
A Progress Report on Incremental Global Compilationof PrologAndreas Krall and Thomas BergerInstitut f�ur ComputersprachenTechnische Universit�at WienArgentinierstra�e 8A-1040 Wienfandi,tbg@mips.complang.tuwien.ac.atAbstractTraditional native code generating Prolog compilerswith global analysis compile programs as a whole and donot support the data base builtin-predicates assert andretract. In this paper we present a scheme to both en-able global analysis and incremental compilation. Thisincremental compiler is based on the Vienna AbstractMachine (VAM). A version of the VAM, the VAMAI, isused as an abstract machine for abstract interpretation.The VAMAI does the data ow analysis by a factor oftwo hundred faster than the previous used meta inter-preter written in Prolog. This fast execution togetherwith a compact representation of the intermediate codemakes incremental global compilation feasible. Prelimi-nary results of intermediate code size, size of generatedmachine code, compile time and run time are presented.1 IntroductionThe development of the Vienna Abstract Machine(VAM) started in 1985. The VAM has been devel-oped as an alternative to the Warren Abstract Ma-chine (WAM). The aim was to eliminate the parame-ter passing bottleneck of the WAM. The developmentstarted with an interpreter [Kra87] which led to theVAM2P [KN90]. Partial evaluation of the call led tothe VAM1P which is well suited for machine code com-pilation [KB92]. The �rst compiler was a prototype im-plemented in Prolog without any global analysis. Thiscompiler was enhanced by global analysis. It was furtheron modi�ed to support incremental compilation. Thisprototype implementation was limited by the single as-signment nature of Prolog, used assert and retract tomanipulate global information and was therefore veryslow. So we designed the VAMAI, an abstract machinefor abstract interpretation, and implemented the wholeincremental compiler in the programming language C.Section 2 introduces the Vienna Abstract Machine

with its two versions VAM2P and VAM1P. Section 3shows how the VAM can be modi�ed to an abstractmachine for abstract interpretation and code genera-tion. Section 4 presents some preliminary results aboutthe size and e�ciency of the incremental compiler.2 The Vienna Abstract Machine2.1 IntroductionThe VAM has been developed at the TU Wien as analternative to the WAM. The WAM divides the uni�-cation process into two steps. During the �rst step thearguments of the calling goal are copied into argumentregisters and during the second step the values in theargument registers are uni�ed with the arguments of thehead of the called predicate. The VAM eliminates theregister interface by unifying goal and head argumentsin one step. The VAM can be seen as a partial evalua-tion of the call. There are two variants of the VAM, theVAM1P and the VAM2P.A complete description of the VAM2P can be foundin [KN90]. Here we give a short introduction to theVAM2P which helps to understand the VAM1P and thecompilation method. The VAM2P (VAM with two in-struction pointers) is well suited for an intermediatecode interpreter implemented in C or in assembly lan-guage using direct threaded code [Bel73]. The goal in-struction pointer points to the instructions of the callinggoal, the head instruction pointer points to the instruc-tions of the head of the called clause. During an infer-ence the VAM2P fetches one instruction from the goal,one instruction from the head, combines them and ex-ecutes the combined instruction. Because informationabout the calling goal and the called head is availableat the same time, more optimizations than in the WAMare possible. The VAM features cheap backtracking,needs less dereferencing and trailing and has smallerstack sizes.1



The VAM1P (VAM with one instruction pointer) usesone instruction pointer and is well suited for native codecompilation. It combines instructions at compile timeand supports additional optimizations like instructionelimination, resolving temporary variables during com-pile time, extended clause indexing, fast last-call opti-mization, and loop optimization.2.2 The VAM2PLike the WAM, the VAM2P uses three stacks (see �g. 1).Stack frames and choice points are allocated on theenvironment stack, structures and unbound variablesare stored on the copy stack, and bindings of variablesare marked on the trail. The intermediate code of theclauses is held in the code area. The machine registersare the goalptr and headptr (pointer to the code of thecalling goal and of the called clause respectively), thegoalframeptr and the headframeptr (frame pointer ofthe clause containing the calling goal and of the calledclause respectively), the top of the environment stack(stackptr), the top of the copy stack (copyptr), thetop of the trail (trailptr), and the pointer to the lastchoice point (choicepntptr).copy stack � copyptr?6 � trailptrtrailenvironment stack� choicepntptr� goalframeptr� headframeptr� stackptr?6 � goalptr� headptrcode areaFigure 1: VAM data areasValues are stored together with a tag in one machineword. We distinguish integers, atoms, nil, lists, struc-tures, unbound variables and references. Unbound vari-ables are allocated on the copy stack to avoid danglingreferences and the unsafe variables of the WAM. Fur-thermore it simpli�es the check for the trailing of bind-ings. Structure copying is used for the representation ofstructures.Variables are classi�ed into void, temporary and lo-cal variables. Void variables occur only once in a clause

and need neither storage nor uni�cation instructions.Di�erent to the WAM, temporary variables occur onlyin the head or in one subgoal, counting a group of builtinpredicates as one goal. The builtin predicates followingthe head are treated as if belonging to the head. Tem-porary variables need storage only during one inferenceand can be held in registers. All other variables are lo-cal and are allocated on the environment stack. Duringan inference the variables of the head are held in regis-ters. Prior to the call of the �rst subgoal the registersare stored in the stack frame. To avoid initialization ofvariables we distinguish between their �rst occurrenceand further occurrences.The clauses are translated to the VAM2P abstract ma-chine code (see �g. 2). This translation is simple dueto the direct mapping between source code and VAM2Pcode. During run time a goal and a head instruction arefetched and the two instructions are combined. Uni-�cation instructions are combined with uni�cation in-structions and resolution instructions are combined withtermination instructions. A di�erent encoding is usedfor goal uni�cation instructions and head uni�cationinstructions. To enable fast encoding the instructioncombination is solved by adding the instruction codesand, therefore, the sum of two instruction codes mustbe unique. The C statementswitch(*headptr++ + *goalptr++)implements this instruction fetch and decoding.variables local variablesgoalptr' continuation code pointergoalframeptr' continuation frame pointerFigure 3: stack frametrailptr' copy of top of trailcopyptr' copy of top of copy stackheadptr' alternative clausesgoalptr' restart code pointer (VAM2P)goalframeptr' restart frame pointerchoicepntptr' previous choice pointFigure 4: choice point2.3 The VAM1PThe VAM1P has been designed for native code compi-lation. A complete description can be found in [KB92].The main di�erence to the VAM2P is that instructioncombination is done during compile time instead ofrun time. The representation of data, the stacks and



uni�cation instructionsconst C integer or atomnil empty listlist list (followed by its arguments)struct F structure (followed by its arguments)void void variablefsttmp Xn �rst occurrence of temporary variablenxttmp Xn subsequent occurrence of temporary variablefxtvar Vn �rst occurrence of local variablenxtvar Vn subsequent occurrence of local variableresolution instructionsgoal P subgoal (followed by arguments and call/lastcall)nogoal termination of a factcut cutbuiltin I builtin predicate (followed by its arguments)termination instructionscall termination of a goallastcall termination of last goalFigure 2: VAM2P instruction setstack frames (see �g. 3) are identical to the VAM2P.The VAM1P has one machine register less than theVAM2P. The two instruction pointers goalptr andheadptr are replaced by one instruction pointer calledcodeptr. Therefore, the choice point (see �g. 4) is alsosmaller by one element. The pointer to the alternativeclauses now directly points to the code of the remainingmatching clauses.Due to instruction combination during compile timeit is possible to eliminate instructions, to eliminate alltemporary variables and to use an extended clause in-dexing, a fast last-call optimization and loop optimiza-tion. In WAM based compilers abstract interpretationis used to derive information about mode, type and ref-erence chain length. Some of this information is locallyavailable in the VAM1P due to the availability of theinformation of the calling goal.All constants and functors are combined and evalu-ated to true or false. For a true result no code is emitted.All clauses which have an argument evaluated to falseare removed from the list of alternatives. In general nocode is emitted for a combination with a void variable.In a combination of a void variable with the �rst oc-currence of a local variable the next occurrence of thisvariable is treated as the �rst occurrence.Temporary variables are eliminated completely. Theuni�cation partner of the �rst occurrence of a tempo-rary variable is uni�ed directly with the uni�cation part-ners of the further occurrences of the temporary vari-able. If the uni�cation partners are constants, no codeis emitted at all. Flattened code is generated for struc-tures. The paths for unifying and copying structures is

split and di�erent code is generated for each path. Thismakes it possible to reference each argument of a struc-ture as o�set from the top of the copy stack or as o�setfrom the base pointer of the structure. If a temporaryvariable is contained in more than one structure, com-bined uni�cation or copying instructions are generated.All necessary information for clause indexing is com-puted during compile time. Some alternatives are elimi-nated because of failing constant combinations. The re-maining alternatives are indexed on the argument thatcontains the most constants or structures. For compat-ibility reasons with the VAM2P a balanced binary treeis used for clause selection.The VAM1P implements two versions of last-call opti-mization. The �rst variant (we call it post-optimization)is identical to that of the VAM2P. If the determinismof a clause can be determined during run time, the reg-isters containing the head variables are stored in thecallers stack frame. Head variables which reside in thestack frame due to the lack of registers are copied fromthe head (callee's) stack frame to the goal (caller's) stackframe.If the determinism of a clause can be detected duringcompile time, the caller's and the callee's stack framesare equal. Now all uni�cations between variables withthe same o�set can be eliminated. If not all head vari-ables are held in registers reading and writing variablesmust be done in the right order. We call this variantof last-call optimization pre-optimization. This opti-mization can be seen as a generalization of recursionreplacement by iteration to every last-call compared tothe optimization of [Mei91].



Loop optimization is done for a determinate recursivecall of the last and only subgoal. The restriction to a sin-gle subgoal is due to the use of registers for value passingand possible aliasing of variables. Uni�cation betweentwo structures is performed by unifying the argumentsdirectly. The code for the uni�cation of a variable anda structure is split into uni�cation code and copy code.3 The Incremental CompilerThe compilation of a Prolog program is carried out in�ve passes. A clause is read in by the built-in predicateread and transformed to term representation. The com-piler �rst translates the term representation into VAMAIintermediate code. Incremental abstract interpretationis executed on this intermediate code and the code isannotated with type, mode, alias and dereferencing in-formation. The VAMAI intermediate code is traversedagain, compiled to VAM1P code and expanded on the yto machine code. The last step is instruction schedulingof the machine code and the patching of branch o�setsand address constants.3.1 Abstract InterpretationInformation about types, modes, trailing, referencechain length and aliasing of variables of a program canbe inferred using abstract interpretation. Abstract in-terpretation is a technique of describing and implement-ing global ow analysis of programs. It was introducedby [CC77] for dataow analysis of imperative languages.This work was the basis of much of the recent work inthe �eld of logic programming [AH87] [Bru91] [Deb92][Mel85] [RD92] [Tay89]. Abstract interpretation exe-cutes programs over an abstract domain. Recursion ishandled by computing �xpoints. To guarantee the ter-mination and completeness of the execution a suitablechoice of the abstract domain is necessary. Complete-ness is achieved by iterating the interpretation until thecomputed information does not change. Termination isassured by limiting the size of the domain. The pre-vious cited systems all are meta-interpreters written inProlog and very slow.A practical implementation of abstract interpretationhas been done by Tan and Lin [TL92]. They modi�eda WAM emulator implemented in C to execute the ab-stract operations on the abstract domain. They usedthis abstract emulator to infer mode, type and alias in-formation. They analysed a set of small benchmarkprograms in few milliseconds which is about 150 timesfaster than the previous systems.

3.2 The VAMAIThe VAMAI is an abstract machine developed for thequick computation of dataow information (i.e. types,modes and reference chain length for local variables)of Prolog programs. It has been developed on the ba-sis of the VAM2P and bene�ts from the fast decodingmechanism of this machine. The inferred dataow in-formation is stored directly in the intermediate code ofthe VAMAI. We choose the VAM as the basis for an ab-stract machine for abstract interpretation because it ismuch better suited than the WAM. The parameter pass-ing of the WAM via registers and storing registers in abacktrack point slows down the interpretation, since ab-stract interpretation has no backtracking. Furthermore,in the WAM some instructions are eliminated so thatthe relation between argument registers and variablesis sometimes di�cult to determine. The translation toa VAM2P like intermediate code is simpler and fasterthan WAM code generation. Furthermore, we neededthe VAM2P intermediate code for the generation of theVAM1P instructions.Our goal is to gather information about mode, typeand reference chain length. We do not extract trailinginformation because the VAM does trail more seldomthan the WAM. Each of the types of the domain addi-tionally contains information about the reference chainlength. We distinguish between 0, 1 and unknown forthe reference chain length. Each type represents a setof terms:any is the top element of our domainfree describes an unbound variable and contains areference to all aliased variablesbound describes non-variable termsatomic is the supertype of nil, atom and integerlist is a non empty list (it contains the types of itsarguments)struct is a term (information about the functor andarguments is contained)nil represents the empty listatom is the set of all atomsinteger is the set of all integer numbersPossible in�nite nesting of compound terms makes thehandling of the types list and struct di�cult. To gatheruseful information about recursive data structures weintroduce a recursive type which contains also the in-formation about the termination type.We use a top-down approach for the analysis of thedesired information. We handle di�erent calls to thesame clause separately to get the exact types. The gath-ered information is a description of the living variables.Recursive calls of a clause are computed until a �xpointfor the gathered information is reached. If there existsalready information about a call for a caller and the new



gathered information is more special than the previouslyderived, i.e. the union of the old type and the new typeis equal to the old type, we stop the interpretation ofthis call to the clause. The gathered information hasthen reached a �xpoint.With a short example we want do demonstrate theabstract interpretation with VAMAI. Fig. 5 shows asimple Prolog program part, and a simpli�ed view of itscode duplication for the representation in the VAMAIintermediate code.Prolog program:A1 :� B1B1 :� C1B2 :� B2; C2C1 :� trueCode representation:A11 :� B1B11 :� C1B12 :� B2; C2B21 :� C1B22 :� B2; C2C11 :� trueC21 :� trueFigure 5: Prolog program part and its representation inVAMAIThe procedure B has two clauses, the alternatives B1and B2. As we can see in the example the codes forthe Procedures B and C are duplicated because bothprocedures are called twice in this program. This codeduplication leads to more exact types for the variables,because the dataow information input might be di�er-ent (more or less exact) for di�erent calls of the sameprocedure in a program. We start abstract interpreta-tion at the beginning of the program with the clauseA11. The domains of the variables in the subgoal B1 aredetermined by the inferable dataow information fromthe two clauses B11 and B12 . After the information forboth clauses is computed the abstract interpretation is�nished because there is no further subgoal for the �rstclause A1. To be conservative we suppose that bothB11 and B12 could be reached during program execution,therefore we have to union the derived dataow infor-mation sets for the alternative clauses of procedure B.For B11 we only have to derive the information from C11because it is the only subgoal for B11 . For B12 there ex-ists a recursive call for B, named B2 in the example.Recursion in abstract interpretation is handled by com-puting a �xpoint, i.e. we interpret the recursive callas long as the derived data information changes. Afterthe �xpoint is reached, we can stop the computationfor the recursive call. The dataow information for the

recursion is assigned to the clauses B21 and B22 . Afterall inferable information is computed for a clause, it isstored directly into the intermediate code. So we canuse the same intermediate code e�ciently in the codegeneration pass of the compiler.Fig. 6 shows the data types for the intermediate rep-resentation of the procedures. The intermediate code isstored as a contiguous block of short and long integernumbers.typedef struct CLAUSE fSHORT var count;SHORT h temp count;struct CLAUSE *next clause;CODEPTR clause code;gCLAUSE;typedef struct CLAUSEPAR fCLAUSE *clause;struct CLAUSEPAR *next clause par;struct APROC *parent proc;gCLAUSEPAR;typedef struct APROC fCLAUSEPAR *clause ptr;struct APROC *next proc;MWPTR functor;g APROC;Figure 6: data types for the intermediate code for pro-ceduresThe representation for the arguments of a Prolog termis the same for VAMAI (see �g. 7) and VAM2P with onlythe following exceptions:� The intermediate code for the �rst occurrence ofvariables (fstvar and fsttmp) has been removed,because the order of variables can be changed dueto optimizations.� Local variables have two additional information�elds in their intermediate code, the actual domainof the variable and the reference chain length.� The argument of a temporary variable contains ano�set which references this variable in a global ta-ble. The global table contains pointers to the in-termediate code of the uni�cation partner of thetemporary variable.� The intermediate code lastcall has been removedbecause last-call optimization makes no sense inabstract interpretation. Instead the intermediatecode nogoal indicates the end of a clause. When



this instruction is executed the computation con-tinues with the next alternative clause.� The intermediate code goal got an additional ar-gument, a pointer to the end of this goal, that isthe instruction following the call.� The instruction const has been split into integerand atom.Another signi�cant di�erence between the two ab-stract machines concerns the data area, i.e. the stacks.While the VAM2P needs three stacks, in VAMAI a modi-�ed environment stack is su�cient. Fig. 8 shows a stackframe for the environment stack from the VAMAI. Notethat there exists no choice point during the abstract in-terpretation because all alternatives for a call are con-sidered for the result of the computation. Thereforethere is no backtracking in the abstract interpretation(that means also that variables need not be trailed andwe do not need the trail in the VAMAI).domain for variable n...domain for variable 1goalptrclauseptrgoalframeptrFigure 8: structure of the stack frameThe stack frame contains the actual informationsfor all the local variables of a clause. The goalptrpoints to the intermediate code of a goal (it is used to�nd the continuation after a goal has been computed),the clauseptr points to the head of the next alterna-tive clause for the called procedure, and goalframeptrpoints to the stack frame of the calling procedure.Fig. 9 is a detailed description of the stack entry fora local variable. aliasin-domainin-refout-domainout-refunion-domainunion-refFigure 9: a local variable on the stackIf two unbound variables are uni�ed, one of them getsa reference to the other one. We call those variables

aliased. In our abstract interpretation we handle alias-ing with a separate �eld on the stack (alias). It possi-bly contains a pointer to the entry of an other (aliased)variable entry on the stack. Through this �eld all aliasedvariables are connected to a chain ending with nil. Theother �elds of an aliased variable are unimportant, theyinherit their domains from the last variable in the chain.During computation of the dataow information for avariable three di�erent information sets are stored onthe stack:� The in-set contains all information which has beengathered for the variable before the computationhas entered the actual goal� The out-set contains all actual information at anystate of computation, it is the working set, its con-tent changes at any occurrence of the variable inthe intermediate code.� The union-set gathers the inferred information foreach alternative of a call; after all alternatives arecomputed it contains the type union for all alter-natives.When the abstract interpretation computes a newclause a stack frame has to be allocated on the stack.All local variables are initialized with the type empty.During the abstract uni�cation of a goal (the caller) anda head (the callee) only the out-sets are used as work-ing sets. They are changed whenever the inferred in-formation becomes more exact. For a goal informationinferred by alternative clauses is gathered in the union-sets by computing the domain union (e.g. the unionfor integer, atom and nil is atomic), so the union ofthe alternative matching clauses produces more generalsets. The in-set is used to keep the information betweentwo goals. After each alternative the out-sets (the work-ing sets) are initialized with the content of the in-sets.During the abstract uni�cation the content of the in-setis compared with the domain �eld of the intermediatecode of a local variable and overwrites this �eld if theinformation has become more general since the last com-putation of this variable. In this way we can also detectif a �xpoint has been reached for a recursive procedurecall. We can stop abstract interpretation of a clause iffor all variables of a goal the information contained intheir domain �elds is more general or equal to the in-setof the variables.Incremental abstract interpretation start the localanalysis with all the callers of the modi�ed procedureand interpret the intermediate code of all dependentprocedures. Interpretation is stopped, if the derived do-mains are equal to the original domains (those derivedby the previous analysis). If the domain has not changednew code is only generated for the changed part of theprogram. If the domain has been changed and the new



uni�cation instructionsint I integeratom A atomnil empty listlist list (followed by its two arguments)struct F structure (functor)(followed by its arguments)void void variabletemp Xn temporary variable (o�set)local Vn,Dn,Rn local variable (o�set, domain, reference chain length)resolution instructionsgoal P,O,Tc subgoal (procedure pointer, end of goal, number of temporaries)nogoal termination of a clausecut cutbuiltin I(,Tc) built-in predicate (built-in number, opt. number of temporaries)termination instructionscall termination of a goalFigure 7: VAMAI instruction setdomain is a subtype of the old domain, the previouslygenerated code �ts for the changed program part. Theinformation derived for the program before the changeis less exact than the possibly derivable information.Incremental interpretation can stop now. If the newdomain is instead a supertype of the old one the asser-tion of the new clause made the possible informationless precise and the old code part at this program pointwrong for the new program. Therefore incremental ab-stract interpretation must further analyse the callers ofthe clause.The retraction of a clause has a similar e�ect like theassertion of a new one. The only di�erence is, that theremight not be an information loss which makes the previ-ously generated code of the callers of the calling clauseswrong. Therefore it is su�cient to start the incrementalanalysis with the calling clauses of the changed proce-dure and interpret top-down until the derived informa-tion is equal to the previously inferred one.3.3 Compilation to Machine CodeThe abstract interpretation pass has annotated a partof the VAMAI intermediate representation with type,mode and dereferencing information. It must be trans-lated to machine code. The �rst occurrences of tempo-rary variables are replaced by their uni�cation partner.If temporary variables occur in two or more structureswhich have to be uni�ed with local variables, the ar-guments are reordered, so that these temporary vari-ables can be identi�ed as an o�set from the top of thecopy stack. The intermediate representation is traversedand translated to machine code instructions represent-ing VAM1P instructions.

The next step is instruction scheduling. Our sched-uler is based on list scheduling [War90]. This is a heuris-tic method which yields nearly optimal results. Firstthe basic block and the dependence graph for each ba-sic block is determined. The alias information is usedto recognize the independence of load and store instruc-tions. Then the instructions are reordered to �ll thelatency of load instructions and to �ll the delay slotof a branch instruction starting with the instructionson the longest path to the end of the basic block. Af-ter scheduling the branch o�sets and address constantsare updated. For this purpose the relocation informa-tion stored in the VAMAI intermediate representationis used. So the address changes resulting from schedul-ing and from incremental compilation can be handledtogether.4 ResultsBefore developing the VAMAI we developed a prototypecompiler in Prolog. Due to the single assignment natureof Prolog the information about the program has to bestored in the data base using assert. The prototypecompiler is implemented as a deterministic recursiveprocedure so that it was possible to store intermediaterepresentations in Prolog data structures. The problemis that this structures are stored on the copy stack, de-structive assignment must be replaced by copying partof the structures and that our Prolog interpreter doesnot support garbage collection. So this interpreter wasvery slow and needed a stack size greater than 32 MBwhen compiling a program which was bigger than 50clauses. So it is evident that the compiler based on the



VAM2P VAM2P VAMAI VAM1Popt VAM1Ptest bytes scaled scaled scaled scaleddet. append 288 1 3.63 9.96 11.6naive reverse 380 1 3.59 11.3 13.5quicksort 764 1 2.65 9.95 11.28-queens 536 1 2.95 8.25 9.00serialize 1044 1 3.33 15.7 19.1di�erentiate 1064 1 8.37 28.4 62.7query 2084 1 0.89 3.13 6.50bucket 996 1 1.96 9.75 16.9permutation 296 1 2.77 6.21 7.61Table 1: code size of intermediate representationsVAMAI is on average more than a factor of two hundredfaster than the prototype compiler (see table 2).Prolog Prolog VAMAItest ms scaled scaleddet. append 648 1 1115naive reverse 789 1 639quicksort 977 1 2648-queens 815 1 241serialize 1630 1 206di�erentiate 2122 1 25query 781 1 194bucket 923 1 230permutation 732 1 503Table 2: global analysis time, factor of improvementIt is di�cult to compare the sizes needed for the datastructures. The Prolog interpreter has a built-in predi-cate which takes a list of assembly language instructions,translates it to machine code, resolves the branches andstores the machine code in the code area. The size ofthe machine code generated without global analysis isup to a factor of two bigger than the optimized code. Sothe size of the generated machine code is in both casesidentical. The data structures stored using assert areabout two times as big as the data stored by the VAMAI.The stack use of the VAMAI is neglectable compared tothat of the prototype compiler.Comparing the VAM2P interpreter with the VAMAIit shows that the size of the generated machine code isabout ten times bigger than the internal representationof the VAM2P (see table 1). The annotated VAMAI in-termediate code is about three times bigger than thesimple VAM2P intermediate code. For a comparison ofthe execution time (see table 3). On average the com-piled code is about seven times faster than the inter-preted code. The VAM2P interpreter is about the samespeed as the SICStus byte code emulator.

VAM2P VAM1P VAM1Popttest ms scaled scaleddet. append 0.25 26.1 26.1naive reverse 4.17 19.3 20.0quicksort 6.00 7.23 10.38-queens 65.4 12.38 13.5serialize 3.90 5.76 6.84di�erentiate 1.14 6.32 8.14query 41.7 7.58 9.70bucket 247 5.02 5.24permutation 4023 5.08 5.34Table 3: factor of execution time improvement5 ConclusionWe presented the VAMAI, an abstract machine for ab-stract interpretation. This abstract machine has a verycompact representation and reduces the analysis timeof programs by a factor of two hundred compared tometa interpreters written in Prolog. This fast analysisand the storage of additional information enables theincremental global compilation of Prolog.AcknowledgementWe express our thanks to Anton Ertl, Franz Puntigamand the anonymous referees for their comments on ear-lier drafts of this paper.References[AH87] Samson Abramsky and Chris Hankin, edi-tors. Abstract Interpretation of DeclarativeLanguages. Ellis Horwood, 1987.



[Bel73] James R. Bell. Threaded code. CACM, 16(6),June 1973.[Bru91] Maurice Bruynooghe. A practical frameworkfor the abstract interpretation of logic pro-grams. Journal of Logic programming, 10(1),1991.[CC77] Patrick Cousot and Radhia Cousot. Abstractinterpretation: A uni�ed lattice model forstatic analysis of programs by construction orapproximation of �xpoints. In Fourth Symp.Priciples of Programming Languages. ACM,1977.[Deb92] Saumya Debray. A simple code improvementscheme for Prolog. Journal of Logic Program-ming, 13(1), 1992.[KB92] Andreas Krall and Thomas Berger. Fast Pro-log with a VAM1P based Prolog compiler. InPLILP'92, LNCS. Springer 631, 1992.[KN90] Andreas Krall and Ulrich Neumerkel. The Vi-enna abstract machine. In PLILP'90, LNCS.Springer, 1990.[Kra87] Andreas Krall. Implementation of a high-speedProlog interpreter. In Conf. on Interpretersand Interpretative Techniques, volume 22(7) ofSIGPLAN. ACM, 1987.[Mei91] Micha Meier. Compilation of compound termsin Prolog. In Eighth International Conferenceon Logic Programming, 1991.[Mel85] Christopher S. Mellish. Some global optimiza-tions for a Prolog compiler. Journal of LogicProgramming, 2(1), 1985.[RD92] Peter Van Roy and Alvin M. Despain. High-performance logic programming with theAquarius Prolog compiler. IEEE Computer,25(1), 1992.[Tay89] Andrew Taylor. Removal of dereferencing andtrailing in Prolog compilation. In Sixth In-ternational Conference on Logic Programming,Lisbon, 1989.[TL92] Jichang Tan and I-Peng Lin. Compilingdataow analysis of logic programs. In Con-ference on Programming Language Design andImplementation, volume 27(7) of SIGPLAN.ACM, 1992.[War90] Henry S. Warren. Instruction scheduling forthe IBM RISC System/6000 processor. IBMJournal of Research and Development, 34(1),1990.


