The VAM,; — an Abstract Machine for Incremental
Global Dataflow Analysis of Prolog

Andreas Krall and Thomas Berger
Institut fur Computersprachen
Technische Universitat Wien
Argentinierstrafie 8

A-1040 Wien

andi@mips.complang.tuwien.ac.at

Abstract

A commonly used technique for global flow analysis of Prolog programs is abstract interpretation.
Until now nearly all abstract interpretation systems for Prolog are research prototypes and very slow.
These systems are not suitable for the integration in Prolog compilers. So we developed the VAMar,
an abstract machine for the abstract interpretation of Prolog. The Vienna Abstract Machine (VAM)
is an abstract machine which has been designed to eliminate some weaknesses of the Warren Abstract
Machine (WAM) Different versions of the VAM are used for different purposes. The VAMq2p is well
suited for interpretation, the VAMip is aimed for native code generation. The VAMop has been
modified to the VAM a1, an abstract machine suited for abstract interpretation. The VAM a1 does the
data flow analysis by a factor of two hundred faster than the previous used meta interpreters written
in Prolog. Preliminary results of intermediate code size and analysis time are presented.

1 Introduction

Information about types, modes, trailing, reference chain length and aliasing of variables of a program
can be inferred using abstract interpretation. Abstract interpretation was introduced by [6] for data
flow analysis of imperative languages. This work was the basis of much of the recent work in the field
of declarative and logic programming [1] [3] [5] [8] [7] [11] [12] [14]. Abstract interpretation executes
programs over an abstract domain. Recursion i1s handled by computing fixpoints. To guarantee the
termination and completeness of the execution a suitable choice of the abstract domain is necessary.
Correctness is achieved by iterating the interpretation until the computed information reaches a fixpoint.
Termination can be assured by limiting the size of the domain. Most of the previously cited systems are
either meta-interpreters written in Prolog or general abstract interpretation systems and are very slow.

A practical implementation of data flow analysis has been done by Tan and Lin [13]. They modified a
WAM emulator implemented in C to execute the abstract operations on the abstract domain. They used
this abstract emulator to infer mode, type and alias information. They analysed a set of small benchmark
programs in a few milliseconds which is about 150 times faster than the previous systems.

Section 2 presents the VAM a1 in detail with the complete instructions set, the memory model and
the execution principles. Section 3 has results which show the efficiency of the VAM 4.

2 The VAMAI

We followed the way of Tan and Lin and designed an abstract machine for abstract interpretation, the
VAM 1. The design goal of this abstract machine was to develop a very fast global analysis system which
collects the information necessary for optimizing the machine code generated by the VAM;p [9] Prolog
compiler. The current implementation of the abstract machine computes information about mode, type,

reference chain length and aliasing of variables, but it can be changed for other domains. The VAM4; is
optimized for this particular domain. It is based on top down abstract interpretation with tabulation. An
abstract machine breaks up the complex operation like abstract unification or updating the extension table
into more atomic instructions. The VAM a1 has an instruction for each argument of a goal. The instruction
set is based on the VAMap [10] and benefits from the fast decoding mechanism of this machine. But the
run time data structures and the operation of the instructions are completely different. For support of
incremental analysis the inferred data flow information 1s stored directly in the intermediate code of the
VAM 1. So the intermediate code is used like the extension table of the abstract interpretation algorithm.
We choose the VAM as the basis for an abstract machine for abstract interpretation because 1t 1s much
better suited for our purpose than the WAM [15]: The parameter passing of the WAM via registers
and storing registers in a choice point slows down the interpretation. Furthermore, in the WAM some
instructions are eliminated so that the relation between argument registers and variables 1s sometimes
difficult to determine. The translation to a VAMsp-like intermediate code is much simpler and faster than
WAM code generation. A VAMsp-like interpreter enabled us to model low level features of the VAM.
Furthermore, the VAMyp intermediate code is needed for the generation and optimization of machine
code.

2.1 An informal interpretation model

We use a top-down approach for the analysis of the desired information. Different (static) calls to the
same clause are handled separately to get more exact types. This is achieved by duplicating the clauses
for each call of a procedure. So for each call of a goal there exists an own copy of the intermediate code of
the called procedure. To save code size, only the head of the clauses are copied. The body of the clauses
are shared. This duplication of the code gives a more precise analysis for the use in the VAM;p which
generates specialized code for each call, and simplifies many parts of the VAM 4.

Abstract interpretation with the VAMag is demonstrated with the following short example. Fig. 1
shows a simple Prolog program part, and a simplified view of its code duplication for the representation
in the VAM p1 intermediate code.

Prolog program:

Al — B1

Bl — Cl

Bz — 32,02
Ch — true

Code representation:

Al — B!

Bi -t

Bl .— B? (C?
B .- (!

B2 :— B% (C?
Cl — true
C? — true

Figure 1: Prolog program part and its representation in VAM 41

The procedure B has two clauses, the alternatives By and By. The code for the procedures B and C'is
duplicated because both procedures are called twice in this program. This code duplication leads to more
exact types for the variables, because the data flow information input might be different (more or less
exact) for different calls of the same procedure in a program (in the implementation the code duplication
is done only for the heads, the bodys of the clauses are shared). Abstract interpretation starts at the
beginning of the program with the clause A}. The information of the variables in the subgoal B! are
determined by the inferable data flow information from the two clauses Bf and Bi. After the information

for both clauses has been computed, abstract interpretation is finished because there 1s no further subgoal
for the first clause A;.

In the conservative scheme it has to be supposed that both Bi and BJ could be reached during
program execution, therefore the union of the derived data flow information sets for the alternative
clauses of procedure B has to be formed. For B{ only information from C{ has to be derived because it is
the only subgoal for B{. For Bi there exists a recursive call for B, named B? in the example. Recursion
in abstract interpretation is handled by computing a fixpoint, i.e. the recursive call is interpreted as
long as the derived data information changes. After the fixpoint is reached, computation stops for the
recursive call. The data flow information for the recursion is assigned to the clauses B and B3. After
all inferable information is computed for a clause, it is stored directly into the intermediate code. The
entry pattern and success patterns are stored in the head variables information fields, the variables of a
subgoal contain the the success patterns of the calls of subgoals left to the current subgoal.

2.2 The abstract domain

The goal of the VAM4; is to gather information about mode, type, reference chain length and aliasing
of variables. Reference chain lengths of 0, 1 and greater 1 are distinguished. The type of a variable is
represented by a set comprised of following simple types:

free describes an unbound variable and contains a reference to all aliased variables
list is a non empty list (it contains the types of its arguments)

struct 1is a term

nil represents the empty list

atom 1s the set of all atoms

integer 1s the set of all integer numbers

Possible infinite nesting of compound terms makes the handling of the types list and struct difficult.
To gather useful information about recursive data structures a recursive list type 1s introduced which
contains also the information about the termination type.

To represent the alias information variables are collected in alias sets. Variables which could possibly
be aliased, are in the same set. The alias sets are represented as double linked sorted lists. In the
intermediate code each set is identified by an unique number. Variables which are always aliased, can
be represented by references like in ordinary Prolog interpreters. The intersection of this sets has to be
stored 1n the intermediate code.

Efficient interpretation is achieved by using fixed-sized variable cells, which enables static stack frame
size determination and the saving of the domains in intermediate code fields. The set of the domain
values 1is represented as a bit field. Set operations like union or difference can be implemented using
logical operations. The computation of the least upper bound of two domains is implemented by a
bitwise or operation, the abstract unification by a bitwise and.

2.8 The VAM,; instruction set

Variables are classified into void, temporary and local variables. Void variables occur only once in a
clause and no information has to be collected for them. Different to the WAM, temporary variables occur
only in the head or in one subgoal, counting a group of built-in predicates as one goal. The built-in
predicates following the head are treated as if they belong to the head. Temporary variables need storage
only during one inference and can be stored in a fixed sized data structure. All other variables are local
and are allocated on the stack.

The representation for the arguments of a Prolog term is the same for VAM z1 (see fig. 2) and VAMap
with the following exceptions:

e Local variables have four additional information fields in their intermediate code, the actual domain
of the variable, the reference chain length and two fields for alias information. This information

unification instructions

int I integer

atom 4 atom

nil empty list

list list (followed by its two arguments)

struct F structure (functor)(followed by its arguments)
void void variable

fsttmp Xn first occurrence of temporary variable (offset)
nxttmp Xn further occurrence of temporary variable (offset)

fstvar Vn,D,R,Ai,Ac | first occurrence of local variable (offset, domain,
reference chain length, is aliased, can be aliased)

nxtvar Vn,D,R,Ai,Ac | further occurrence of local variable (offset, domain,
reference chain length, is aliased, can be aliased)

resolution instructions

goal P,0 subgoal (procedure pointer, end of goal)
nogoal termination of a clause

cut cut

builtin I built-in predicate (built-in number)

termination instructions

call | termination of a goal

Figure 2: VAM a7 instruction set

fields replaces the extension table of conventional abstract interpretation algorithms. Local variables
of the head have splitted information fields, because they store both the information at the entry
of the clause and the information after a successful computation of this clause. Both information
is used for the handling of recursive calls.

e The argument of a temporary variable contains an offset which references this variable in a global
table. The global table contains entries for the domain and reference length information or a pointer
to a variable.

e The intermediate code lastcall has been removed because last-call optimization makes no sense in
abstract interpretation. Instead the intermediate code nogoal indicates the end of a clause. When
this instruction is executed the computation continues with the next alternative clause (artificial

fail).

e The intermediate code goal got an additional argument, a pointer to the end of this goal, that is
the instruction following the call.

e The instruction const has been split into integer and atom.

The translation of Prolog source code to VAMar1 instructions is simple due to the direct mapping
between source code and VAMag code. The head arguments of a clause are translated to unification
instructions. Each clause is terminated by the instruction nogoal. FEach subgoal is translated to the
goal instruction, unification instructions for each argument and is terminated by the call instruction.
The following example shows the VAM a1 code for the append procedure.

append([], nil
L, fsttmp L
L nxttmp L
). nogoal

append ([list

HI fsttmp H
L1], fstvar L1,{},{},0,0
L2, fstvar L2,{},{},0,0
L list
H| nxttmp H
L3]) :- fstvar L3,{},{},0,0
append(goal append,20
L1, nxtvar L1,{},{},0,0
L2, nxtvar L2,{},{},0,0
L3 nxtvar L3,{},{},0,0
) call
nogoal

The translation of terms to the intermediate code is done in two passes (see fig. 3). The first pass
scans the terms for variables and collects information about the variables in the var table. The second
pass again scans the terms and generates the VAMag instructions. Between this two passes the variable

classes and offsets are determined.
collect classify generate
. > . > VAMa1
variables variables code

A

Y

var table

Figure 3: translator structure

2.4 The VAM,; memory model

Another significant difference between the VAMsp and the VAM a1 concerns the data areas, i.e. the stacks
(see fig. 4). While the VAM3p needs three stacks, in VAM a1 a modified environment stack and a trail are
sufficient. Similar to CLP systems the trail is implemented as a value trail. It contains both the address
of the variable and its content.

The VAMar also needs less machine registers (see fig. 5). Machine registers are the goalptr and
headptr (pointer to the code of the calling goal and the head of the called clause, respectively), the
goalframeptr and the headframeptr (frame pointer of the clause containing the calling goal and the
called clause, respectively) and the trailptr (top of trail). The headframeptr can be used as top of
stack pointer. Because every stack frame is a choice point, no choice point register is needed.

Fig. 6 shows a stack frame for the stack of the VAM4;. Note that every stack frame is a choice
point because all alternatives for a call are considered for the result of the computation. The stack
frame contains the actual information for all the local variables of a clause. The goalptr points to the
intermediate code of a goal (it is used to find the continuation after a goal has been computed), the
clauseptr points to the head of the next alternative clause for the called procedure, and goalframeptr
points to the stack frame of the calling procedure. goalframeptr is not strictly necessary because the
stack frame size is contained in the VAM g code.

Fig. 7 describes the stack entry for a local variable. The fields reference, domain, ref-len, alias-prev
and alias-next are used to store the information derived for a variable analysing a single alternative of
the current goal. The union fields hold the union of all previously analysed alternatives.

T trailptr
trail
stack — goalframeptr
¢ headframeptr
«— goalptr
code area . headptr

Figure 4: VAMa1 data areas

| register | usage |
goalptr pointer to instructions of calling goal
headptr pointer to instructions of called clause

goalframeptr | frame pointer of calling goal
headframeptr | frame pointer of called clause, top of stack
trailptr top of trail

Figure 5: VAM 41 machine registers

The reference field connects the caller’s variables with the callee’s variables. Possibly aliased variables
are stored in a sorted list. The alias-prev and the alias-next field are used to connect the variables of this
list. The domain field contains all actual type information at any state of computation. Its contents may
change at each occurrence of the variable in the intermediate code. The ref-len field contains the length
of the reference chain. After analysing an alternative of a goal the union fields contain the least upper
bound of the informations of all alternatives analysed so far.

2.5 Handling of recursion

The information in the fields of local variables of a clause’s head is used for fixpoint computation. This
fields hold both the information that is available at the entry of the clause and the informations, that
are available for this local variables after a successful computation of the clause, i.e. the success pattern.
When the interpreter reaches the last instruction of a clause (nogoal), the success pattern has to be
updated. The clause’s head variable success pattern fields are replaced with the least upper bound of its
actual entries (the old success pattern) and the new variable domains. The new domains (for the success

domain for variable n

domain for variable 1

goalptr’
clauseptr

goalframeptr’
trailptr’

Figure 6: structure of the stack frame

reference

domain ref-len
alias-prev alias-next
union-domain | union-ref-len

union-prev union-next

Figure 7: a local variable on the stack

pattern) after the computation of the clause can be found on the stack.

During abstract unification of goal and head arguments the entry pattern for head local variables is
stored in the intermediate code of the head, if this call is computed the first time. If the intermediate
code information contains already entry pattern information, then the old information is replaced by the
least upper bound of the new and the old information. If the information in the head’s intermediate code
fields does not change, i.e. the new entry pattern contains more special or equal information than formerly
applied patterns, there is no sense in a further recomputation of the clause. Instead, information about
the clause’s actual success pattern is gained from the actual intermediate code fields of the head. This
information is then used in the variables occurring in the calling goal and the interpreter computes the
next alternative or the next subgoal of the calling clause, if there are no more alternatives to compute.
Whenever the success pattern of a clause changes, a flag is set in this clause and all calling clauses of this
clause. This flag is used to mark these clauses for recomputation. Interpretation is iterated, until the
success patterns do not change any more.

2.6 Instruction execution

Like the VAMyp the VAMag fetches a head instruction, fetches a goal instruction and executes the
combined instruction (e.g. the unification of two variables). Only if a structure is combined with a
variable, the instructions for the arguments of the structure are executed in single fetch mode. A typical
combined unification or structure unification instruction executes the following subtasks:

e If a goal variable is involved in the instruction, store the current value of this variable in the
intermediate code.

e Execute abstract unification, eventually fail.

e If a head variable is involved in the instruction and the new value of this variable is more general
than the value stored in the intermediate code, then store this value in the intermediate code and
set the changed entry pattern flag.

If the combined call-goal instruction is executed with an unchanged entry pattern, the success
pattern is merged into the union field and the other alternatives for this call are tried (artificial fail).
Otherwise a new stack frame is allocated and this subgoal is called. If a call is combined with a nogoal
instruction, the union is constructed and the alternatives are tried. If the last alternative has been
executed, a single goal instruction is fetched. If this instruction is a goal instruction, the current value
of the union field is copied into the variable, the union fields are initialized and the goal is called. If this
instruction is a nogoal instruction, the success pattern is stored, the stack frame is popped and the next
calling single goal instruction is fetched and executed.

2.7 An example

Consider the following program part:

top :-
append([1,2]1, [3,4]1, L),
write(L).

append([1, L, L).
append([X|L1], L2, [XIL3]) :-
append(L1, L2, L3).

This program is compiled to the following VAM z1 instructions:

appendl:
head: nil, fsttmp(0), tmp(0), nogoal
head: list, fsttmp(0), fstvar(2), fstvar(l), list, tmp(0), fstvar(0),
goal(append2), var(2), var(1l), var(0), call, nogoal.

append2:
head: nil, fsttmp(0), tmp(0), nogoal
head: list, fsttmp(0), fstvar(2), fstvar(l), list, tmp(0), fstvar(0),
goal(append2), var(2), var(1l), var(0), call, nogoal.

top:
head:
goal(appendl), list, int(1), list, int(2), nil,
list, int(3), list, int(4), nil, fstvar(0), call,
builtin(write), var(0), nogoal.

Below follows a simplified trace of the analyser. Usually the interpreter executes in the combined
mode (e.g. call-goal, or unification of two variables). The first clause of appendl is tried, it fails and
the second clause is tried. Some instructions are executed in combined mode and the elements of the list
are executed in list unification mode. Then the first clause of append2 is tried, it fails and the second
clause of append2 is tried. It calls recursively the first clause of append2, succeeds and executes the
second clause which calls recursively append2. But this time the entry pattern is equal to the last one
and the success pattern is used. The end of the second clause of append2 is reached and the success
pattern is stored. Now the end of the second clause of append1l is reached and the success pattern is
stored. The success patterns have changed and a second iteration is started. In this small example the
second iteration is identical to the first one since both clauses have a changed success pattern. But this

time no pattern changes and the analysis stops.

sokkkkokkdkdkkkkkdkdkkd First iteration skkkkkkkkkkkddkdkkk

call goal(appendl)

list nil
fail goal(appendl) true fail (list/nil)

list list unify

int (1) fsttmp(0) unify

list h_fstvar(2) unify
int(2) unify list
nil unify list

list h_fstvar(1) unify
int(3) unify list
list unify list
int(4) unify list
nil unify list

g_fstvar(0) list unify
nxttmp(0) unify list
h_fstvar(0) unify list

call goal(append2)

g_nxtvar(2) nil unify
fail goal(append2) true fail (list/nil)
g_nxtvar(2) list unify
fsttmp(0) unify list
h_fstvar(2) unify list
g_nxtvar(l) h_fstvar(l) unify
g_nxtvar(0) list unify
nxttmp(0) unify list
h_fstvar(0) unify list
call goal(append2)
g_nxtvar(2) nil unify
g_nxtvar(l) £fsttmp(0) unify
g_nxtvar(0) nxttmp(0) unify

call nogoal

fail goal(append2) try all alternatives

g_nxtvar(2) list unify
fsttmp(0) unify list
h_fstvar(2) unify list

g_nxtvar(l) h_fstvar(l) unify

g_nxtvar(0) list unify
nxttmp(0) unify list
h_fstvar(0) unify list

call goal(append2) use success pattern

next nogoal
fail goal(append2)
next nogoal
fail goal(appendl)
next builtin(write)
next nogoal

last alternative tried

last alternative tried

sodkkkdkkdkkdkkkkkdkkkd second iteration skkkkkkkkkkkkkkkkk

identical to the first iteration

2.8 Incremental abstract interpretation

The VAM a7 1s also well suited for incremental abstract interpretation. Incremental abstract interpretation
is similar to to the recomputation if a success pattern has changed. Incremental abstract interpretation
starts local analysis with all callers of the modified procedures and interprets the intermediate code of
all dependent procedures. Interpretation is stopped when the derived domains are equal to the original
domains (those derived by the previous analysis).

To make incremental abstract interpretation possible, for each procedure a pointer to the caller of this
procedure is stored in the VAM a1 code. This pointer is used to find the top goal of the whole program.
This pointer chain can be used to reconstruct the contents of the stack prior to the call of this procedure.
Now abstract interpretation can be executed as usual. In general only a small part of the program is
reinterpreted. In the worst case incremental interpretation can lead to the interpretation of the whole
program.

2.9 Design alternatives

The current implementation uses one value trail. For each trailed variable the complete value of the
variable is stored together with the address of the variable. Since in most cases only a part of the
information has changed a tagged trail can be used. The information in the variables is divided into
groups which usually change at the same time. Each group get a special tag and only the changed group

together with the tag is stored on the trail. If the number of groups i1s very small, also more than one
trail can be used to avoid the tagging of values.

We investigated also an implementation without trailing. The variable gets an additional field (called
in-field) which holds the value of a variable prior to the call. At a call referenced variables have to copy
their contents to the callee’s variables. At call completion the contents have to copied back.

It has to be evaluated if the duplication of clause bodies increases the accuracy of the analysis. The
sharing of the bodies eliminates the construction of the least upper bound of the bodies before code
generation. An interesting alternative would also be the elimination of the stack and storing the stack
frames directly in the intermediate code. Different calls would be handled by the same stack frames in
the code.

3 Results

Before developing the VAM a1 we developed a prototype analyser in Prolog. Due to the single assignment
nature of Prolog the information about the program has to be stored in the data base using assert. The
prototype analyser is implemented as a deterministic recursive procedure so that 1t was possible to store
intermediate representations in Prolog data structures. The problem is that this structures are stored
on the copy stack, destructive assignment must be replaced by copying part of the structures and that
our Prolog interpreter does not support garbage collection. So this interpreter was very slow and needed
a stack size greater than 32 MB when analysing a program which was bigger than 50 clauses. So it is
evident that an analyser based on the VAM a7 is on average more than a factor of two hundred faster than
the prototype analyser (see table 1). For evaluation of the VAM 1 we used the well known benchmarks
described in [2]. These benchmarks were executed on a DECStation 5000/200 (25 MHz R3000) with
40 MB Memory. A direct comparison with the GATA system [5] is not possible, because only data for
one benchmark we use is available and the domains are not comparable. Compensating the speed of the
different benchmark machines, the VAM 1 1s about a factor of 20 faster.

Prolog | Prolog | VAMax
test ms scaled | scaled
det. append 648 1 1115
naive reverse 789 1 639
quicksort 977 1 264
8-queens 815 1 241
serialize 1630 1 206
differentiate 2122 1 25
query 781 1 194
bucket 923 1 230
permutation 732 1 503

Table 1: global analysis time, factor of improvement

The VAM a1 was integrated in the VAMp compiler. Table 2 shows the improvement of the generated
code due to global analysis. The high improvement for quicksort 1s only partly due to global analysis,
the main improvement comes from a better clause indexing (built-in predicate indexing). To show the
efficiency of the compiler the compile time were compared to that of the VAMsp and SICStus intermediate
code translators [4]. The VAM;p compiler is about ten times slower than the VAMsp translator but about
two times faster than the SICStus compiler (see table 3). The Aquarius compiler [12] is by a factor of
2000 slower than the VAMyp translator. A direct comparison is not possible since it is a three pass
compiler which communicates with the assembler and linker via files.

The comparison of the VAMqp interpreter with the VAMa; shows that the size of the annotated
VAM_y1 intermediate code is about three times larger than the simple VAMop intermediate code (see
table 4).

10

VAMZP VAMZP VAMlp VAMlpOpt
test ms scaled scaled scaled
det. append 0.25 1 26.1 26.1
nalive reverse 4.17 1 19.3 20.0
quicksort 6.00 1 7.23 18.1
8-queens 65.4 1 12.4 13.5
serialize 3.90 1 5.76 6.84
differentiate 1.14 1 6.32 8.14
query 41.7 1 7.58 9.70
bucket 247 1 5.02 5.24
permutation 2660 1 5.08 6.48

Table 2: execution time, factor of improvement compared to the VAM»p

VAMZP VAMZP VAMlp SICStus
test ms scaled scaled scaled
det. append 5.78 1 11.43 21.5
nalive reverse 7.31 1 10.5 19.3
quicksort 9.30 1 9.9 23.1
8-queens 9.18 1 11.6 19.7
serialize 11.36 1 11.22 19.2
differentiate 13.71 1 11.41 30.3
query 21.05 1 7.5 13.4
bucket 15.59 1 7.25 12.7
permutation 4.88 1 8.88 18.1

Table 3: compile time, compared to the VAMop

4 Conclusion

We presented the VAMag, an abstract machine for abstract interpretation of Prolog. This abstract
machine has a very compact representation and short analysis times. The fast analysis and the storage
of additional information enables the incremental global analysis of Prolog.

Acknowledgement

We express our thanks to Thomas Berger, Anton Ertl and Franz Puntigam for their comments on earlier
drafts of this paper.

References

[1] Samson Abramsky and Chris Hankin, editors. Abstract Interpretation of Declarative Languages. Ellis
Horwood, 1987.

[2] Joachim Beer. Concepts, Design, and Performance Analysis of a Parallel Prolog Machine. Springer,
1989.

[3] Maurice Bruynooghe. A practical framework for the abstract interpretation of logic programs.
Journal of Logic programming, 10(1), 1991.

[4] Mats Carlsson and J. Widen. SICStus Prolog user’s manual. Research Report R83007C, SICS, 1990.

11

VAMop | VAMap | VAMag
test bytes scaled scaled
det. append 288 1 3.63
naive reverse 380 1 3.59
quicksort 764 1 2.65
8-queens 536 1 2.95
serialize 1044 1 3.33
differentiate 1064 1 8.37
query 2084 1 0.89
bucket 996 1 1.96
permutation 296 1 2.77

Table 4: code size of intermediate representations

[5] Baudouin Le Charlier and Pascal Van Hentenryck. Experimental evaluation of a generic abstract
interpretation algorithm for Prolog. ACM TOPLAS, 16(1), 1994.

[6] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Fourth Symp. Priciples of
Programmang Languages. ACM, 1977.

[7] Saumya Debray. A simple code improvement scheme for Prolog. Journal of Logic Programming,

13(1), 1992.

[8] Manuel Hermenegildo, Richard Warren, and Saumya K. Debray. Global flow analysis as a practical
compilation tool. Journal of Logic Programming, 13(2), 1992.

[9] Andreas Krall and Thomas Berger. Fast Prolog with a VAM p based Prolog compiler. In PLILP’92,
LNCS. Springer 631, 1992.

[10] Andreas Krall and Ulrich Neumerkel. The Vienna abstract machine. In PLILP’90, LNCS. Springer,
1990.

[11] Christopher S. Mellish. Some global optimizations for a Prolog compiler. Journal of Logic Program-
ming, 2(1), 1985.

[12] Peter Van Roy and Alvin M. Despain. High-performance logic programming with the Aquarius
Prolog compiler. TEEE Computer, 25(1), 1992.

[13] Jichang Tan and I-Peng Lin. Compiling dataflow analysis of logic programs. In Conference on
Programming Language Design and Implementation, volume 27(7) of SIGPLAN. ACM, 1992.

[14] Andrew Taylor. Removal of dereferencing and trailing in Prolog compilation. In Sizth International
Conference on Logic Programmang, Lisbon, 1989. MIT Press.

[15] David H.D. Warren. An abstract Prolog instruction set. Technical Note 309, SRI International,
1983.

12

