.count == 0)13 e->next = freeEntry(e->next);14 }1516 enablePreemption();17 }Figure 6: Code for unlockMutexForObject()

Program Line 6 Line 10 Line 12 Ratio 12=6javac 420147 405978 14169 3.372 %Biss 384350 370171 14179 3.689 %Jigsaw 426695 391680 35015 8.206 %Table 3: Execution statistics for monitorenter()Program Line 6 Line 8 Line 10 Ratio 10=6javac 420146 419815 331 0.078 %Biss 384368 383281 1087 0.282 %Jigsaw 428997 416890 12107 2.822 %Table 4: Execution statistics for monitorexit()2.7 ResultsTo demonstrate that nearly all cases are indeed han-dled by these small routines, we have written asmall application which simulates the locking andunlocking operations of the three applications weused above (tables 3 and 4). As can be seen,only a small percentage of cases need to be handledin the general routines lockMutexForObject() andunlockMutexForObject().We have also considered the possibility of using acache of recently used mutexes to improve performance,similar to a translation-lookaside bu�er in micropro-cessors which cache the mapping between virtual andphysical memory pages. To evaluate whether thiswould be worthwhile, we have simulated caches withone, two, four and eight elements using the three appli-cations as test candidates. We have used least-recently-used as the cache replacement strategy. Though this isnot easily implemented in software, it provides a goodestimate of the best hit rate that can be achieved withan e�cient implementation. Table 5 summarizes theresults.Using an implementation supporting the monitorroutines, as discussed in section 2.6, and one imple-mentation without thread support, we have run severalapplications on a 300MHz DEC 21064A (see table 6).For these single threaded applications, the overheadintroduced by monitor operations ranges from 0% to37%, depending on the number of monitor operationsin the applications. Note, however, that this cannotbe compared to the overhead �gures given in table 1,since these applications do more than just entering andexiting a monitor.Using the implementation described, the mutex testapplication for table 1 took 0.40 seconds with a syn-chronized and 0.28 seconds with an ordinary methodto complete. In this program the time spent on lock-6



miss rates by size of cacheApplication 1 Element 2 Elements 4 Elements 8 Elementsjavac 15.076 % 9.757 % 4.931 % 3.193 %Biss 13.488 % 8.349 % 4.765 % 3.141 %Jigsaw 43.694 % 37.700 % 22.680 % 5.182 %Table 5: Results of cache simulationJavaLex javac espresso Toba java cuprun time without threads 2.82 4.91 3.23 4.32 1.35run time with threads 3.89 5.40 3.23 5.53 1.56overhead (optimized impl.) 37 % 10 % 0 % 28 % 15 %number of lock/unlock pairs 1818889 420146 2837 1558370 124956Table 6: Overhead of monitor operationsing/unlocking a mutex is 0.40 microseconds. The rea-son for the higher cost of mutex operations in the treetest is that this test violates the locality of monitoroperations. Overall, these numbers compare very fa-vorably with the other implementations.For most single-threaded applications, the monitoroverhead can be eliminated completely. If it is possibleto determine statically that the dynamic class-loaderand the java.lang.Thread class are not used, syn-chronization code need not be generated.3 Exception handling3.1 IntroductionExceptions in Java occur either implicitly or explicitly.Typical implicit exceptions are references to the nullpointer, array index out of bounds and division by zero.Exceptions also can be raised explicitly with the throwinstruction. To handle exceptions occurring during ex-ecution, code which can raise an exception is includedin a try block. An e�cient implementation of excep-tion handling has to take care of managing try blocksand to check for implicit exceptions e�ciently .3.2 Known implementation techniquesThree standard methods exist for implementing excep-tion handling:� dynamically create a linked list of try block datastructures,� use static try block tables and search these tablesat run time (suggested for JavaVM interpreters),

� use functions with two return values.The �rst method has been used in portable imple-mentations of exception handling for C++ [CFLM92]or Ada [GMB94] using setjmp and longjmp. A linkedexception handling data structure is created when en-tering a try block and the structure is discarded whenleaving the protected block. Java requires precise ex-ceptions. It means that all expressions evaluated beforethe exception raising instruction must have �nishedand all expressions after the raising instruction mustnot have been started. Therefore, in practice, someinstructions may not be moved freely. In the case ofsubroutine calls, the callee-saved registers must be re-stored to their original value. The data structure canbe used to store such information. The disadvantageof this method is that creating and discarding of thedata structure takes some time even if an exception isnever raised.The second method has been suggested for an ef-�cient exception handling implementation of C++[KS90] and is used in Java implementations. For ev-ery method, the JavaVM maintains an exception table.This exception table contains the program counter ofthe start and the end of the try block, the programcounter of the exception handler and the type of theexception. A JavaVM interpreter can easily interpretthis structure and dispatch to the corresponding han-dler code. If the byte code is translated to native code,the equivalent technique is more complicated.To simplify restoration of the registers, the old CA-CAO implementation used a di�erent scheme [KG97].A method has two return values: the real return valueand an exception value stored in a register. After eachmethod call, the exception register is checked and, ifit is non-zero, the exception handling code is executed.Since an exception is rarely raised, the branch is easy7



to predict and cheap. Entering and leaving a try blockhave no associated costs. At compile time, the dispatchinformation contained in the exception table is trans-lated into method dispatching native code.Run time checks for null pointers and array boundsare quite frequent, but can be eliminated in many cases.It is often possible to move a loop invariant null pointercheck before the loop or to eliminate a bound check.Some more sophisticated compilers use these code mo-tion techniques.3.3 Motivation for a changeThe old CACAO implementation was simple, but itonly makes sense if the number of try blocks is high.We made an empirical study to count the numbers ofstatic occurrences of method invocations and of tryblocks in some applications (see table 7). The numberof method invocations is two magnitudes bigger thanthe number of try blocks. Furthermore, an exceptionis rarely raised during program execution. This led usto a new implementation of exception handling.3.4 The new exception handlingschemeThe new exception handling scheme is similar to thatin a JavaVM interpreter. If an exception occurs, infor-mation in the exception table is interpreted. Howevernative code complicates the matter.The pointers to Java byte code must be replacedby pointers to native code. It requires that, duringnative code generation, the order of basic blocks notbe allowed to change. If basic blocks are eliminatedbecause of dead code, the information about a blockcan not be discarded if there is a pointer to it in theexception table.A CACAO stack frame only contains copies of savedor spilled registers. There is no saved frame pointer.The size of a stack frame is only contained in theinstructions which allocate and deallocate the stack.Therefore, to support exception handling, additionalinformation has to be stored elsewhere.The code for a method needs access to constants(mostly address constants). Since a global constant ta-ble would be too large for short address ranges and, be-cause methods are compiled on demand, every methodhas its own constant area which is allocated directly be-fore the start of the method code (see �g. 7). A registeris reserved which contains the method pointer. Con-stants are addressed relative to the method pointer.

� method pointerconstantscodeFigure 7: CACAO method layoutDuring a method call, the method pointer of the call-ing method is destroyed. However the return address isstored in a register which is preserved during executionof the called method and has to be used for returningfrom the method. After a method return, the methodpointer of the calling method is recomputed using thereturn address. The following code for a method calldemonstrates the method calling convention:LDQ cp,(obj) ; load class pointerLDQ mp,met(cp) ; load method pointerJSR ra,(mp) ; call methodLDA mp=ra+offset ; recompute method pointerAt the beginning of the constant area, there are �eldswhich contain the necessary information for registerrestoration:framesize the size of the stack frameisleaf a ag which is true if the method is a leafmethodintsave number of saved integer registersfloatsave number of saved oating point registersextable the exception table { similar to theJavaVM tableThe exception handler �rst checks if the current exe-cuting method has an associated handler and may dis-patch to this handler. If there is no handler, it unwindsthe stack and searches the parent methods for a han-dler. The information in the constant area is used torestore the registers and update the stack pointer. Thereturn address and the o�set in the immediately follow-ing LDA instruction is used to recompute the methodpointer.The change to the new scheme allowed us to imple-ment the null pointer check for free. We protect the�rst 64 Kbyte of memory against read and write ac-cess. If an bus error is raised, we catch the signal andcheck if the faulting address is within the �rst 64K. Ifthis is the case, we dispatch to our exception handler,otherwise we propagate the signal. This gives fasterprograms and reduces the work of the compiler in gen-erating pointer checking code. As shown in table 7, thenumbers of null pointer checks are quite high.8



JavaLex javac espresso Toba java cupnull pointer checks 6859 8197 11114 5825 7406method calls 3226 7498 7515 4401 5310try blocks 20 113 44 28 27Table 7: Number of pointer checks, method invocations and try blocksJavaLex javac espresso Toba java cupCACAO old 61629 156907 122951 67602 87489CACAO new 37523 86346 69212 41315 52386Table 8: Number of generated native instructions3.5 ResultsWe measured the improvement of the new exceptionhandling scheme. We could not measure a noticeableimprovement in the run time (compilation time notincluded). The improvement seemed to be around 3%but the inaccuracy of the measurements were in thesame range. The cost of the exception register checkwas too small. But the total execution time was smallerbecause of faster compilation due to the reduction insize of the generated code (see table 8). The code sizewas nearly halved. One reason was that, for simplicity,the old compiler did not share exception dispatch codeand this led to additional code growth.4 Conclusions and further workWe have presented an e�cient implementation of mon-itors and exceptions for Java. The thread overheadis less than 40% for typical application programs withour implementation and can be removed completely forsome applications. A new exception handling imple-mentation halved the size of the generated native codecompared to our previous implementation. The CA-CAO system using these techniques is currently thefastest JavaVM implementation for the Alpha proces-sor. CACAO can be obtained via the world wide web athttp://www.complang.tuwien.ac.at/java/cacao/.AcknowledgementWe express our thanks to David Gregg, MichaelGschwind and Nigel Horspool for their comments onearlier drafts of this paper. We would also like to thankthe reviewers for their helpful suggestions.

References[AG96] Ken Arnold and James Gosling. The JavaProgramming Language. Addison-Wesley,1996.[BRE92] Brian N. Bershad, David D. Redell, andJohn R. Ellis. Fast mutual exclusionfor uniprocessors. In Annual Symposiumon Architectural Support for ProgrammingLanguages and Operating Systems, pages223{233. ACM, October 1992.[CFLM92] Don Cameron, Paul Faust, Dmitry Lenkov,and Michey Mehta. A portable imple-mentation of C++ exception handling. InC++ Technical Conference, pages 225{243.USENIX, August 1992.[GMB94] E. W. Giering, Frank Mueller, and T. P.Baker. Features of the Gnu Ada runtime li-brary. In TRI-Ada '94, pages 93{103. ACM,1994.[HGH96] Cheng-Hsueh A. Hsieh, John C. Gyllen-haal, and Wen-mei W. Hwu. Java bytecodeto native code translation: The Ca�eineprototype and preliminary results. In 29thAnnual IEEE/ACM International Sympo-sium on Microarchitecture (MICRO'29),1996.[Jav97] Java threads whitepaper. http://java.sun.com/, 1997.[Jig97] Jigsaw. http://www.w3.org/Jigsaw/,1997.[Kep93] David Keppel. Tools and techniques forbuilding fast portable threads packages.Technical Report UWCSE 93-05-06, Uni-versity of Washington, 1993.9



[KG97] Andreas Krall and Reinhard Gra. CA-CAO { a 64 bit JavaVM just-in-time com-piler. Concurrency: Practice and Experi-ence, 9(11):1017{1030, 1997.[KS90] Andrew Koenig and Bjarne Stroustrup. Ex-ception handling for C++. Journal ofObject Oriented Programming, 3(2):16{33,July/August 1990.[LY96] Tim Lindholm and Frank Yellin. The JavaVirtual Machine Speci�cation. Addison-Wesley, 1996.[Meh97] Peter Mehlitz. Biss AWT. http://www.biss-net.com/biss-awt.html, 1997.[Mue93] Frank Mueller. A library implementationof POSIX threads under UNIX. In WinterUSENIX, pages 29{41, San Diego, January1993.[POS96] Standard for threads interface to POSIX.IEEE, P1003.1c, 1996.[PTB+97] Todd A. Proebsting, Gregg Townsend,Patrick Bridges, John H. Hartman, TimNewsham, and Scott A. Watterson. Toba:Java for applications. Technical report,University of Arizona, Tucson, AZ, 1997.[Sta95] William Stallings. Operating Systems.Prentice Hall, 1995.[Wil97] Tim Wilkinson. KAFFE: A free vir-tual machine to run Java code. http://www.kaffe.org, 1997.

10


