Garbage Collection for Large Memory Java
Applications

Andreas Krall and Philipp Tomsich

Institut fiir Computersprachen, Technische Universitdt Wien
Argentinierstrafie 8, A—1040 Wien, Austria
{andi,phil}@complang.tuwien.ac.at

Abstract. The possible applications of Java range from small applets
to large, data-intensive scientific applications allocating memory in the
multi-gigabyte range. As a consequence copying garbage collectors can
not fulfill the requirements, as large objects can not be copied efficiently.
We analyze the allocation patterns and object lifespans for different Java
applications and present garbage collection techniques for these. Various
heuristics to reduce fragmentation are compared. We propose just—in—
time generated customized marker functions as a promising optimization
during the mark—phase.

1 Introduction

The programming language Java is used for a wide range of applications ranging
from small applets running in a browser to large scientific programs taking hours
of computation time and gigabytes of memory. It is difficult to design a garbage
collector which performs well under different workloads. The garbage collector
for CACAO — a 64 bit JavaVM for Alpha and MIPS processors [KG97,Kra98] —
has been designed for large objects and large memory spaces but also performs
well for small objects. In this study we evaluate the behavior of different garbage
collection schemes under different workloads to find common patterns which can
be used to design efficient garbage collection heuristics.

There exist hundreds of different garbage collection algorithms [JL96,Wil94]
which can be largely divided into copying and non—copying collectors. The non—
copying mark—and—sweep collectors are very efficient but it is widely believed
that they suffer of memory fragmentation problems. Recent studies [JW9S]
showed that the fragmentation problem is small. For large object spaces copy-
ing collectors are unusable because of the copying overhead. It is impractical
to copy objects which reach Gbyte sizes. Feasible solutions are treadmill and
mark—and—sweep collectors.

The remainder of this paper is structured as follows: Section 2 lists related
work. In section 3 we briefly present an overview of the garbage collector and
present the result from the lifespan analysis for objects. We also discuss different
heuristics to improve garbage collection. Customized marking using just—in—time
generated marker methods is introduced in section 4. Section 5 presents the
experimental results from our tests. We draw our conclusions in section 6.

2 Related Work

Precise garbage collection for Java virtual machines has been described by Age-
son et al. [ADMO8]. In contrast to conservative (or partially conservative) collec-
tors precise collectors have exact information about objects on stack and heap.
The computation of the stack maps in a JavaVM is complicated by the fact that
local variables can contain any type across the call of a local subroutine (jsr)
which is used to implement exception handler routines. During compilation the
Java byte-code has to be rewritten to rename variables which are live across
a call of an exception handler with different types. Using the precise collector
the heap size can be reduced by 4% on average in comparison with a partial
conservative collector.

A recent study by Johnstone and Wilson [JW98] evaluated the fragmentation
of conventional dynamic storage allocators. The study analyzed 8 big C and C++
programs using 16 different implementations of malloc/free. Most of the live
objects are very small (less than 64 bytes). Usually only very few large objects
exist. Large objects have a long life time. The best and also efficient algorithms
showed an average fragmentation below 3%. These fragmentation numbers are
not directly comparable to garbage collection fragmentation behavior since life
times and allocation/deallocation patterns are different.

Hicks et al. [HHMNO8] studied the garbage collection times for large object
spaces. Using a separate non—copy collected space for large objects results in
significant performance improvements for copying garbage collectors. This study
evaluated varied size thresholds as well as whether or not large objects may
contain pointers. A treadmill collector was compared with a mark—and-sweep
collector. As benchmarks different programs written in Java and SML are used.
For Java programs optimal threshold values are smaller than for SML. There is
no measurable difference in performance between the treadmill and the mark—
and—sweep collector.

Colnet et al. [CCZ98] describe compiler support to customize the mark—and—
sweep algorithm in the SmallEiffel compiler. The SmallEiffel garbage collector
is a classical partially conservative mark—and—-sweep collector. Type inference
is used to compute the necessary information to segregate objects by type and
statically customize most of the GC code. In this study 22 different implemen-
tations of Othello (both leaky (which rely on a garbage collector) and non leaky
versions) have been evaluated. The results show both a reduction in run time
and memory footprint compared with either no GC at all or the Boehm—Weiser
collector [BWS&S].

3 The garbage collector

We implemented a conservative garbage collector using a mark—and—sweep algo-
rithm. During the mark phase the contents of the stack are considered references
to root objects. Starting with these root objects, objects on the heap are marked

recursively. Every heapblock contained in a marked object is considered a po-
tential reference and has to be examined: if it points to the start of an unmarked
object, that object is marked in turn.

In order to store an indication of where objects start and whether objects
are marked, we use bitmaps where each bit represents one heapblock. These
bitmaps encode whether an object starts at a heapblock, whether it is marked
and whether it may contains references to other objects.

The sweep phase is currently implemented using the start and free bitmaps.
Continuous free space resulting from neighboring objects is automatically de-
tected and freed as one block of memory. We are currently working on an in-
cremental method of collecting and releasing this garbage, which may reduce
the cost of sweeping by up to an order of magnitude as our preliminary tests
indicate.

Allocation is performed from a list of free memory blocks. First, we attempt
to satisfy the allocation request with an exact block; if that fails, a part of a
larger block is split off and used. If no exact or large block can be found, we
grow the heap up to a maximum limit. As soon as that limit is reached, a garbage
collection is performed.

3.1 Object lifespans

To collect information on object lifespans, we performed a full garbage collec-
tion during each allocation request. The results confirmed our hypothesis, that
objects remain valid for either a very short period of time or for a very long one.
Our experiments show that only about 20% of all objects live longer than 512
bytes (which equals 10 allocations in most programs) (see fig. 1). This implies
that the best method to reduce overall fragmentation, which is very significant
for the total memory required for the execution of a program, is to collect early
and often at the cost of a small increase in garbage collection time.

3.2 Generational garbage collection

Recently, generational garbage collection [HM92] gained in popularity: it exploits
the typical allocation patterns found in modern languages to optimize garbage
collection. Assuming, that memory allocated on the heap either becomes garbage
very quickly or remains valid for most of the program’s runtime, garbage col-
lection should differentiate between young and mature objects. While young
objects have a high probability to die with the next collection, mature objects
will likely survive it. The generational approach separates the allocated objects
can into different generations according to the number of collections they sur-
vived. Whenever a garbage collection is triggered, they youngest generations are
observed first, which reduces the number of memory accesses required. Surviving
objects are promoted to older generations.

Using a generational garbage collector may appear a good solution to the
small lifespans observed, but it leads to severe problems: the write—barrier nec-
essary to record cross—generational references imposes an overhead on all as-

50000

45000 - 1

40000 - 1

35000 | B

30000 [1

25000 1

Number of objects

20000 [1

15000

10000

5000

0 1 1 1
16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k 128k256k512k 1m 2m 4m 8m
Lifespan in bytes

Fig. 1. Lifespan graph for a compilation of Javal.ex with javac

signments of objects. In addition, generational garbage collection uses a larger
amount of heap space, as garbage in older collections is released only infrequently.
This memory, which may remain uncollected for some time even after becoming
garbage, can amount to a considerable memory area in applications with large
memory requirements.

3.3 Heuristical threshold values

Fragmentation can be reduced by scheduling collections on the extent of heap
(i.e., the highest address used within the heap at any given time). Our garbage
collector collects as soon as a heuristically chosen threshold for the extent of the
heap is exceeded. For the implementation we considered 3 heuristics:

1. Adding a constant value.
This naive technique ignores the smaller size of the heap after the collection
and grows the threshold very quickly.

2. Adding a multiple of the current extent.
Adding a multiple of the heap extent resulting from the garbage collection
ignores the fact, that non—copying garbage collectors leave a fragmented heap
(i.e., the extent of the heap is considerably larger than the heap size necessary
to hold all the objects on the heap). This leads to a quickly expanding heap
for non—copying garbage collectors, such as the mark—and—sweep collector
used in CACAO.

3. Adding a fraction of the unused space.
This is a very effective heuristic, which works well with the fragmented heaps

resulting from non—copying garbage collection. It reduces the overall frag-
mentation, such that programs can be run with less memory than needed
for the other two strategies.

Heap size (including free memory fragments)
T T T T T T T T T T T T T T

3e+06 heap_next_collection = heap_top + (heap_limit - heap_top) /1 —]|
heap_next callection = heap_top + (heap_limit - heap_top) /2 -----
~ heap_next_collection = heap_top + (heap_limit - heap_top)74 -----
2.5e+06 heap_| next _collection-= tieap_top + (heap_limit - heap_top) / 8 R
Pt heap_next_collection = heap_top + 128K .==—"
heap_next_collection= heap_-top+ 256k -----
2e+06 o e |
%] . ;/”"/
e T
2 1.5e+06 g R

1e+06

500000

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
After collection number...

Fig. 2. Heap size for different threshold heuristics (javac)

Fragmentation ratios for different heuristics
100 T T T T T T T T T T T T T

heap_next_collection = heap_top + (heap_limit - heap_top) / 1
heap_next_collection = heap_top + (heap_limit - heap_top) / 2 -
heap_next_collection = heap_top + (heap_limit - heap_top) / 4
80 - heap_next_collection = heap_top + (heap_limit - heap_top) / 8
heap_next_collection = heap_top + 128k ----
heap_next_collection = heap_top + 256k -----

Fragmentation in %

0 Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
After collection number...

Fig. 3. Fragmentation for different threshold heuristics (javac)

Figures 2 and 3 show that the method of adding a fraction of the unused space
is preferable, since it maintaings a far more compact heap than the other variants.
Additionally, it offers superior better performance during garbage collection by
collecting “early and often”. This fact is due to the observed pattern of small
objects with small lifespans; frequent collections keep the heap compact and
reduce the cost of garbage collecting further by improving the caching behavior
of the mark—and-sweep algorithm.

4 Customized marking

The data gathered during our experiments indicates that about 60% of all
heapblocks examined (for numerical applications this percentage raises to more
than 95%) during a marker pass are built—in types other than references (i.e.,
integers, doubles). Nonetheless, these heapblocks are dereferenced and the re-
sulting value checked against the bounds of the heap and an allocation—bitmap
to verify whether an object actually begins at this address. We may conclude
from these findings, that a very large potential improvement in the performance
of garbage collection for large memory application would result from excluding
those heapblocks within an object, which will never contain pointers, from the
marker pass. Two methods to store and evaluate this information exist:

1. Bitmap based methods. The type—information for the physical compo-

nents of classes can be stored as bitmaps within the class-info structures.
These bitmaps encode boolean values indicating whether the heapblock at
a certain offset within the object heapblock may contain a reference or
not. During the mark-phase, these bitmaps are interpreted to customize
the marking on a per—class basis.
The disadvantages of this approach are the overheads introduced by the in-
terpretation of the bitmaps and the additional memory accesses necessary to
retrieve the bitmaps. In addition, large objects containing only few pointers
can neither be represented efficiently nor be marked without examining the
entire bitmap.

2. Just—in—time generated marker methods. The bitmap—based methods

described above may be modified by translating the information encoded
within these bitmaps into executable code. For a portable implementation
byte code versions of the mark methods are generated during class loading
which are translated on demand into native code during garbage collection.
This provides just—in—time generated marker methods customized for every
class. During garbage collection these methods are called for every live ob-
ject.
This solution offers almost optimal execution times for the marker, because
only those heapblocks are examined which may contain references (i.e., all
heapblocks, for which the compiler can determine that they will never con-
tain a reference, are excluded). While additional code needs to be generated
and stored for every class, the storage overhead involved is negligible in
size compared to the other information in class-info. Generally the resulting
marker method will require less than 50% of the memory accesses needed
for the naive approach.

4.1 Conserving stack space

Recursive marking algorithms require large amounts of stack space, particu-
larly for deeply nested structures and long lists. This may cause stack overflows.

Pointer reversal techniques provide an alternative to recursive marking, but im-
pose far more memory accesses.

A method to save both stack space, as well as improve performance by reduc-
ing the number of necessary recursive calls is to optimize for tail recursion. This
allows the last recursive call to reuse the current stack and return address. This
is especially useful in the context of lists, where a next—pointer can be detected
and placed at the tail of the structure by the compiler. This optimization is
particularly beneficial in the context of large memory applications, where large
lists are processed.

5 Experimental results

To evaluate fragmentation and different heuristics we used following test appli-
cations:

javac the Java compiler

jess Java Expert Shell System based on CLIPS
db memory resident data base system
raytrace a raytracer rendering a dinosaur

scimark a mix of numeric applications

linpack the famous linpack benchmark

Besides the small 1inpack benchmark, all applications allocate between 100
and 500 Mbyte of objects. Our results show that most applications allocate only
small objects with average sizes between 30 and 60 bytes (see table 1). Only
the scientific/numerical applications scimark and linpack used big arrays and
have an average object size of 810 respectively 1353 bytes. The distribution of
the objects shows the peak at the small sizes with most objects smaller than 128
bytes.

Table 2 gives the number of references which have to be checked if they are
valid object pointers. For scientific programs nearly 100% of the pointers are
either false pointers (i.e., potential pointers that fall outside of the heap) or
null pointers. This result shows the potential performance improvement of the
JIT-marker. The high percentage of null pointers demonstrates the importance
of checking the null pointer at the call site of the mark method.

The data in table 1 and the fragmentation data in the plots and in table
3 show fragmentation between 10 and 30% of the heap. Since the fragments
are large enough for allocation of new objects the fragmentation is not a real
problem for Java garbage collectors.

6 Conclusion

Java applications with large objects require special techniques for garbage col-
lection. Only non—copying collectors can provide acceptable performance both in

benchmark| javac jess db | raytrace | scimark |linpack|
heap size | 62667832| 468663656| 124944496| 187717936| 43611752| 334328
objects 1340767 | 7918647 | 3202929 | 6338943 53817 247
object size 46.7 59.1 39 29.6 810 1353
16 0 48 0 0 0 0
32 458205 | 1425465 | 3061233 | 4693884 563 24
64 584415 | 4474601 98875 1419488 535 10
128 224339 997584 42442 225550 268 4
256 13493 1019885 17 15 16 4
512 783 395 6 4 515 1
1024 2279 214 2 0 51914 1
2048 225 290 1 0 0 203
4096 379 113 1 1 0 0
8192 180 47 1 0 0 0
16384 33 4 1 0 0 0
32768 2 1 1 0 0 0
65536 1 0 1 0 2 0
131072 0 0 346 0 3 0
262144 0 0 1 1 1 0
Table 1. Object counts
benchmark javac jess db | raytrace |scimark|linpack
all references 12637996| 6448116| 41470054| 41133853| 478324| 47842
false pointers 5630274 | 2330767 | 29954232 | 26416277 | 445394 | 912
null pointers 2225825 | 1089709 | 3087413 | 2968714 | 31372 | 46620
false percentage| 44.5 36.1 72.2 64.2 93.1 1.9
null percentage 17.6 16.8 74 7.2 6.5 974
Table 2. Reference checking
benchmark javac | jess | db [|raytrace|scimark|linpack
number of fragments 46148| 8449| 212 599 5 0
average size of fragments| 147.3 [1692 | 19394| 5145 |268041 0

Table 3. Fragmentation

heapsize (including fragments) ——
”””””””””” “accumulated size of life objects ----
8m accumulated size of free fragments---—-

4m
(%]
]
&
2m B
im { -
512k g
g 1 1 1
1 5 9
After collection number...
Fig. 4. Fragmentation of javac
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, L E e A R
heapsize (including fragments)
accumulated size of life objects -
accumulated size of free fragments ----- b
(%]
] i
s]
R [

512k |-/

256k ! ! ! ! ! ! ! !

1 5 9 13 17 21 25 29 33
After collection number...

Fig. 5. Fragmentation of jess

applications with small objects and those with large objects. Our analysis of ob-
ject lifespans demonstrated that almost all objects have very short lifespans. The
fragmentation analysis showed that fragmentation is not a significant problem
for non—copying garbage collectors for Java. Just—in—time generated customized
marker methods reduce the runtime overhead of marking by more than 60%.

References

[ADM98] Ole Agesen, David Detlefs, and J. Eliot B. Moss. Garbage collection and lo-
cal variable type-precision and liveness in Java virtual machines. In Confer-
ence on Programming Language Design and Implementation, volume 33(6)
of SIGPLAN, pages 269-279, Montreal, 1998. ACM.

T T T T T T ——
- heapsize (including fragments)]

8m

4m

2m

im
512k
256k
128k

64k

32k

16K |- | |
1 H 1 1 1 1 1 1 1

1 5 9 13 17 21 25 29
After collection number...

Bytes

Fig. 6. Fragmentation of db

8m T T T T T T T T T

heapsize (including fragments)
[-aeeumulated size of-life-objeets -------1
/! accumulated size of free fragments -

4m

2m

Bytes

Im [

512k f

256k

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61
After collection number...

Fig. 7. Fragmentation of raytrace

[BWSS] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an unco-
operative environment. Software Practice and Ezperience, 18(9):807-820,
1988.

[CCZ98] Dominique Colnet, Philippe Coucaud, and Olivier Zendra. Compiler sup-
port to customize the mark and sweep algorithm. In 1998 International
Symposium on Memory Management, pages 154-165, Vancouver, 1998.
ACM.

[HHMNO98] Michael Hicks, Luke Hornof, Jonathan T. Moore, and Scott Nettles. A
study of large object spaces. In 1998 International Symposium on Memory
Management, pages 138-145, Vancouver, 1998. ACM.

[HM92] Richard L. Hudson and J. Eliot B. Moss. Incremental collection of ma-
ture objects. In Proceedings of the International Workshop on Memory
Management, pages 388-403, September 1992.

[JL.96] Richard Jones and Rafael Lins. Garbage Collection. John Wiley, 1996.

Bytes

Bytes

[TWOs]

[KG9T]

2m
im
512k
256k
128k
64k
32k
16k
8k
4k
2k
1k

512 H
256 [
128 |
64 |

256k
128k
64k
32k
16k
8k
4k
2k
1k
512
256
128
64

[Kra98]

[Wil94]

i 1 1 1 1 1 1 1 1 1 1
1 5 9 13 17 21 25 29 33
After collection number...
Fig. 8. Fragmentation of scimark
- T -
heapsize (including fragments) ——
accumulated size of life objects -]

accumulated size of free fragments ----- |

5
After collection number...

Fig. 9. Fragmentation of linpack

Mark S. Johnstone and Paul R. Wilson. The memory fragmentation prob-
lem: Solved? In 1998 International Symposium on Memory Management,
Vancouver, 1998. ACM.

Andreas Krall and Reinhard Grafl. CACAO — a 64 bit JavaVM just-in-time
compiler. Concurrency: Practice and Ezxperience, 9(11):1017-1030, 1997.
Andreas Krall. Efficient JavaVM just-in-time compilation. In Jean-
Luc Gaudiot, editor, International Conference on Parallel Architec-
tures and Compilation Techniques, pages 205212, Paris, October 1998.
IFIP,ACM,IEEE, North-Holland.

Paul R. Wilson. Uniprocessor garbage collection techniques. In ACM Com-
puting Surveys, page to apear. ACM, 1994.

