Incremental GGlobal Compilation of
Prolog with the Vienna Abstract
Machine

Andreas Krall and Thomas Berger
Institut fur Computersprachen
Technische Universitat Wien
Argentinierstrafie 8

A-1040 Wien, Austria

{andi,tb}@mips.complang.tuwien.ac.at

Abstract

The Vienna Abstract Machine (VAM) is an abstract machine which has
been designed to eliminate some weaknesses of the Warren Abstract Machine
(WAM). Different versions of the VAM are used for different purposes. The
VAMgqp is well suited for interpretation, the VAMip is aimed for native
code generation. The VAMyp has been modified to the VAMy, a concept
suited for abstract interpretation. Analysis with the VAM 1 is so fast that
it is feasible to support both, global analysis and database updates with
assert and retract. We present an incremental compiler based on the
VAMqp and the VAMjr. A preliminary evaluation of our compiler shows
that the generated code competes with the best existing compilers whereas
the compile time is comparable to that of simple bytecode translators.

1 Introduction

The development of the Vienna Abstract Machine (VAM) started in 1985 as
an alternative to the Warren Abstract Machine (WAM) [18]. The aim was to
eliminate the parameter passing bottleneck of the WAM. The development
started with an interpreter [8] which led to the VAMgyp [10]. Partial evalu-
ation of predicate calls led to the VAMyp, which is well suited for machine
code compilation [9]. The first compiler was a prototype implemented in
Prolog without any global analysis. This compiler was enhanced by global
analysis and modified to support incremental compilation. This prototype
implementation was quite slow. So we designed the VAMa1, an abstract
machine for abstract interpretation, and implemented the whole incremen-
tal compiler in the programming language C.

The paper is structured as follows. Section 2 introduces the Vienna
Abstract Machine with its two versions VAMyp and VAM p. Section 3
describes the incremental compiler and gives a detailed introduction to the
VAMag. Section 4 presents some results about the efficiency of the compiler.

2 The Vienna Abstract Machine

2.1 Introduction

The WAM divides the unification process into two steps. During the first
step the arguments of the calling goal are copied into argument registers.
During the second step the values in the argument registers are unified with
the arguments of the head of the called predicate. The VAM eliminates the
register interface by unifying goal and head arguments in a single step.

A complete description of the VAMyp can be found in [10]. In this section
we give only a short introduction which helps to understand the VAM;p and
the compilation method. The VAMyp (VAM with two instruction pointers)
is well suited for an intermediate code interpreter implemented in C or in as-
sembly language using direct threaded code [3]. The goal instruction pointer
refers to the instructions of the calling goal, the head instruction pointer to
the instructions of the head of the called clause. An inference step of the
VAMyp fetches one instruction from the goal and one instruction from the
head, combines them and executes the combined instruction. Because infor-
mation about both the calling goal and the called head, is available at the
same time, more optimizations than in the WAM are possible. The VAM
features cheap backtracking, needs less dereferencing and trailing and has
smaller stack sizes.

The VAM;p (VAM with one instruction pointer) uses only one instruc-
tion pointer and is well suited for native code compilation. It combines
goal and head instructions at compile time and supports additional opti-
mizations like instruction elimination, resolving temporary variables during
compile time, extended clause indexing, fast last-call optimization, and loop
optimization.

2.2 The VAMsp

The VAMsp uses three stacks: Stack frames and choice points are allocated
on the environment stack. Structures and unbound variables are stored on
the copy stack. Bindings of variables are marked on the trail. The interme-
diate code of the clauses is held in the code area. The machine registers are
the goalptr and headptr (pointer to the code of the calling goal and the
called clause, respectively), the goalframeptr and the headframeptr (frame
pointer of the clause containing the calling goal and the called clause, respec-
tively), the top of the environment stack (stackptr), the top of the copy
stack (copyptr), the top of the trail (trailptr), and the pointer to the last
choice point (choicepntptr).

Values are stored together with a tag in one machine word. We distin-
guish integers, atoms, nil, lists, structures, unbound variables and references.

Unbound variables are allocated on the copy stack to avoid dangling refer-
ences and the unsafe variables of the WAM and to simplify the test for
the trailing of bindings. Structure copying is used for the representation of
structures.

Variables are classified into void, temporary and local variables. Void
variables occur only once in a clause and need neither storage nor unification
instructions. Different to the WAM, temporary variables occur only in the
head or in one subgoal, counting a group of builtin predicates as one goal.
The builtin predicates following the head are treated as if they belong to
the head. Temporary variables need storage only during one inference and
can be held in registers. All other variables are local and are allocated on
the environment stack. For free variables an additional cell is allocated on
the copy stack. During an inference the variables of the head are held in
registers. Prior to the call of the first subgoal the registers are stored in the
stack frame. To avoid initialization of variables we distinguish between their
first and further occurrences.

unification instructions

const C integer or atom
nil empty list
list list (followed by its arguments)

struct F | structure (followed by its arguments)

void void variable

fsttmp Xn | first occurrence of temporary variable

nxttmp Xn | subsequent occurrence of temporary variable

fxtvar Vn | first occurrence of local variable

nxtvar Vn | subsequent occurrence of local variable

resolution instructions

goal P subgoal (followed by arguments and call/lastcall)
nogoal termination of a fact
cut cut

builtin I | builtin predicate (followed by its arguments)

termination instructions

call termination of a goal

lastcall | termination of last goal

Figure 1: VAMyp instruction set

The Prolog source code is translated to the VAMgyp abstract machine
code (see fig. 1). This translation is simple due to the direct mapping between
source code and VAMyp code. During runtime a goal and a head instruction
are fetched, the two instructions are combined and the combined instruction
is executed. Goal unification instructions are combined with head unification

instructions and resolution instructions with termination instructions. To
enable fast encoding the instruction combination is computed by adding the
instruction codes and, therefore, the sum of each two instruction codes must
be unique. The C statement

switch(*headptr++ + *goalptr++)

implements this instruction fetch and decoding.

variables local variables

goalptr’ continuation code pointer

goalframeptr’ | continuation frame pointer

Figure 2: stack frame

trailptr’ copy of top of trail

copyptr’ copy of top of copy stack
headptr’ alternative clauses

goalptr’ restart code pointer (VAMgp)
goalframeptr’ | restart frame pointer
choicepntptr’ | previous choice point

Figure 3: choice point

2.3 The VAM;p

The VAM;p has been designed for native code compilation. A complete
description can be found in [9]. The main difference to the VAMgyp is that
instruction combination is done during compile time instead of run time. The
representation of data, the stacks and stack frames (see fig. 2) are identical to
the VAMyp. The two instruction pointers goalptr and headptr are replaced
by one instruction pointer called codeptr. The choice point (see fig. 3) is
also smaller by one element. The pointer to the alternative clauses points
directly to the code of the remaining matching clauses.

Due to instruction combination during compile time it is possible to
eliminate unnecessary instructions, to eliminate all temporary variables and
to use an extended clause indexing scheme, a fast last-call optimization and
loop optimization. In WAM based compilers, abstract interpretation is used
in deriving information about mode, type and reference chain length. Some
of this information is locally available in the VAM;p due to the availability
of the information of the calling goal.

All constants and functors are combined and evaluated to true or false
at compile time. No code is emitted for a true result. Clauses which contain
an argument evaluated to false are removed from the list of alternatives. In
general, no code is emitted for a combination with a void variable. In a
combination of a void variable with the first occurrence of a local variable,
the next occurrence of this variable is treated as the first occurrence.

Temporary variables are eliminated completely. The unification partner
of the first occurrence of a temporary variable is unified directly with the
unification partners of the further occurrences of the temporary variable. If
the unification partners are constants, no code is emitted at all. Flattened
code is generated for structures. The paths for unifying and copying struc-
tures is split and different code is generated for each path. This makes it
possible to reference each argument of a structure as offset from the top of
the copy stack or as offset from the base pointer of the structure. If a tempo-
rary variable is contained in more than one structure, combined unification
or copying instructions are generated.

All necessary information for clause indexing is computed during compile
time. Some alternatives are eliminated because of failing constant combina-
tions. The remaining alternatives are indexed on the argument that contains
the most constants or structures. For compatibility reasons with the VAMyp
a balanced binary tree is used for clause selection.

The VAM;p implements two versions of last-call optimization. The first
variant (we call it post-optimization) is identical to that of the VAMyp. If a
goal is deterministic at run time, the registers containing the head variables
are stored in the callers stack frame. Head variables which reside in the stack
frame due to the lack of registers are copied from the head (callee’s) stack
frame to the goal (caller’s) stack frame.

If the determinism of a clause can be detected during compile time, the
space used by the caller’s stack frame is used immediately by the callee.
Therefore, all unifications between variables with the same offset can be
eliminated. If not all head variables are held in registers, they have to be
read and written in the right order. We call this variant of last-call opti-
mization pre-optimization. This optimization can be seen as a generalization
of recursion replacement by iteration to every last-call as compared to the
optimization of [11].

Loop optimization is done for a determinate recursive call of the last and
only subgoal. The restriction to a single subgoal is due to the use of registers
for value passing and possible aliasing of variables. Unification between two
structures is performed by unifying the arguments directly. The code for
the unification of a variable and a structure is split into unification code and
copy code.

A problem of the VAM;p can be the size of the generated code. Since
for each call of a procedure spezialised code is generated the code size can

become large if there exist many calls of a procedure with many clauses.
But since many of this calls have the same calling pattern, these calls can
share the same generated code. If this is not sufficient, a dummy call must
be introduced between the call and the procedure, leading to an interface

which resembles that of the WAM.

3 The Incremental Compiler

The compilation of a Prolog program is carried out in five passes (see fig. 4).
In the first pass a clause is read in by the built-in predicate read and trans-
formed to term representation. The built-in predicate assert comprises the
remaining passes. The compiler first translates the term representation into
VAM 41 intermediate code. Incremental abstract interpretation is executed
on this intermediate code and the code is annotated with type, mode, alias
and dereferencing information. The VAM1 intermediate code is traversed
again, compiled to VAM p code and expanded on the fly to machine code.
The last step is instruction scheduling of the machine code and patching of
branch offsets and address constants.

schedule

Y

interpret assemble

Y

Y

translate

Y

read

Figure 4: compiler passes

3.1 The VAMAI

Information about types, modes, trailing, reference chain length and alias-
ing of variables of a program can be inferred using abstract interpretation.
Abstract interpretation is a technique for global flow analysis of programs.
It was introduced by [6] for dataflow analysis of imperative languages. This
work was the basis of much of the recent work in the field of declarative and
logic programming [1] [4] [7] [12] [14] [16]. Abstract interpretation executes
programs over an abstract domain. Recursion is handled by computing fix-
points. To guarantee the termination and completeness of the execution a
suitable choice of the abstract domain is necessary. Completeness is achieved
by iterating the interpretation until the computed information reaches a fix-
point. Termination is assured by limiting the size of the domain. Most of

the previously cited systems are meta-interpreters written in Prolog and very
slow.

A practical implementation of abstract interpretation has been done by
Tan and Lin [15]. They modified a WAM emulator implemented in C to
execute the abstract operations on the abstract domain. They used this
abstract emulator to infer mode, type and alias information. They analysed
a set of small benchmark programs in a few milliseconds which is about 150
times faster than the previous systems.

We followed the way of Tan and Lin and designed an abstract machine
for abstract interpretation, the VAMa1. It has been developed on the basis of
the VAMyp and benefits from the fast decoding mechanism of this machine.
The inferred dataflow information is stored directly in the intermediate code
of the VAM 1. We choose the VAM as the basis for an abstract machine
for abstract interpretation because it is much better suited than the WAM:
The parameter passing of the WAM via registers and storing registers in a
backtrack point slows down the interpretation. Furthermore, in the WAM
some instructions are eliminated so that the relation between argument reg-
isters and variables is sometimes difficult to determine. The translation to a
VAMgqp-like intermediate code is much simpler and faster than WAM code
generation. A VAMyp-like interpreter enabled us to model low level features
of the VAM. Furthermore, the VAMsp intermediate code is needed for the
generation of the VAM;p instructions. Efficient interpretation is achieved by
using fixed-sized variable cells and by representing the domains as bit fields.

Our goal is to gather information about mode, type, reference chain
length and aliasing of variables. We distinguish between 0, 1 and greater
1 reference chain lengths. The type of a variable is represented by a set
comprised of following simple types:

free describes an unbound variable and contains a reference to all aliased
variables

list is a non empty list (it contains the types of its arguments)

struct is a term

nil represents the empty list

atom is the set of all atoms
integer is the set of all integer numbers

Possible infinite nesting of compound terms makes the handling of the
types list and struct difficult. To gather useful information about recursive
data structures we introduced a recursive list type which contains also the
information about the termination type.

We use a top-down approach for the analysis of the desired information.
Different calls to the same clause are handled separately to get the exact
types. The gathered information is a description of the living variables.

Recursive calls of a clause are computed until a fixpoint for the gathered
information is reached. If there already exists information about a call and
the new gathered information is more special than the previously derived,
i.e. the union of the old type and the new type is equal to the old type,
a fixpoint has been reached and interpretation of this call to the clause is
stopped.

Abstract interpretation with the VAMur is demonstrated with the fol-
lowing short example. Fig. 5 shows a simple Prolog program part, and a
simplified view of its code duplication for the representation in the VAM a1
intermediate code.

Prolog program:

Al — Bl

B1 = Cl

By :— B%, C?
C — true

Code representation:

Al — B!

B — !

Bl .~ B% C?
B — !

B2 .~ B% C?
Cl:— true
C%:— true

Figure 5: Prolog program part and its representation in VAMag

The procedure B has two clauses, the alternatives By and Bs. The
code for the procedures B and C'is duplicated because both procedures are
called twice in this program. This code duplication leads to more exact
types for the variables, because the dataflow information input might be
different (more or less exact) for different calls of the same procedure in a
program (in the implementation the code duplication is done only for the
heads, the bodys of the clauses are shared). Abstract interpretation starts
at the beginning of the program with the clause Ai. The information of
the variables in the subgoal B! are determined by the inferrable dataflow
information from the two clauses B and Bi. After the information for both
clauses has been computed, abstract interpretation is finished because there
is no further subgoal for the first clause A;.

In the conservative scheme it has to be supposed that both Bi and B}
could be reached during program execution, therefore the union of the de-
rived dataflow information sets for the alternative clauses of procedure B has

to be formed. For Bi only information from C} has to be derived because it
is the only subgoal for B{. For B there exists a recursive call for B, named
B? in the example. Recursion in abstract interpretation is handled by com-
puting a fixpoint, i.e. the recursive call is interpreted as long as the derived
data information changes. After the fixpoint is reached, computation stops
for the recursive call. The dataflow information for the recursion is assigned
to the clauses B? and BZ. After all inferrable information is computed for
a clause, it is stored directly into the intermediate code. So the same inter-
mediate code is used efficiently in the next pass of the compiler, the code
generation.

The representation for the arguments of a Prolog term is the same for
VAMjy (see fig. 6) and VAMyp with the following exceptions:

e Local variables have four additional information fields in their inter-
mediate code, the actual domain of the variable, the reference chain
length and two fields for alias information

e The argument of a temporary variable contains an offset which refer-
ences this variable in a global table. The global table contains entries
for the domain and reference length information or a pointer to a vari-

able.

e The intermediate code lastcall has been removed because last-call
optimization makes no sense in abstract interpretation. Instead the
intermediate code nogoal indicates the end of a clause. When this
instruction is executed the computation continues with the next alter-
native clause (artificial fail).

e The intermediate code goal got an additional argument, a pointer to
the end of this goal, that is the instruction following the call. This
eliminates the distinction between the continuation and the restart
code pointer (see fig. 3).

e The instruction const has been split into integer and atom.

Another significant difference between the two abstract machines con-
cerns the data areas, i.e. the stacks. While the VAMyp needs three stacks,
in VAMa1 a modified environment stack and a trail are sufficient. Fig. 7
shows a stack frame for the environment stack from the VAM 7. Note that
every stackframe is a choicepoint because all alternatives for a call are con-
sidered for the result of the computation. Similar to CLP systems the trail
is implemented as a value trail. It contains both the address of the variable
and its content.

The stack frame contains the actual information for all the local variables
of a clause. The goalptr points to the intermediate code of a goal (it is used

unification instructions

int I integer

atom A atom

nil empty list

list list (followed by its two arguments)

struct F structure (functor)(followed by its arguments)
void void variable

fsttmp Xn first occurrence of temporary var (offset)
nxttmp Xn further occurrence of temporary var (offset)

fstvar Vn,D,R,Ai,Ac | first occurrence of local var (offset, domain,
ref. chain length, is aliased, can be aliased)

nxtvar Vn,D,R,Ai,Ac | further occurrence of local var (offset, domain,
ref. chain length, is aliased, can be aliased)

resolution instructions

goal P,0 subgoal (procedure pointer, end of goal)
nogoal termination of a clause

cut cut

builtin I built-in predicate (built-in number)

termination instructions

call ‘ termination of a goal

Figure 6: VAM 1 instruction set

to find the continuation after a goal has been computed), the clauseptr
points to the head of the next alternative clause for the called procedure,
and goalframeptr points to the stack frame of the calling procedure.

Fig. 8 is a detailed description of the stack entry for a local variable.
The fields reference, domain, ref-len, alias-prev and alias-next are used to
store the information derived for a variable analysing a single alternative of
the current goal. The union fields get the union of all previously analysed
alternatives.

The reference field connects the caller’s variables with the callee’s vari-
ables. Aliased variables are stored in a sorted list. The alias-prev and the
alias-nezt field are used to connect the variables of this list. The domain
field contains all actual type information at any state of computation. Its
contents may change at each occurrence of the variable in the intermediate
code. The ref-len field contains the length of the reference chain. After
analysing an alternative of a goal the union fields contain the union of the
informations of all alternatives analysed so far.

The information in the variable fields is also used for fixpoint computa-
tion. Abstract interpretation of a clause is stopped if for all variables of a

10

domain for variable n

domain for variable 1

goalptr

clauseptr

goalframeptr

trailptr

Figure 7: structure of the stack frame

reference
domain ref-len
alias-prev alias-next

union-domain

union-ref-len

union-prev

union-next

Figure 8: a local variable on the stack

goal the information contained in the intermediate code fields is more general
or equal to the fields of the variables.

Incremental abstract interpretation starts local analysis with all callers
of the modified procedures and interprets the intermediate code of all de-
pendent procedures. Interpretation is stopped when the derived domains
are equal to the original domains (those derived by the previous analysis).
If the domain has not changed, new code is only generated for the changed
part of the program. If the domain has been changed and the new domain
is a subtype of the old domain, the previously generated code fits for the
changed program part. The information derived for the program before the
change is less exact than the possibly derivable information. Incremental
interpretation can stop now. If the new domain is instead a supertype of
the old one, the assertion of the new clause made the possible information
less precise and the old code part at this program point wrong for the new
program. Therefore, incremental abstract interpretation must continue to
analyse the callers of the clause.

The retraction of a clause has a similar effect as the assertion of a new
one. The only difference is that there might not be an information loss which
makes the previously generated code of the callers of the calling clauses
wrong. Therefore, it is sufficient to start the incremental analysis with the
calling clauses of the changed procedure and interpret top-down until the
derived information is equal to the previously inferred one.

11

3.2 Compilation to Machine Code

The abstract interpretation pass has annotated a part of the VAMay in-
termediate representation with type, mode and dereferencing information.
This parts which have changed must be translated to machine code. The
intermediate representation is traversed and translated to machine code in-
structions representing VAM;p instructions without generating VAM;p in-
termediate code. The first occurrences of temporary variables are replaced
by their unification partner. If temporary variables occur in two or more
structures which have to be unified with local variables, the arguments are
reordered so that these temporary variables can be identified by an offset
from the top of the copy stack.

The next step is instruction scheduling. Our scheduler is based on list
scheduling [19]. This is a heuristic method which yields nearly optimal
results. First, the basic block and the dependence graph for each basic block
is determined. The alias information is used in recognizing the independence
of load and store instructions. Then, the instructions are reordered to fill
the latency of load instructions and the delay slot of a branch instruction
starting with the instructions on the longest path. After scheduling, the
branch offsets and address constants are updated. For this purpose the
relocation information stored in the VAM 1 intermediate representation is
used. So the address changes resulting from scheduling and from incremental
compilation can be handled together.

4 Results

To evaluate the performance of our incremental compiler we executed the
well known benchmarks described in [2]. We executed these benchmarks
on a DECStation 5000/200 (25 MHz R3000) with 40 MB Memory. We
compared our compiler with the Aquarius compiler of Peter Van Roy [14]
and the Parma system of Andrew Taylor [17]. The Parma system was not
available for us, so we used the benchmark data reported in [13]. As you can
see in table 1 our compiler produces faster code than the Aquarius system.

We compared the compile time of the VAMp compiler to that of the
VAMgp and SICStus intermediate code translators [5]. It shows that it is
about ten times slower than the VAMjyp translator but about two times
faster than the SICStus compiler (see table 2). The Aquarius compiler is by
a factor of 2000 slower than the VAMsp translator. A direct comparison is
not possible since it is a three pass compiler which communicates with the
assembler and linker via files.

The comparison of the VAMop interpreter with the VAM a1 shows that
the size of the generated machine code is about a factor of ten larger than the
internal representation of the VAMyp (see table 3). The annotated VAMap

12

VAMqp | VAMsp | VAMp | Aquarius | Parma
test ms scaled scaled scaled scaled
det. append 0.25 1 26.1 19.3 -
naive reverse 4.17 1 20.0 14.5 25.6
quicksort 6.00 1 18.1 14.9 28.0
8-queens 65.4 1 13.5 15.4 -
serialize 3.90 1 6.84 4.26 16.4
differentiate 1.14 1 8.14 7.13 14.6
query 41.7 1 9.70 8.25 13.2
bucket 247 1 5.24 3.71 -
permutation 2660 1 6.48 6.96 -

Table 1: execution time, factor of improvement compared to the VAMyp

VAMQP VAMQP VAMlp SICStUS
test ms scaled scaled scaled
det. append 5.78 1 11.43 21.5
naive reverse 7.31 1 10.5 19.3
quicksort 9.30 1 9.9 23.1
8-queens 9.18 1 11.6 19.7
serialize 11.36 1 11.22 19.2
differentiate 13.71 1 11.41 30.3
query 21.05 1 7.5 13.4
bucket 15.59 1 7.25 12.7
permutation 4.88 1 8.88 18.1

Table 2: compile time, compared to the VAMyp

intermediate code is about three times larger than the simple VAMyp inter-
mediate code.

5 Conclusion

We presented an incremental compiler based on the Vienna Abstract Ma-
chine. This compiler uses the VAM 1 as an abstract machine for abstract
interpretation. This abstract machine has a very compact representation
and short analysis times. The fast analysis and the storage of additional
information enables the incremental global compilation of Prolog.

13

VAMyp | VAMyp | VAMur | VAMyp
test bytes scaled scaled scaled
det. append 288 1 3.63 9.96
naive reverse 380 1 3.59 11.3
quicksort 764 1 2.65 9.95
8-queens 536 1 2.95 8.25
serialize 1044 1 3.33 15.7
differentiate 1064 1 8.37 28.4
query 2084 1 0.89 3.13
bucket 996 1 1.96 9.75
permutation 296 1 2.77 6.21

Table 3: code size of intermediate representations

Acknowledgement

We express our thanks to Anton Ertl, Franz Puntigam and the anonymous
referees for their comments on earlier drafts of this paper.

References

[1]

Samson Abramsky and Chris Hankin, editors. Abstract Interpretation
of Declarative Languages. Ellis Horwood, 1987.

Joachim Beer. Concepts, Design, and Performance Analysis of a Par-
allel Prolog Machine. Springer, 1989.

James R. Bell. Threaded code. CACM, 16(6), June 1973.

Maurice Bruynooghe. A practical framework for the abstract interpre-
tation of logic programs. Journal of Logic programming, 10(1), 1991.

Mats Carlsson and J. Widen. SICStus Prolog user’s manual. Research
Report R88007C, SICS, 1990.

Patrick Cousot and Radhia Cousot. Abstract interpretation: A uni-
fied lattice model for static analysis of programs by construction or
approximation of fixpoints. In Fourth Symp. Priciples of Programming
Languages. ACM, 1977.

Saumya Debray. A simple code improvement scheme for Prolog. Journal
of Logic Programming, 13(1), 1992.

14

[8]

Andreas Krall. Implementation of a high-speed Prolog interpreter. In
Conf. on Interpreters and Interpretative Techniques, volume 22(7) of

SIGPLAN. ACM, 1987.

Andreas Krall and Thomas Berger. Fast Prolog with a VAM;p based
Prolog compiler. In PLILP’92, LNCS. Springer 631, 1992.

Andreas Krall and Ulrich Neumerkel. The Vienna abstract machine. In
PLILP’90, LNCS. Springer, 1990.

Micha Meier. Compilation of compound terms in Prolog. In Fighth
International Conference on Logic Programming, 1991.

Christopher S. Mellish. Some global optimizations for a Prolog compiler.
Journal of Logic Programming, 2(1), 1985.

Peter Van Roy. 1983-1993: The wonder years of sequential Prolog
implementation. Journal of Logic programming, 19/20, 1994.

Peter Van Roy and Alvin M. Despain. High-performance logic pro-
gramming with the Aquarius Prolog compiler. IEEE Computer, 25(1),
1992.

Jichang Tan and I-Peng Lin. Compiling dataflow analysis of logic pro-
grams. In Conference on Programming Language Design and Imple-
mentation, volume 27(7) of SIGPLAN. ACM, 1992.

Andrew Taylor. Removal of dereferencing and trailing in Prolog com-
pilation. In Sizth International Conference on Logic Programming, Lis-
bon, 1989.

Andrew Taylor. LIPS on a MIPS. In Seventh International Conference
on Logic Programming, Jerusalem, 1990.

David H.D. Warren. An abstract Prolog instruction set. Technical Note
309, SRI International, 1983.

Henry S. Warren. Instruction scheduling for the IBM RISC Sys-
tem /6000 processor. IBM Journal of Research and Development, 34(1),
1990.

15

