
Incremental Global Compilation ofProlog with the Vienna AbstractMachineAndreas Krall and Thomas BergerInstitut f�ur ComputersprachenTechnische Universit�at WienArgentinierstra�e 8A-1040 Wien, Austriafandi,tbg@mips.complang.tuwien.ac.atAbstractThe Vienna Abstract Machine (VAM) is an abstract machine which hasbeen designed to eliminate some weaknesses of the Warren Abstract Machine(WAM). Di�erent versions of the VAM are used for di�erent purposes. TheVAM2P is well suited for interpretation, the VAM1P is aimed for nativecode generation. The VAM2P has been modi�ed to the VAMAI, a conceptsuited for abstract interpretation. Analysis with the VAMAI is so fast thatit is feasible to support both, global analysis and database updates withassert and retract. We present an incremental compiler based on theVAM1P and the VAMAI. A preliminary evaluation of our compiler showsthat the generated code competes with the best existing compilers whereasthe compile time is comparable to that of simple bytecode translators.1 IntroductionThe development of the Vienna Abstract Machine (VAM) started in 1985 asan alternative to the Warren Abstract Machine (WAM) [18]. The aim was toeliminate the parameter passing bottleneck of the WAM. The developmentstarted with an interpreter [8] which led to the VAM2P [10]. Partial evalu-ation of predicate calls led to the VAM1P, which is well suited for machinecode compilation [9]. The �rst compiler was a prototype implemented inProlog without any global analysis. This compiler was enhanced by globalanalysis and modi�ed to support incremental compilation. This prototypeimplementation was quite slow. So we designed the VAMAI, an abstractmachine for abstract interpretation, and implemented the whole incremen-tal compiler in the programming language C.The paper is structured as follows. Section 2 introduces the ViennaAbstract Machine with its two versions VAM2P and VAM1P. Section 3describes the incremental compiler and gives a detailed introduction to theVAMAI. Section 4 presents some results about the e�ciency of the compiler.1



2 The Vienna Abstract Machine2.1 IntroductionThe WAM divides the uni�cation process into two steps. During the �rststep the arguments of the calling goal are copied into argument registers.During the second step the values in the argument registers are uni�ed withthe arguments of the head of the called predicate. The VAM eliminates theregister interface by unifying goal and head arguments in a single step.A complete description of the VAM2P can be found in [10]. In this sectionwe give only a short introduction which helps to understand the VAM1P andthe compilation method. The VAM2P (VAM with two instruction pointers)is well suited for an intermediate code interpreter implemented in C or in as-sembly language using direct threaded code [3]. The goal instruction pointerrefers to the instructions of the calling goal, the head instruction pointer tothe instructions of the head of the called clause. An inference step of theVAM2P fetches one instruction from the goal and one instruction from thehead, combines them and executes the combined instruction. Because infor-mation about both the calling goal and the called head, is available at thesame time, more optimizations than in the WAM are possible. The VAMfeatures cheap backtracking, needs less dereferencing and trailing and hassmaller stack sizes.The VAM1P (VAM with one instruction pointer) uses only one instruc-tion pointer and is well suited for native code compilation. It combinesgoal and head instructions at compile time and supports additional opti-mizations like instruction elimination, resolving temporary variables duringcompile time, extended clause indexing, fast last-call optimization, and loopoptimization.2.2 The VAM2PThe VAM2P uses three stacks: Stack frames and choice points are allocatedon the environment stack. Structures and unbound variables are stored onthe copy stack. Bindings of variables are marked on the trail. The interme-diate code of the clauses is held in the code area. The machine registers arethe goalptr and headptr (pointer to the code of the calling goal and thecalled clause, respectively), the goalframeptr and the headframeptr (framepointer of the clause containing the calling goal and the called clause, respec-tively), the top of the environment stack (stackptr), the top of the copystack (copyptr), the top of the trail (trailptr), and the pointer to the lastchoice point (choicepntptr).Values are stored together with a tag in one machine word. We distin-guish integers, atoms, nil, lists, structures, unbound variables and references.2



Unbound variables are allocated on the copy stack to avoid dangling refer-ences and the unsafe variables of the WAM and to simplify the test forthe trailing of bindings. Structure copying is used for the representation ofstructures.Variables are classi�ed into void, temporary and local variables. Voidvariables occur only once in a clause and need neither storage nor uni�cationinstructions. Di�erent to the WAM, temporary variables occur only in thehead or in one subgoal, counting a group of builtin predicates as one goal.The builtin predicates following the head are treated as if they belong tothe head. Temporary variables need storage only during one inference andcan be held in registers. All other variables are local and are allocated onthe environment stack. For free variables an additional cell is allocated onthe copy stack. During an inference the variables of the head are held inregisters. Prior to the call of the �rst subgoal the registers are stored in thestack frame. To avoid initialization of variables we distinguish between their�rst and further occurrences.uni�cation instructionsconst C integer or atomnil empty listlist list (followed by its arguments)struct F structure (followed by its arguments)void void variablefsttmp Xn �rst occurrence of temporary variablenxttmp Xn subsequent occurrence of temporary variablefxtvar Vn �rst occurrence of local variablenxtvar Vn subsequent occurrence of local variableresolution instructionsgoal P subgoal (followed by arguments and call/lastcall)nogoal termination of a factcut cutbuiltin I builtin predicate (followed by its arguments)termination instructionscall termination of a goallastcall termination of last goalFigure 1: VAM2P instruction setThe Prolog source code is translated to the VAM2P abstract machinecode (see �g. 1). This translation is simple due to the direct mapping betweensource code and VAM2P code. During runtime a goal and a head instructionare fetched, the two instructions are combined and the combined instructionis executed. Goal uni�cation instructions are combined with head uni�cation3



instructions and resolution instructions with termination instructions. Toenable fast encoding the instruction combination is computed by adding theinstruction codes and, therefore, the sum of each two instruction codes mustbe unique. The C statementswitch(*headptr++ + *goalptr++)implements this instruction fetch and decoding.variables local variablesgoalptr' continuation code pointergoalframeptr' continuation frame pointerFigure 2: stack frametrailptr' copy of top of trailcopyptr' copy of top of copy stackheadptr' alternative clausesgoalptr' restart code pointer (VAM2P)goalframeptr' restart frame pointerchoicepntptr' previous choice pointFigure 3: choice point2.3 The VAM1PThe VAM1P has been designed for native code compilation. A completedescription can be found in [9]. The main di�erence to the VAM2P is thatinstruction combination is done during compile time instead of run time. Therepresentation of data, the stacks and stack frames (see �g. 2) are identical tothe VAM2P. The two instruction pointers goalptr and headptr are replacedby one instruction pointer called codeptr. The choice point (see �g. 3) isalso smaller by one element. The pointer to the alternative clauses pointsdirectly to the code of the remaining matching clauses.Due to instruction combination during compile time it is possible toeliminate unnecessary instructions, to eliminate all temporary variables andto use an extended clause indexing scheme, a fast last-call optimization andloop optimization. In WAM based compilers, abstract interpretation is usedin deriving information about mode, type and reference chain length. Someof this information is locally available in the VAM1P due to the availabilityof the information of the calling goal.4



All constants and functors are combined and evaluated to true or falseat compile time. No code is emitted for a true result. Clauses which containan argument evaluated to false are removed from the list of alternatives. Ingeneral, no code is emitted for a combination with a void variable. In acombination of a void variable with the �rst occurrence of a local variable,the next occurrence of this variable is treated as the �rst occurrence.Temporary variables are eliminated completely. The uni�cation partnerof the �rst occurrence of a temporary variable is uni�ed directly with theuni�cation partners of the further occurrences of the temporary variable. Ifthe uni�cation partners are constants, no code is emitted at all. Flattenedcode is generated for structures. The paths for unifying and copying struc-tures is split and di�erent code is generated for each path. This makes itpossible to reference each argument of a structure as o�set from the top ofthe copy stack or as o�set from the base pointer of the structure. If a tempo-rary variable is contained in more than one structure, combined uni�cationor copying instructions are generated.All necessary information for clause indexing is computed during compiletime. Some alternatives are eliminated because of failing constant combina-tions. The remaining alternatives are indexed on the argument that containsthe most constants or structures. For compatibility reasons with the VAM2Pa balanced binary tree is used for clause selection.The VAM1P implements two versions of last-call optimization. The �rstvariant (we call it post-optimization) is identical to that of the VAM2P. If agoal is deterministic at run time, the registers containing the head variablesare stored in the callers stack frame. Head variables which reside in the stackframe due to the lack of registers are copied from the head (callee's) stackframe to the goal (caller's) stack frame.If the determinism of a clause can be detected during compile time, thespace used by the caller's stack frame is used immediately by the callee.Therefore, all uni�cations between variables with the same o�set can beeliminated. If not all head variables are held in registers, they have to beread and written in the right order. We call this variant of last-call opti-mization pre-optimization. This optimization can be seen as a generalizationof recursion replacement by iteration to every last-call as compared to theoptimization of [11].Loop optimization is done for a determinate recursive call of the last andonly subgoal. The restriction to a single subgoal is due to the use of registersfor value passing and possible aliasing of variables. Uni�cation between twostructures is performed by unifying the arguments directly. The code forthe uni�cation of a variable and a structure is split into uni�cation code andcopy code.A problem of the VAM1P can be the size of the generated code. Sincefor each call of a procedure spezialised code is generated the code size can5



become large if there exist many calls of a procedure with many clauses.But since many of this calls have the same calling pattern, these calls canshare the same generated code. If this is not su�cient, a dummy call mustbe introduced between the call and the procedure, leading to an interfacewhich resembles that of the WAM.3 The Incremental CompilerThe compilation of a Prolog program is carried out in �ve passes (see �g. 4).In the �rst pass a clause is read in by the built-in predicate read and trans-formed to term representation. The built-in predicate assert comprises theremaining passes. The compiler �rst translates the term representation intoVAMAI intermediate code. Incremental abstract interpretation is executedon this intermediate code and the code is annotated with type, mode, aliasand dereferencing information. The VAMAI intermediate code is traversedagain, compiled to VAM1P code and expanded on the y to machine code.The last step is instruction scheduling of the machine code and patching ofbranch o�sets and address constants.�� ��source6HHHHHHj�� ��terms6HHHHHHj�� ��VAMAI6?������* @@@R�� ��machine code���	����read -translate - interpret -assemble - scheduleFigure 4: compiler passes3.1 The VAMAIInformation about types, modes, trailing, reference chain length and alias-ing of variables of a program can be inferred using abstract interpretation.Abstract interpretation is a technique for global ow analysis of programs.It was introduced by [6] for dataow analysis of imperative languages. Thiswork was the basis of much of the recent work in the �eld of declarative andlogic programming [1] [4] [7] [12] [14] [16]. Abstract interpretation executesprograms over an abstract domain. Recursion is handled by computing �x-points. To guarantee the termination and completeness of the execution asuitable choice of the abstract domain is necessary. Completeness is achievedby iterating the interpretation until the computed information reaches a �x-point. Termination is assured by limiting the size of the domain. Most of6



the previously cited systems are meta-interpreters written in Prolog and veryslow.A practical implementation of abstract interpretation has been done byTan and Lin [15]. They modi�ed a WAM emulator implemented in C toexecute the abstract operations on the abstract domain. They used thisabstract emulator to infer mode, type and alias information. They analyseda set of small benchmark programs in a few milliseconds which is about 150times faster than the previous systems.We followed the way of Tan and Lin and designed an abstract machinefor abstract interpretation, the VAMAI. It has been developed on the basis ofthe VAM2P and bene�ts from the fast decoding mechanism of this machine.The inferred dataow information is stored directly in the intermediate codeof the VAMAI. We choose the VAM as the basis for an abstract machinefor abstract interpretation because it is much better suited than the WAM:The parameter passing of the WAM via registers and storing registers in abacktrack point slows down the interpretation. Furthermore, in the WAMsome instructions are eliminated so that the relation between argument reg-isters and variables is sometimes di�cult to determine. The translation to aVAM2P-like intermediate code is much simpler and faster than WAM codegeneration. A VAM2P-like interpreter enabled us to model low level featuresof the VAM. Furthermore, the VAM2P intermediate code is needed for thegeneration of the VAM1P instructions. E�cient interpretation is achieved byusing �xed-sized variable cells and by representing the domains as bit �elds.Our goal is to gather information about mode, type, reference chainlength and aliasing of variables. We distinguish between 0, 1 and greater1 reference chain lengths. The type of a variable is represented by a setcomprised of following simple types:free describes an unbound variable and contains a reference to all aliasedvariableslist is a non empty list (it contains the types of its arguments)struct is a termnil represents the empty listatom is the set of all atomsinteger is the set of all integer numbersPossible in�nite nesting of compound terms makes the handling of thetypes list and struct di�cult. To gather useful information about recursivedata structures we introduced a recursive list type which contains also theinformation about the termination type.We use a top-down approach for the analysis of the desired information.Di�erent calls to the same clause are handled separately to get the exacttypes. The gathered information is a description of the living variables.7



Recursive calls of a clause are computed until a �xpoint for the gatheredinformation is reached. If there already exists information about a call andthe new gathered information is more special than the previously derived,i.e. the union of the old type and the new type is equal to the old type,a �xpoint has been reached and interpretation of this call to the clause isstopped.Abstract interpretation with the VAMAI is demonstrated with the fol-lowing short example. Fig. 5 shows a simple Prolog program part, and asimpli�ed view of its code duplication for the representation in the VAMAIintermediate code.Prolog program:A1 :� B1B1 :� C1B2 :� B2; C2C1 :� trueCode representation:A11 :� B1B11 :� C1B12 :� B2; C2B21 :� C1B22 :� B2; C2C11 :� trueC21 :� trueFigure 5: Prolog program part and its representation in VAMAIThe procedure B has two clauses, the alternatives B1 and B2. Thecode for the procedures B and C is duplicated because both procedures arecalled twice in this program. This code duplication leads to more exacttypes for the variables, because the dataow information input might bedi�erent (more or less exact) for di�erent calls of the same procedure in aprogram (in the implementation the code duplication is done only for theheads, the bodys of the clauses are shared). Abstract interpretation startsat the beginning of the program with the clause A11. The information ofthe variables in the subgoal B1 are determined by the inferrable dataowinformation from the two clauses B11 and B12 . After the information for bothclauses has been computed, abstract interpretation is �nished because thereis no further subgoal for the �rst clause A1.In the conservative scheme it has to be supposed that both B11 and B12could be reached during program execution, therefore the union of the de-rived dataow information sets for the alternative clauses of procedure B has8



to be formed. For B11 only information from C11 has to be derived because itis the only subgoal for B11 . For B12 there exists a recursive call for B, namedB2 in the example. Recursion in abstract interpretation is handled by com-puting a �xpoint, i.e. the recursive call is interpreted as long as the deriveddata information changes. After the �xpoint is reached, computation stopsfor the recursive call. The dataow information for the recursion is assignedto the clauses B21 and B22 . After all inferrable information is computed fora clause, it is stored directly into the intermediate code. So the same inter-mediate code is used e�ciently in the next pass of the compiler, the codegeneration.The representation for the arguments of a Prolog term is the same forVAMAI (see �g. 6) and VAM2P with the following exceptions:� Local variables have four additional information �elds in their inter-mediate code, the actual domain of the variable, the reference chainlength and two �elds for alias information� The argument of a temporary variable contains an o�set which refer-ences this variable in a global table. The global table contains entriesfor the domain and reference length information or a pointer to a vari-able.� The intermediate code lastcall has been removed because last-calloptimization makes no sense in abstract interpretation. Instead theintermediate code nogoal indicates the end of a clause. When thisinstruction is executed the computation continues with the next alter-native clause (arti�cial fail).� The intermediate code goal got an additional argument, a pointer tothe end of this goal, that is the instruction following the call. Thiseliminates the distinction between the continuation and the restartcode pointer (see �g. 3).� The instruction const has been split into integer and atom.Another signi�cant di�erence between the two abstract machines con-cerns the data areas, i.e. the stacks. While the VAM2P needs three stacks,in VAMAI a modi�ed environment stack and a trail are su�cient. Fig. 7shows a stack frame for the environment stack from the VAMAI. Note thatevery stackframe is a choicepoint because all alternatives for a call are con-sidered for the result of the computation. Similar to CLP systems the trailis implemented as a value trail. It contains both the address of the variableand its content.The stack frame contains the actual information for all the local variablesof a clause. The goalptr points to the intermediate code of a goal (it is used9



uni�cation instructionsint I integeratom A atomnil empty listlist list (followed by its two arguments)struct F structure (functor)(followed by its arguments)void void variablefsttmp Xn �rst occurrence of temporary var (o�set)nxttmp Xn further occurrence of temporary var (o�set)fstvar Vn,D,R,Ai,Ac �rst occurrence of local var (o�set, domain,ref. chain length, is aliased, can be aliased)nxtvar Vn,D,R,Ai,Ac further occurrence of local var (o�set, domain,ref. chain length, is aliased, can be aliased)resolution instructionsgoal P,O subgoal (procedure pointer, end of goal)nogoal termination of a clausecut cutbuiltin I built-in predicate (built-in number)termination instructionscall termination of a goalFigure 6: VAMAI instruction setto �nd the continuation after a goal has been computed), the clauseptrpoints to the head of the next alternative clause for the called procedure,and goalframeptr points to the stack frame of the calling procedure.Fig. 8 is a detailed description of the stack entry for a local variable.The �elds reference, domain, ref-len, alias-prev and alias-next are used tostore the information derived for a variable analysing a single alternative ofthe current goal. The union �elds get the union of all previously analysedalternatives.The reference �eld connects the caller's variables with the callee's vari-ables. Aliased variables are stored in a sorted list. The alias-prev and thealias-next �eld are used to connect the variables of this list. The domain�eld contains all actual type information at any state of computation. Itscontents may change at each occurrence of the variable in the intermediatecode. The ref-len �eld contains the length of the reference chain. Afteranalysing an alternative of a goal the union �elds contain the union of theinformations of all alternatives analysed so far.The information in the variable �elds is also used for �xpoint computa-tion. Abstract interpretation of a clause is stopped if for all variables of a10



domain for variable n...domain for variable 1goalptrclauseptrgoalframeptrtrailptrFigure 7: structure of the stack framereferencedomain ref-lenalias-prev alias-nextunion-domain union-ref-lenunion-prev union-nextFigure 8: a local variable on the stackgoal the information contained in the intermediate code �elds is more generalor equal to the �elds of the variables.Incremental abstract interpretation starts local analysis with all callersof the modi�ed procedures and interprets the intermediate code of all de-pendent procedures. Interpretation is stopped when the derived domainsare equal to the original domains (those derived by the previous analysis).If the domain has not changed, new code is only generated for the changedpart of the program. If the domain has been changed and the new domainis a subtype of the old domain, the previously generated code �ts for thechanged program part. The information derived for the program before thechange is less exact than the possibly derivable information. Incrementalinterpretation can stop now. If the new domain is instead a supertype ofthe old one, the assertion of the new clause made the possible informationless precise and the old code part at this program point wrong for the newprogram. Therefore, incremental abstract interpretation must continue toanalyse the callers of the clause.The retraction of a clause has a similar e�ect as the assertion of a newone. The only di�erence is that there might not be an information loss whichmakes the previously generated code of the callers of the calling clauseswrong. Therefore, it is su�cient to start the incremental analysis with thecalling clauses of the changed procedure and interpret top-down until thederived information is equal to the previously inferred one.11



3.2 Compilation to Machine CodeThe abstract interpretation pass has annotated a part of the VAMAI in-termediate representation with type, mode and dereferencing information.This parts which have changed must be translated to machine code. Theintermediate representation is traversed and translated to machine code in-structions representing VAM1P instructions without generating VAM1P in-termediate code. The �rst occurrences of temporary variables are replacedby their uni�cation partner. If temporary variables occur in two or morestructures which have to be uni�ed with local variables, the arguments arereordered so that these temporary variables can be identi�ed by an o�setfrom the top of the copy stack.The next step is instruction scheduling. Our scheduler is based on listscheduling [19]. This is a heuristic method which yields nearly optimalresults. First, the basic block and the dependence graph for each basic blockis determined. The alias information is used in recognizing the independenceof load and store instructions. Then, the instructions are reordered to �llthe latency of load instructions and the delay slot of a branch instructionstarting with the instructions on the longest path. After scheduling, thebranch o�sets and address constants are updated. For this purpose therelocation information stored in the VAMAI intermediate representation isused. So the address changes resulting from scheduling and from incrementalcompilation can be handled together.4 ResultsTo evaluate the performance of our incremental compiler we executed thewell known benchmarks described in [2]. We executed these benchmarkson a DECStation 5000/200 (25 MHz R3000) with 40 MB Memory. Wecompared our compiler with the Aquarius compiler of Peter Van Roy [14]and the Parma system of Andrew Taylor [17]. The Parma system was notavailable for us, so we used the benchmark data reported in [13]. As you cansee in table 1 our compiler produces faster code than the Aquarius system.We compared the compile time of the VAM1P compiler to that of theVAM2P and SICStus intermediate code translators [5]. It shows that it isabout ten times slower than the VAM2P translator but about two timesfaster than the SICStus compiler (see table 2). The Aquarius compiler is bya factor of 2000 slower than the VAM2P translator. A direct comparison isnot possible since it is a three pass compiler which communicates with theassembler and linker via �les.The comparison of the VAM2P interpreter with the VAMAI shows thatthe size of the generated machine code is about a factor of ten larger than theinternal representation of the VAM2P (see table 3). The annotated VAMAI12



VAM2P VAM2P VAM1P Aquarius Parmatest ms scaled scaled scaled scaleddet. append 0.25 1 26.1 19.3 -naive reverse 4.17 1 20.0 14.5 25.6quicksort 6.00 1 18.1 14.9 28.08-queens 65.4 1 13.5 15.4 -serialize 3.90 1 6.84 4.26 16.4di�erentiate 1.14 1 8.14 7.13 14.6query 41.7 1 9.70 8.25 13.2bucket 247 1 5.24 3.71 -permutation 2660 1 6.48 6.96 -Table 1: execution time, factor of improvement compared to the VAM2PVAM2P VAM2P VAM1P SICStustest ms scaled scaled scaleddet. append 5.78 1 11.43 21.5naive reverse 7.31 1 10.5 19.3quicksort 9.30 1 9.9 23.18-queens 9.18 1 11.6 19.7serialize 11.36 1 11.22 19.2di�erentiate 13.71 1 11.41 30.3query 21.05 1 7.5 13.4bucket 15.59 1 7.25 12.7permutation 4.88 1 8.88 18.1Table 2: compile time, compared to the VAM2Pintermediate code is about three times larger than the simple VAM2P inter-mediate code.5 ConclusionWe presented an incremental compiler based on the Vienna Abstract Ma-chine. This compiler uses the VAMAI as an abstract machine for abstractinterpretation. This abstract machine has a very compact representationand short analysis times. The fast analysis and the storage of additionalinformation enables the incremental global compilation of Prolog.13



VAM2P VAM2P VAMAI VAM1Ptest bytes scaled scaled scaleddet. append 288 1 3.63 9.96naive reverse 380 1 3.59 11.3quicksort 764 1 2.65 9.958-queens 536 1 2.95 8.25serialize 1044 1 3.33 15.7di�erentiate 1064 1 8.37 28.4query 2084 1 0.89 3.13bucket 996 1 1.96 9.75permutation 296 1 2.77 6.21Table 3: code size of intermediate representationsAcknowledgementWe express our thanks to Anton Ertl, Franz Puntigam and the anonymousreferees for their comments on earlier drafts of this paper.References[1] Samson Abramsky and Chris Hankin, editors. Abstract Interpretationof Declarative Languages. Ellis Horwood, 1987.[2] Joachim Beer. Concepts, Design, and Performance Analysis of a Par-allel Prolog Machine. Springer, 1989.[3] James R. Bell. Threaded code. CACM, 16(6), June 1973.[4] Maurice Bruynooghe. A practical framework for the abstract interpre-tation of logic programs. Journal of Logic programming, 10(1), 1991.[5] Mats Carlsson and J. Widen. SICStus Prolog user's manual. ResearchReport R88007C, SICS, 1990.[6] Patrick Cousot and Radhia Cousot. Abstract interpretation: A uni-�ed lattice model for static analysis of programs by construction orapproximation of �xpoints. In Fourth Symp. Priciples of ProgrammingLanguages. ACM, 1977.[7] Saumya Debray. A simple code improvement scheme for Prolog. Journalof Logic Programming, 13(1), 1992.14



[8] Andreas Krall. Implementation of a high-speed Prolog interpreter. InConf. on Interpreters and Interpretative Techniques, volume 22(7) ofSIGPLAN. ACM, 1987.[9] Andreas Krall and Thomas Berger. Fast Prolog with a VAM1P basedProlog compiler. In PLILP'92, LNCS. Springer 631, 1992.[10] Andreas Krall and Ulrich Neumerkel. The Vienna abstract machine. InPLILP'90, LNCS. Springer, 1990.[11] Micha Meier. Compilation of compound terms in Prolog. In EighthInternational Conference on Logic Programming, 1991.[12] Christopher S. Mellish. Some global optimizations for a Prolog compiler.Journal of Logic Programming, 2(1), 1985.[13] Peter Van Roy. 1983{1993: The wonder years of sequential Prologimplementation. Journal of Logic programming, 19/20, 1994.[14] Peter Van Roy and Alvin M. Despain. High-performance logic pro-gramming with the Aquarius Prolog compiler. IEEE Computer, 25(1),1992.[15] Jichang Tan and I-Peng Lin. Compiling dataow analysis of logic pro-grams. In Conference on Programming Language Design and Imple-mentation, volume 27(7) of SIGPLAN. ACM, 1992.[16] Andrew Taylor. Removal of dereferencing and trailing in Prolog com-pilation. In Sixth International Conference on Logic Programming, Lis-bon, 1989.[17] Andrew Taylor. LIPS on a MIPS. In Seventh International Conferenceon Logic Programming, Jerusalem, 1990.[18] David H.D. Warren. An abstract Prolog instruction set. Technical Note309, SRI International, 1983.[19] Henry S. Warren. Instruction scheduling for the IBM RISC Sys-tem/6000 processor. IBM Journal of Research and Development, 34(1),1990.
15


