A Progress Report on Incremental Global Compilation

of Prolog

Andreas Krall and Thomas Berger
Institut fur Computersprachen
Technische Universitat Wien
Argentinierstrafie 8
A-1040 Wien

{andi,tb}@mips.complang.tuwien.ac.at

Abstract

Traditional native code generating Prolog compilers
with global analysis compile programs as a whole and do
not support the data base builtin-predicates assert and
retract. In this paper we present a scheme to both en-
able global analysis and incremental compilation. This
incremental compiler is based on the Vienna Abstract
Machine (VAM). A version of the VAM, the VAM_y, is
used as an abstract machine for abstract interpretation.
The VAM 41 does the data flow analysis by a factor of
two hundred faster than the previous used meta inter-
preter written in Prolog. This fast execution together
with a compact representation of the intermediate code
makes incremental global compilation feasible. Prelimi-
nary results of intermediate code size, size of generated
machine code, compile time and run time are presented.

1 Introduction

The development of the Vienna Abstract Machine
(VAM) started in 1985. The VAM has been devel-
oped as an alternative to the Warren Abstract Ma-
chine (WAM). The aim was to eliminate the parame-
ter passing bottleneck of the WAM. The development
started with an interpreter [Kra87] which led to the
VAM2p [KN90]. Partial evaluation of the call led to
the VAM p which is well suited for machine code com-
pilation [KB92]. The first compiler was a prototype im-
plemented in Prolog without any global analysis. This
compiler was enhanced by global analysis. It was further
on modified to support incremental compilation. This
prototype implementation was limited by the single as-
signment nature of Prolog, used assert and retract to
manipulate global information and was therefore very
slow. So we designed the VAM a1, an abstract machine
for abstract interpretation, and implemented the whole
incremental compiler in the programming language C.

Section 2 introduces the Vienna Abstract Machine

with its two versions VAMsp and VAM;p. Section 3
shows how the VAM can be modified to an abstract
machine for abstract interpretation and code genera-
tion. Section 4 presents some preliminary results about
the size and efficiency of the incremental compiler.

2 The Vienna Abstract Machine

2.1 Introduction

The VAM has been developed at the TU Wien as an
alternative to the WAM. The WAM divides the unifi-
cation process into two steps. During the first step the
arguments of the calling goal are copied into argument
registers and during the second step the values in the
argument registers are unified with the arguments of the
head of the called predicate. The VAM eliminates the
register interface by unifying goal and head arguments
in one step. The VAM can be seen as a partial evalua-
tion of the call. There are two variants of the VAM, the
VAM;p and the VAMsp.

A complete description of the VAMsp can be found
in [KN90]. Here we give a short introduction to the
VAMgqp which helps to understand the VAMp and the
compilation method. The VAMyp (VAM with two in-
struction pointers) is well suited for an intermediate
code interpreter implemented in C or in assembly lan-
guage using direct threaded code [Bel73]. The goal in-
struction pointer points to the instructions of the calling
goal, the head instruction pointer points to the instruc-
tions of the head of the called clause. During an infer-
ence the VAMyp fetches one instruction from the goal,
one instruction from the head, combines them and ex-
ecutes the combined instruction. Because information
about the calling goal and the called head is available
at the same time, more optimizations than in the WAM
are possible. The VAM features cheap backtracking,
needs less dereferencing and trailing and has smaller
stack sizes.

The VAM;p (VAM with one instruction pointer) uses
one instruction pointer and is well suited for native code
compilation. It combines instructions at compile time
and supports additional optimizations like instruction
elimination, resolving temporary variables during com-
pile time, extended clause indexing, fast last-call opti-
mization, and loop optimization.

2.2 The VAM,p

Like the WAM, the VAM3p uses three stacks (see fig. 1).
Stack frames and choice points are allocated on the
environment stack, structures and unbound variables
are stored on the copy stack, and bindings of variables
are marked on the trail. The intermediate code of the
clauses is held in the code area. The machine registers
are the goalptr and headptr (pointer to the code of the
calling goal and of the called clause respectively), the
goalframeptr and the headframeptr (frame pointer of
the clause containing the calling goal and of the called
clause respectively), the top of the environment stack
(stackptr), the top of the copy stack (copyptr), the
top of the trail (trailptr), and the pointer to the last
choice point (choicepntptr).

copy stack
l copyptr
T trailptr
trail

«— choicepntptr

. +— goalframeptr
environment stack

l«— headframeptr

¢ stackptr
T +— goalptr
code area . headptr

Figure 1: VAM data areas

Values are stored together with a tag in one machine
word. We distinguish integers, atoms, nil, lists, struc-
tures, unbound variables and references. Unbound vari-
ables are allocated on the copy stack to avoid dangling
references and the unsafe variables of the WAM. Fur-
thermore it simplifies the check for the trailing of bind-
ings. Structure copying is used for the representation of
structures.

Variables are classified into void, temporary and lo-
cal variables. Void variables occur only once in a clause

and need neither storage nor unification instructions.
Different to the WAM, temporary variables occur only
in the head or in one subgoal, counting a group of builtin
predicates as one goal. The builtin predicates following
the head are treated as if belonging to the head. Tem-
porary variables need storage only during one inference
and can be held in registers. All other variables are lo-
cal and are allocated on the environment stack. During
an inference the variables of the head are held in regis-
ters. Prior to the call of the first subgoal the registers
are stored in the stack frame. To avoid initialization of
variables we distinguish between their first occurrence
and further occurrences.

The clauses are translated to the VAMsp abstract ma-
chine code (see fig. 2). This translation is simple due
to the direct mapping between source code and VAMsp
code. During run time a goal and a head instruction are
fetched and the two instructions are combined. Uni-
fication instructions are combined with unification in-
structions and resolution instructions are combined with
termination instructions. A different encoding is used
for goal unification instructions and head unification
instructions. To enable fast encoding the instruction
combination is solved by adding the instruction codes
and, therefore, the sum of two instruction codes must
be unique. The C statement

switch(*headptr++ + *goalptr++)

implements this instruction fetch and decoding.

variables local variables
goalptr’ continuation code pointer
goalframeptr’ | continuation frame pointer
Figure 3: stack frame
trailptr’ copy of top of trail
copyptr’ copy of top of copy stack
headptr’ alternative clauses
goalptr’ restart code pointer (VAMap)
goalframeptr’ | restart frame pointer
choicepntptr’ | previous choice point

Figure 4: choice point

2.3 The VAM;p

The VAM;p has been designed for native code compi-
lation. A complete description can be found in [KB92].
The main difference to the VAMosp 1s that instruction
combination is done during compile time instead of
run time. The representation of data, the stacks and

unification instructions

const C integer or atom

nil empty list

list list (followed by its arguments)

struct F | structure (followed by its arguments)

void void variable

fsttmp Xn | first occurrence of temporary variable
nxttmp Xn | subsequent occurrence of temporary variable

fxtvar Vn

first occurrence of local variable

nxtvar Vn

subsequent occurrence of local variable

resolution 1nstructions

goal P subgoal (followed by arguments and call/lastcall)

nogoal termination of a fact

cut cut

builtin I | builtin predicate (followed by its arguments)
termination instructions

call termination of a goal

lastcall | termination of last goal

Figure 2: VAMyp instruction set

stack frames (see fig. 3) are identical to the VAMsp.
The VAMip has one machine register less than the
VAMsp. The two instruction pointers goalptr and
headptr are replaced by one instruction pointer called
codeptr. Therefore, the choice point (see fig. 4) is also
smaller by one element. The pointer to the alternative
clauses now directly points to the code of the remaining
matching clauses.

Due to instruction combination during compile time
it is possible to eliminate instructions, to eliminate all
temporary variables and to use an extended clause in-
dexing, a fast last-call optimization and loop optimiza-
tion. In WAM based compilers abstract interpretation
is used to derive information about mode, type and ref-
erence chain length. Some of this information is locally
available in the VAM;p due to the availability of the
information of the calling goal.

All constants and functors are combined and evalu-
ated to true or false. For a true result no code is emitted.
All clauses which have an argument evaluated to false
are removed from the list of alternatives. In general no
code is emitted for a combination with a void variable.
In a combination of a void variable with the first oc-
currence of a local variable the next occurrence of this
variable 1s treated as the first occurrence.

Temporary variables are eliminated completely. The
unification partner of the first occurrence of a tempo-
rary variable is unified directly with the unification part-
ners of the further occurrences of the temporary vari-
able. If the unification partners are constants, no code
is emitted at all. Flattened code is generated for struc-
tures. The paths for unifying and copying structures is

split and different code is generated for each path. This
makes it possible to reference each argument of a struc-
ture as offset from the top of the copy stack or as offset
from the base pointer of the structure. If a temporary
variable is contained in more than one structure, com-
bined unification or copying instructions are generated.

All necessary information for clause indexing is com-
puted during compile time. Some alternatives are elimi-
nated because of failing constant combinations. The re-
maining alternatives are indexed on the argument that
contains the most constants or structures. For compat-
ibility reasons with the VAMsp a balanced binary tree
is used for clause selection.

The VAM;p implements two versions of last-call opti-
mization. The first variant (we call it post-optimization)
1s identical to that of the VAMsp. If the determinism
of a clause can be determined during run time, the reg-
isters containing the head variables are stored in the
callers stack frame. Head variables which reside in the
stack frame due to the lack of registers are copied from
the head (callee’s) stack frame to the goal (caller’s) stack
frame.

If the determinism of a clause can be detected during
compile time, the caller’s and the callee’s stack frames
are equal. Now all unifications between variables with
the same offset can be eliminated. If not all head vari-
ables are held in registers reading and writing variables
must be done in the right order. We call this variant
of last-call optimization pre-optimization. This opti-
mization can be seen as a generalization of recursion
replacement by iteration to every last-call compared to
the optimization of [Mei91].

Loop optimization is done for a determinate recursive
call of the last and only subgoal. The restriction to a sin-
gle subgoal is due to the use of registers for value passing
and possible aliasing of variables. Unification between
two structures is performed by unifying the arguments
directly. The code for the unification of a variable and
a structure is split into unification code and copy code.

3 The Incremental Compiler

The compilation of a Prolog program is carried out in
five passes. A clause is read in by the built-in predicate
read and transformed to term representation. The com-
piler first translates the term representation into VAM a1
intermediate code. Incremental abstract interpretation
is executed on this intermediate code and the code is
annotated with type, mode, alias and dereferencing in-
formation. The VAMa; intermediate code is traversed
again, compiled to VAM;p code and expanded on the fly
to machine code. The last step is instruction scheduling
of the machine code and the patching of branch offsets
and address constants.

3.1 Abstract Interpretation

Information about types, modes, trailing, reference
chain length and aliasing of variables of a program can
be inferred using abstract interpretation. Abstract in-
terpretation is a technique of describing and implement-
ing global flow analysis of programs. It was introduced
by [CCT7] for dataflow analysis of imperative languages.
This work was the basis of much of the recent work in
the field of logic programming [AH87] [Bru91] [Deb92]
[Mel85] [RD92] [Tay89]. Abstract interpretation exe-
cutes programs over an abstract domain. Recursion is
handled by computing fixpoints. To guarantee the ter-
mination and completeness of the execution a suitable
choice of the abstract domain is necessary. Complete-
ness is achieved by iterating the interpretation until the
computed information does not change. Termination is
assured by limiting the size of the domain. The pre-
vious cited systems all are meta-interpreters written in
Prolog and very slow.

A practical implementation of abstract interpretation
has been done by Tan and Lin [TL92]. They modified
a WAM emulator implemented in C to execute the ab-
stract operations on the abstract domain. They used
this abstract emulator to infer mode, type and alias in-
formation. They analysed a set of small benchmark
programs in few milliseconds which is about 150 times
faster than the previous systems.

3.2 The VAMAI

The VAMy1 is an abstract machine developed for the
quick computation of dataflow information (i.e. types,
modes and reference chain length for local variables)
of Prolog programs. It has been developed on the ba-
sis of the VAMop and benefits from the fast decoding
mechanism of this machine. The inferred dataflow in-
formation is stored directly in the intermediate code of
the VAM ;. We choose the VAM as the basis for an ab-
stract machine for abstract interpretation because it is
much better suited than the WAM. The parameter pass-
ing of the WAM via registers and storing registers in a
backtrack point slows down the interpretation, since ab-
stract interpretation has no backtracking. Furthermore,
in the WAM some instructions are eliminated so that
the relation between argument registers and variables
1s sometimes difficult to determine. The translation to
a VAMsp like intermediate code is simpler and faster
than WAM code generation. Furthermore, we needed
the VAMop intermediate code for the generation of the
VAM;p instructions.

Our goal i1s to gather information about mode, type
and reference chain length. We do not extract trailing
information because the VAM does trail more seldom
than the WAM. Each of the types of the domain addi-
tionally contains information about the reference chain
length. We distinguish between 0, 1 and unknown for
the reference chain length. Each type represents a set
of terms:

any is the top element of our domain

free describes an unbound variable and contains a
reference to all aliased variables

bound describes non-variable terms

atomic 1s the supertype of nil, atom and integer

list is a non empty list (it contains the types of its
arguments)

struct is a term (information about the functor and

arguments is contained)
nil represents the empty list
atom 1s the set of all atoms
integer is the set of all integer numbers

Possible infinite nesting of compound terms makes the
handling of the types list and struct difficult. To gather
useful information about recursive data structures we
introduce a recursive type which contains also the in-
formation about the termination type.

We use a top-down approach for the analysis of the
desired information. We handle different calls to the
same clause separately to get the exact types. The gath-
ered information is a description of the living variables.
Recursive calls of a clause are computed until a fixpoint
for the gathered information is reached. If there exists
already information about a call for a caller and the new

gathered information is more special than the previously
derived, i.e. the union of the old type and the new type
is equal to the old type, we stop the interpretation of
this call to the clause. The gathered information has
then reached a fixpoint.

With a short example we want do demonstrate the
abstract interpretation with VAMaj. Fig. 5 shows a
simple Prolog program part, and a simplified view of its
code duplication for the representation in the VAMag
intermediate code.

Prolog program:

Al — B1

Bl o Cl

B, :— B2, (?
(1 — true

Code representation:

A% — B!

Bi -t

Bl .— B? (C?
B .~ (!t

B2 .— B? (C?
Cl — true
C? — true

Figure 5: Prolog program part and its representation in

VAMa1

The procedure B has two clauses, the alternatives B
and By. As we can see in the example the codes for
the Procedures B and C' are duplicated because both
procedures are called twice in this program. This code
duplication leads to more exact types for the variables,
because the dataflow information input might be differ-
ent (more or less exact) for different calls of the same
procedure in a program. We start abstract interpreta-
tion at the beginning of the program with the clause
Al. The domains of the variables in the subgoal B! are
determined by the inferable dataflow information from
the two clauses Bf and Bi. After the information for
both clauses is computed the abstract interpretation is
finished because there is no further subgoal for the first
clause A;. To be conservative we suppose that both
Bl and B could be reached during program execution,
therefore we have to union the derived dataflow infor-
mation sets for the alternative clauses of procedure B.
For B} we only have to derive the information from C}
because it is the only subgoal for Bi. For Bl there ex-
ists a recursive call for B, named B? in the example.
Recursion in abstract interpretation is handled by com-
puting a fixpoint, i.e. we interpret the recursive call
as long as the derived data information changes. After
the fixpoint is reached, we can stop the computation
for the recursive call. The dataflow information for the

recursion is assigned to the clauses B? and BZ. After
all inferable information 1s computed for a clause, it is
stored directly into the intermediate code. So we can
use the same intermediate code efficiently in the code
generation pass of the compiler.

Fig. 6 shows the data types for the intermediate rep-
resentation of the procedures. The intermediate code is
stored as a contiguous block of short and long integer
numbers.

typedef struct CLAUSE {
SHORT var_count;
SHORT h_temp_count;
struct CLAUSE *next_clause;
CODEPTR clause_code;
}CLAUSE;

typedef struct CLAUSEPAR {
CLAUSE *clause;
struct CLAUSEPAR *next_clause_par;
struct APROC *parent_proc;
}CLAUSEPAR;

typedef struct APROC {

CLAUSEPAR *clause ptr;
struct APROC *next_proc;
MWPTR functor;

} APROC;

Figure 6: data types for the intermediate code for pro-
cedures

The representation for the arguments of a Prolog term
is the same for VAM g (see fig. 7) and VAMyp with only
the following exceptions:

e The intermediate code for the first occurrence of
variables (fstvar and fsttmp) has been removed,
because the order of variables can be changed due
to optimizations.

e Local variables have two additional information
fields in their intermediate code, the actual domain
of the variable and the reference chain length.

e The argument of a temporary variable contains an
offset which references this variable in a global ta-
ble. The global table contains pointers to the in-
termediate code of the unification partner of the
temporary variable.

e The intermediate code lastcall has been removed
because last-call optimization makes no sense in
abstract interpretation. Instead the intermediate
code nogoal indicates the end of a clause. When

this instruction is executed the computation con-
tinues with the next alternative clause.

e The intermediate code goal got an additional ar-
gument, a pointer to the end of this goal, that is
the instruction following the call.

e The instruction const has been split into integer
and atom.

Another significant difference between the two ab-
stract machines concerns the data area, 1.e. the stacks.
While the VAMop needs three stacks, in VAM 41 a modi-
fied environment stack is sufficient. Fig. 8 shows a stack
frame for the environment stack from the VAM ;. Note
that there exists no choice point during the abstract in-
terpretation because all alternatives for a call are con-
sidered for the result of the computation. Therefore
there is no backtracking in the abstract interpretation
(that means also that variables need not be trailed and
we do not need the trail in the VAM41).

domain for variable n

domain for variable 1
goalptr
clauseptr
goalframeptr

Figure 8: structure of the stack frame

The stack frame contains the actual informations
The goalptr
points to the intermediate code of a goal (it is used to
find the continuation after a goal has been computed),
the clauseptr points to the head of the next alterna-
tive clause for the called procedure, and goalframeptr
points to the stack frame of the calling procedure.

for all the local variables of a clause.

Fig. 9 is a detailed description of the stack entry for
a local variable.

alias

in-domain

in-ref

out-domain

out-ref

union-domain

union-ref

Figure 9: a local variable on the stack

If two unbound variables are unified, one of them gets
a reference to the other one. We call those variables

aliased. In our abstract interpretation we handle alias-
ing with a separate field on the stack (alias). It possi-
bly contains a pointer to the entry of an other (aliased)
variable entry on the stack. Through this field all aliased
variables are connected to a chain ending with nil. The
other fields of an aliased variable are unimportant, they
inherit their domains from the last variable in the chain.
During computation of the dataflow information for a
variable three different information sets are stored on
the stack:

e The in-set contains all information which has been
gathered for the variable before the computation
has entered the actual goal

e The out-set contains all actual information at any
state of computation, it is the working set, 1ts con-
tent changes at any occurrence of the variable in
the intermediate code.

e The union-set gathers the inferred information for
each alternative of a call; after all alternatives are
computed it contains the type union for all alter-
natives.

When the abstract interpretation computes a new
clause a stack frame has to be allocated on the stack.
All local variables are initialized with the type empty.
During the abstract unification of a goal (the caller) and
a head (the callee) only the out-sets are used as work-
ing sets. They are changed whenever the inferred in-
formation becomes more exact. For a goal information
inferred by alternative clauses is gathered in the union-
sets by computing the domain union (e.g. the union
for integer, atom and nil is atomic), so the union of
the alternative matching clauses produces more general
sets. The in-set 1s used to keep the information between
two goals. After each alternative the out-sets (the work-
ing sets) are initialized with the content of the in-sets.
During the abstract unification the content of the in-set
1s compared with the domain field of the intermediate
code of a local variable and overwrites this field if the
information has become more general since the last com-
putation of this variable. In this way we can also detect
if a fixpoint has been reached for a recursive procedure
call. We can stop abstract interpretation of a clause if
for all variables of a goal the information contained in
their domain fields 1s more general or equal to the in-set
of the variables.

Incremental abstract interpretation start the local
analysis with all the callers of the modified procedure
and interpret the intermediate code of all dependent
procedures. Interpretation is stopped, if the derived do-
mains are equal to the original domains (those derived
by the previous analysis). If the domain has not changed
new code is only generated for the changed part of the
program. If the domain has been changed and the new

unification instructions

int I integer

atom 4 atom

nil empty list

list list (followed by its two arguments)

struct F structure (functor)(followed by its arguments)
void void variable

temp Xn temporary variable (offset)

local Vn,Dn,Rn

local variable (offset, domain, reference chain length)

resolution 1nstructions

goal P,0,Tc

subgoal (procedure pointer, end of goal, number of temporaries)

nogoal

termination of a clause

cut cut

builtin I(,Tc)

built-in predicate (built-in number, opt. number of temporaries)

termination instructions

call

termination of a goal

Figure 7: VAM a7 instruction set

domain is a subtype of the old domain, the previously
generated code fits for the changed program part. The
information derived for the program before the change
is less exact than the possibly derivable information.
Incremental interpretation can stop now. If the new
domain is instead a supertype of the old one the asser-
tion of the new clause made the possible information
less precise and the old code part at this program point
wrong for the new program. Therefore incremental ab-
stract interpretation must further analyse the callers of
the clause.

The retraction of a clause has a similar effect like the
assertion of a new one. The only difference is, that there
might not be an information loss which makes the previ-
ously generated code of the callers of the calling clauses
wrong. Therefore it is sufficient to start the incremental
analysis with the calling clauses of the changed proce-
dure and interpret top-down until the derived informa-
tion is equal to the previously inferred one.

3.3 Compilation to Machine Code

The abstract interpretation pass has annotated a part
of the VAMa1 intermediate representation with type,
mode and dereferencing information. It must be trans-
lated to machine code. The first occurrences of tempo-
rary variables are replaced by their unification partner.
If temporary variables occur in two or more structures
which have to be unified with local variables, the ar-
guments are reordered, so that these temporary vari-
ables can be identified as an offset from the top of the
copy stack. The intermediate representation is traversed
and translated to machine code instructions represent-
ing VAM;p instructions.

The next step is instruction scheduling. Our sched-
uler is based on list scheduling [War90]. This is a heuris-
tic method which yields nearly optimal results. First
the basic block and the dependence graph for each ba-
sic block is determined. The alias information is used
to recognize the independence of load and store instruc-
tions. Then the instructions are reordered to fill the
latency of load instructions and to fill the delay slot
of a branch instruction starting with the instructions
on the longest path to the end of the basic block. Af-
ter scheduling the branch offsets and address constants
are updated. For this purpose the relocation informa-
tion stored in the VAM a1 intermediate representation
is used. So the address changes resulting from schedul-
ing and from incremental compilation can be handled
together.

4 Results

Before developing the VAM a1 we developed a prototype
compiler in Prolog. Due to the single assignment nature
of Prolog the information about the program has to be
stored in the data base using assert. The prototype
compiler is implemented as a deterministic recursive
procedure so that it was possible to store intermediate
representations in Prolog data structures. The problem
1s that this structures are stored on the copy stack, de-
structive assignment must be replaced by copying part
of the structures and that our Prolog interpreter does
not support garbage collection. So this interpreter was
very slow and needed a stack size greater than 32 MB
when compiling a program which was bigger than 50
clauses. So it is evident that the compiler based on the

VAMZP VAMZP VAMAI VAMlpOpt VAMlp

test bytes scaled scaled scaled scaled

det. append 288 1 3.63 9.96 11.6

naive reverse 380 1 3.59 11.3 13.5

quicksort 764 1 2.65 9.95 11.2

8-queens 536 1 2.95 8.25 9.00

serialize 1044 1 3.33 15.7 19.1

differentiate 1064 1 8.37 28.4 62.7

query 2084 1 0.89 3.13 6.50

bucket 996 1 1.96 9.75 16.9

permutation 296 1 2.77 6.21 7.61

Table 1: code size of intermediate representations
VAM 41 is on average more than a factor of two hundred
faster than the prototype compiler (see table 2). VAMsp | VAMp | VAM; popt
test ms scaled scaled
det. append 0.25 26.1 26.1

Prolog | Prolog | VAMag naive reverse 4.17 19.3 20.0
test ms scaled | scaled quicksort 6.00 7.23 10.3
det. append 648 1 1115 8-queens 65.4 12.38 13.5
naive reverse 789 1 639 serialize 3.90 5.76 6.84
quicksort 977 1 264 differentiate 1.14 6.32 8.14
8-queens 815 1 241 query 41.7 7.58 9.70
serialize 1630 1 206 bucket 247 5.02 5.24
differentiate 2122 1 25 permutation 4023 5.08 5.34
query 781 1 194
bucket 923 1 230 Table 3: factor of execution time improvement
permutation 732 1 503

Table 2: global analysis time, factor of improvement

It is difficult to compare the sizes needed for the data
structures. The Prolog interpreter has a built-in predi-
cate which takes a list of assembly language instructions,
translates it to machine code, resolves the branches and
stores the machine code in the code area. The size of
the machine code generated without global analysis is
up to a factor of two bigger than the optimized code. So
the size of the generated machine code is in both cases
identical. The data structures stored using assert are
about two times as big as the data stored by the VAM 1.
The stack use of the VAM 41 is neglectable compared to
that of the prototype compiler.

Comparing the VAMsp interpreter with the VAM 4
it shows that the size of the generated machine code is
about ten times bigger than the internal representation
of the VAM3p (see table 1). The annotated VAM 1 in-
termediate code is about three times bigger than the
simple VAMop intermediate code. For a comparison of
the execution time (see table 3). On average the com-
piled code i1s about seven times faster than the inter-
preted code. The VAMop interpreter i1s about the same
speed as the SICStus byte code emulator.

5 Conclusion

We presented the VAM a1, an abstract machine for ab-
stract interpretation. This abstract machine has a very
compact representation and reduces the analysis time
of programs by a factor of two hundred compared to
meta interpreters written in Prolog. This fast analysis
and the storage of additional information enables the
incremental global compilation of Prolog.

Acknowledgement

We express our thanks to Anton Ertl, Franz Puntigam
and the anonymous referees for their comments on ear-
lier drafts of this paper.

References

[AH87] Samson Abramsky and Chris Hankin, edi-
tors. Abstract Interpretation of Declarative
Languages. Ellis Horwood, 1987.

[Bel73]

[Bru9l]

[CCTT]

[Deb92]

[KB92]

[KN9O]

[Kra87]

[Mei91]

[Mel85]

[RD92]

[Tay89]

[TL92]

[War90]

James R. Bell. Threaded code. CACM, 16(6),
June 1973.

Maurice Bruynooghe. A practical framework
for the abstract interpretation of logic pro-
grams. Journal of Logic programming, 10(1),

1991.

Patrick Cousot and Radhia Cousot. Abstract
interpretation: A unified lattice model for
static analysis of programs by construction or
approximation of fixpoints. In Fourth Symp.
Priciples of Programming Languages. ACM,
1977.

Saumya Debray. A simple code improvement
scheme for Prolog. Journal of Logic Program-

ming, 13(1), 1992,

Andreas Krall and Thomas Berger. Fast Pro-
log with a VAM;p based Prolog compiler. In
PLILP’92, LNCS. Springer 631, 1992.

Andreas Krall and Ulrich Neumerkel. The Vi-
enna abstract machine. In PLILP’90, LNCS.
Springer, 1990.

Andreas Krall. Implementation of a high-speed
Prolog interpreter. In Conf. on Interpreters
and Interpretative Techniques, volume 22(7) of

SIGPLAN. ACM, 1987.

Micha Meier. Compilation of compound terms
in Prolog. In Eighth International Conference
on Logic Programming, 1991.

Christopher S. Mellish. Some global optimiza-
tions for a Prolog compiler. Journal of Logic
Programming, 2(1), 1985.

Peter Van Roy and Alvin M. Despain. High-
performance logic programming with the

Aquarius Prolog compiler. [IEEE Computer,
25(1), 1992.

Andrew Taylor. Removal of dereferencing and
trailing in Prolog compilation. In Sizth In-
ternational Conference on Logic Programming,

Lisbon, 1989.

Jichang Tan and I-Peng Lin. Compiling
dataflow analysis of logic programs. In Con-
ference on Programming Language Design and
Implementation, volume 27(7) of SIGPLAN.
ACM, 1992.

Henry S. Warren. Instruction scheduling for
the IBM RISC System/6000 processor. IBM
Journal of Research and Development, 34(1),
1990.

