
Garbage Collection for Large Memory JavaApplicationsAndreas Krall and Philipp TomsichInstitut f�ur Computersprachen, Technische Universit�at WienArgentinierstra�e 8, A{1040 Wien, Austriafandi,philg@complang.tuwien.ac.atAbstract. The possible applications of Java range from small appletsto large, data-intensive scienti�c applications allocating memory in themulti-gigabyte range. As a consequence copying garbage collectors cannot ful�ll the requirements, as large objects can not be copied e�ciently.We analyze the allocation patterns and object lifespans for di�erent Javaapplications and present garbage collection techniques for these. Variousheuristics to reduce fragmentation are compared. We propose just{in{time generated customized marker functions as a promising optimizationduring the mark{phase.1 IntroductionThe programming language Java is used for a wide range of applications rangingfrom small applets running in a browser to large scienti�c programs taking hoursof computation time and gigabytes of memory. It is di�cult to design a garbagecollector which performs well under di�erent workloads. The garbage collectorfor CACAO { a 64 bit JavaVM for Alpha and MIPS processors [KG97,Kra98] {has been designed for large objects and large memory spaces but also performswell for small objects. In this study we evaluate the behavior of di�erent garbagecollection schemes under di�erent workloads to �nd common patterns which canbe used to design e�cient garbage collection heuristics.There exist hundreds of di�erent garbage collection algorithms [JL96,Wil94]which can be largely divided into copying and non{copying collectors. The non{copying mark{and{sweep collectors are very e�cient but it is widely believedthat they su�er of memory fragmentation problems. Recent studies [JW98]showed that the fragmentation problem is small. For large object spaces copy-ing collectors are unusable because of the copying overhead. It is impracticalto copy objects which reach Gbyte sizes. Feasible solutions are treadmill andmark{and{sweep collectors.The remainder of this paper is structured as follows: Section 2 lists relatedwork. In section 3 we brie
y present an overview of the garbage collector andpresent the result from the lifespan analysis for objects. We also discuss di�erentheuristics to improve garbage collection. Customized marking using just{in{timegenerated marker methods is introduced in section 4. Section 5 presents theexperimental results from our tests. We draw our conclusions in section 6.



2 Related WorkPrecise garbage collection for Java virtual machines has been described by Age-son et al. [ADM98]. In contrast to conservative (or partially conservative) collec-tors precise collectors have exact information about objects on stack and heap.The computation of the stack maps in a JavaVM is complicated by the fact thatlocal variables can contain any type across the call of a local subroutine (jsr)which is used to implement exception handler routines. During compilation theJava byte-code has to be rewritten to rename variables which are live acrossa call of an exception handler with di�erent types. Using the precise collectorthe heap size can be reduced by 4% on average in comparison with a partialconservative collector.A recent study by Johnstone and Wilson [JW98] evaluated the fragmentationof conventional dynamic storage allocators. The study analyzed 8 big C and C++programs using 16 di�erent implementations of malloc/free. Most of the liveobjects are very small (less than 64 bytes). Usually only very few large objectsexist. Large objects have a long life time. The best and also e�cient algorithmsshowed an average fragmentation below 3%. These fragmentation numbers arenot directly comparable to garbage collection fragmentation behavior since lifetimes and allocation/deallocation patterns are di�erent.Hicks et al. [HHMN98] studied the garbage collection times for large objectspaces. Using a separate non{copy collected space for large objects results insigni�cant performance improvements for copying garbage collectors. This studyevaluated varied size thresholds as well as whether or not large objects maycontain pointers. A treadmill collector was compared with a mark{and{sweepcollector. As benchmarks di�erent programs written in Java and SML are used.For Java programs optimal threshold values are smaller than for SML. There isno measurable di�erence in performance between the treadmill and the mark{and{sweep collector.Colnet et al. [CCZ98] describe compiler support to customize the mark{and{sweep algorithm in the SmallEi�el compiler. The SmallEi�el garbage collectoris a classical partially conservative mark{and{sweep collector. Type inferenceis used to compute the necessary information to segregate objects by type andstatically customize most of the GC code. In this study 22 di�erent implemen-tations of Othello (both leaky (which rely on a garbage collector) and non leakyversions) have been evaluated. The results show both a reduction in run timeand memory footprint compared with either no GC at all or the Boehm{Weisercollector [BW88].3 The garbage collectorWe implemented a conservative garbage collector using a mark{and{sweep algo-rithm. During the mark phase the contents of the stack are considered referencesto root objects. Starting with these root objects, objects on the heap are marked



recursively. Every heapblock contained in a marked object is considered a po-tential reference and has to be examined: if it points to the start of an unmarkedobject, that object is marked in turn.In order to store an indication of where objects start and whether objectsare marked, we use bitmaps where each bit represents one heapblock. Thesebitmaps encode whether an object starts at a heapblock, whether it is markedand whether it may contains references to other objects.The sweep phase is currently implemented using the start and free bitmaps.Continuous free space resulting from neighboring objects is automatically de-tected and freed as one block of memory. We are currently working on an in-cremental method of collecting and releasing this garbage, which may reducethe cost of sweeping by up to an order of magnitude as our preliminary testsindicate.Allocation is performed from a list of free memory blocks. First, we attemptto satisfy the allocation request with an exact block; if that fails, a part of alarger block is split o� and used. If no exact or large block can be found, wegrow the heap up to a maximum limit. As soon as that limit is reached, a garbagecollection is performed.3.1 Object lifespansTo collect information on object lifespans, we performed a full garbage collec-tion during each allocation request. The results con�rmed our hypothesis, thatobjects remain valid for either a very short period of time or for a very long one.Our experiments show that only about 20% of all objects live longer than 512bytes (which equals 10 allocations in most programs) (see �g. 1). This impliesthat the best method to reduce overall fragmentation, which is very signi�cantfor the total memory required for the execution of a program, is to collect earlyand often at the cost of a small increase in garbage collection time.3.2 Generational garbage collectionRecently, generational garbage collection [HM92] gained in popularity: it exploitsthe typical allocation patterns found in modern languages to optimize garbagecollection. Assuming, that memory allocated on the heap either becomes garbagevery quickly or remains valid for most of the program's runtime, garbage col-lection should di�erentiate between young and mature objects. While youngobjects have a high probability to die with the next collection, mature objectswill likely survive it. The generational approach separates the allocated objectscan into di�erent generations according to the number of collections they sur-vived. Whenever a garbage collection is triggered, they youngest generations areobserved �rst, which reduces the number of memory accesses required. Survivingobjects are promoted to older generations.Using a generational garbage collector may appear a good solution to thesmall lifespans observed, but it leads to severe problems: the write{barrier nec-essary to record cross{generational references imposes an overhead on all as-



0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k 128k256k512k 1m 2m 4m 8m

N
um

be
r 

of
 o

bj
ec

ts

Lifespan in bytesFig. 1. Lifespan graph for a compilation of JavaLex with javacsignments of objects. In addition, generational garbage collection uses a largeramount of heap space, as garbage in older collections is released only infrequently.This memory, which may remain uncollected for some time even after becominggarbage, can amount to a considerable memory area in applications with largememory requirements.3.3 Heuristical threshold valuesFragmentation can be reduced by scheduling collections on the extent of heap(i.e., the highest address used within the heap at any given time). Our garbagecollector collects as soon as a heuristically chosen threshold for the extent of theheap is exceeded. For the implementation we considered 3 heuristics:1. Adding a constant value.This naive technique ignores the smaller size of the heap after the collectionand grows the threshold very quickly.2. Adding a multiple of the current extent.Adding a multiple of the heap extent resulting from the garbage collectionignores the fact, that non{copying garbage collectors leave a fragmented heap(i.e., the extent of the heap is considerably larger than the heap size necessaryto hold all the objects on the heap). This leads to a quickly expanding heapfor non{copying garbage collectors, such as the mark{and{sweep collectorused in CACAO.3. Adding a fraction of the unused space.This is a very e�ective heuristic, which works well with the fragmented heaps



resulting from non{copying garbage collection. It reduces the overall frag-mentation, such that programs can be run with less memory than neededfor the other two strategies.

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

B
yt

es

After collection number...

Heap size (including free memory fragments)

heap_next_collection = heap_top + (heap_limit - heap_top) / 1
heap_next_collection = heap_top + (heap_limit - heap_top) / 2
heap_next_collection = heap_top + (heap_limit - heap_top) / 4
heap_next_collection = heap_top + (heap_limit - heap_top) / 8

heap_next_collection = heap_top + 128k
heap_next_collection = heap_top + 256k

Fig. 2. Heap size for di�erent threshold heuristics (javac)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

F
ra

gm
en

ta
tio

n 
in

 %

After collection number...

Fragmentation ratios for different heuristics

heap_next_collection = heap_top + (heap_limit - heap_top) / 1
heap_next_collection = heap_top + (heap_limit - heap_top) / 2
heap_next_collection = heap_top + (heap_limit - heap_top) / 4
heap_next_collection = heap_top + (heap_limit - heap_top) / 8

heap_next_collection = heap_top + 128k
heap_next_collection = heap_top + 256k

Fig. 3. Fragmentation for di�erent threshold heuristics (javac)Figures 2 and 3 show that the method of adding a fraction of the unused spaceis preferable, since it maintains a far more compact heap than the other variants.Additionally, it o�ers superior better performance during garbage collection bycollecting \early and often". This fact is due to the observed pattern of smallobjects with small lifespans; frequent collections keep the heap compact andreduce the cost of garbage collecting further by improving the caching behaviorof the mark{and-sweep algorithm.



4 Customized markingThe data gathered during our experiments indicates that about 60% of allheapblocks examined (for numerical applications this percentage raises to morethan 95%) during a marker pass are built{in types other than references (i.e.,integers, doubles). Nonetheless, these heapblocks are dereferenced and the re-sulting value checked against the bounds of the heap and an allocation{bitmapto verify whether an object actually begins at this address. We may concludefrom these �ndings, that a very large potential improvement in the performanceof garbage collection for large memory application would result from excludingthose heapblocks within an object, which will never contain pointers, from themarker pass. Two methods to store and evaluate this information exist:1. Bitmap based methods. The type{information for the physical compo-nents of classes can be stored as bitmaps within the class-info structures.These bitmaps encode boolean values indicating whether the heapblock ata certain o�set within the object heapblock may contain a reference ornot. During the mark{phase, these bitmaps are interpreted to customizethe marking on a per{class basis.The disadvantages of this approach are the overheads introduced by the in-terpretation of the bitmaps and the additional memory accesses necessary toretrieve the bitmaps. In addition, large objects containing only few pointerscan neither be represented e�ciently nor be marked without examining theentire bitmap.2. Just{in{time generated marker methods. The bitmap{based methodsdescribed above may be modi�ed by translating the information encodedwithin these bitmaps into executable code. For a portable implementationbyte code versions of the mark methods are generated during class loadingwhich are translated on demand into native code during garbage collection.This provides just{in{time generated marker methods customized for everyclass. During garbage collection these methods are called for every live ob-ject.This solution o�ers almost optimal execution times for the marker, becauseonly those heapblocks are examined which may contain references (i.e., allheapblocks, for which the compiler can determine that they will never con-tain a reference, are excluded). While additional code needs to be generatedand stored for every class, the storage overhead involved is negligible insize compared to the other information in class-info. Generally the resultingmarker method will require less than 50% of the memory accesses neededfor the naive approach.4.1 Conserving stack spaceRecursive marking algorithms require large amounts of stack space, particu-larly for deeply nested structures and long lists. This may cause stack over
ows.



Pointer reversal techniques provide an alternative to recursive marking, but im-pose far more memory accesses.A method to save both stack space, as well as improve performance by reduc-ing the number of necessary recursive calls is to optimize for tail recursion. Thisallows the last recursive call to reuse the current stack and return address. Thisis especially useful in the context of lists, where a next{pointer can be detectedand placed at the tail of the structure by the compiler. This optimization isparticularly bene�cial in the context of large memory applications, where largelists are processed.5 Experimental resultsTo evaluate fragmentation and di�erent heuristics we used following test appli-cations:javac the Java compilerjess Java Expert Shell System based on CLIPSdb memory resident data base systemraytrace a raytracer rendering a dinosaurscimark a mix of numeric applicationslinpack the famous linpack benchmarkBesides the small linpack benchmark, all applications allocate between 100and 500 Mbyte of objects. Our results show that most applications allocate onlysmall objects with average sizes between 30 and 60 bytes (see table 1). Onlythe scienti�c/numerical applications scimark and linpack used big arrays andhave an average object size of 810 respectively 1353 bytes. The distribution ofthe objects shows the peak at the small sizes with most objects smaller than 128bytes.Table 2 gives the number of references which have to be checked if they arevalid object pointers. For scienti�c programs nearly 100% of the pointers areeither false pointers (i.e., potential pointers that fall outside of the heap) ornull pointers. This result shows the potential performance improvement of theJIT-marker. The high percentage of null pointers demonstrates the importanceof checking the null pointer at the call site of the mark method.The data in table 1 and the fragmentation data in the plots and in table3 show fragmentation between 10 and 30% of the heap. Since the fragmentsare large enough for allocation of new objects the fragmentation is not a realproblem for Java garbage collectors.6 ConclusionJava applications with large objects require special techniques for garbage col-lection. Only non{copying collectors can provide acceptable performance both in



benchmark javac jess db raytrace scimark linpackheap size 62667832 468663656 124944496 187717936 43611752 334328objects 1340767 7918647 3202929 6338943 53817 247object size 46.7 59.1 39 29.6 810 135316 0 48 0 0 0 032 458205 1425465 3061233 4693884 563 2464 584415 4474601 98875 1419488 535 10128 224339 997584 42442 225550 268 4256 13493 1019885 17 15 16 4512 783 395 6 4 515 11024 2279 214 2 0 51914 12048 225 290 1 0 0 2034096 379 113 1 1 0 08192 180 47 1 0 0 016384 33 4 1 0 0 032768 2 1 1 0 0 065536 1 0 1 0 2 0131072 0 0 346 0 3 0262144 0 0 1 1 1 0Table 1. Object counts
benchmark javac jess db raytrace scimark linpackall references 12637996 6448116 41470054 41133853 478324 47842false pointers 5630274 2330767 29954232 26416277 445394 912null pointers 2225825 1089709 3087413 2968714 31372 46620false percentage 44.5 36.1 72.2 64.2 93.1 1.9null percentage 17.6 16.8 7.4 7.2 6.5 97.4Table 2. Reference checking
benchmark javac jess db raytrace scimark linpacknumber of fragments 46148 8449 212 599 5 0average size of fragments 147.3 1692 19394 5145 268041 0Table 3. Fragmentation



512k

1m

2m

4m

8m

1 5 9

B
yt

es

After collection number...

heapsize (including fragments)
accumulated size of life objects

accumulated size of free fragments

Fig. 4. Fragmentation of javac

256k

512k

1m

2m

4m

8m

1 5 9 13 17 21 25 29 33

B
yt

es

After collection number...

heapsize (including fragments)
accumulated size of life objects

accumulated size of free fragments

Fig. 5. Fragmentation of jessapplications with small objects and those with large objects. Our analysis of ob-ject lifespans demonstrated that almost all objects have very short lifespans. Thefragmentation analysis showed that fragmentation is not a signi�cant problemfor non{copying garbage collectors for Java. Just{in{time generated customizedmarker methods reduce the runtime overhead of marking by more than 60%.References[ADM98] Ole Agesen, David Detlefs, and J. Eliot B. Moss. Garbage collection and lo-cal variable type-precision and liveness in Java virtual machines. In Confer-ence on Programming Language Design and Implementation, volume 33(6)of SIGPLAN, pages 269{279, Montreal, 1998. ACM.



4k

8k

16k

32k

64k

128k

256k

512k

1m

2m

4m

8m

1 5 9 13 17 21 25 29

B
yt

es

After collection number...

heapsize (including fragments)
accumulated size of life objects

accumulated size of free fragments

Fig. 6. Fragmentation of db
256k

512k

1m

2m

4m

8m

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

B
yt

es

After collection number...

heapsize (including fragments)
accumulated size of life objects

accumulated size of free fragments

Fig. 7. Fragmentation of raytrace[BW88] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an unco-operative environment. Software Practice and Experience, 18(9):807{820,1988.[CCZ98] Dominique Colnet, Philippe Coucaud, and Olivier Zendra. Compiler sup-port to customize the mark and sweep algorithm. In 1998 InternationalSymposium on Memory Management, pages 154{165, Vancouver, 1998.ACM.[HHMN98] Michael Hicks, Luke Hornof, Jonathan T. Moore, and Scott Nettles. Astudy of large object spaces. In 1998 International Symposium on MemoryManagement, pages 138{145, Vancouver, 1998. ACM.[HM92] Richard L. Hudson and J. Eliot B. Moss. Incremental collection of ma-ture objects. In Proceedings of the International Workshop on MemoryManagement, pages 388{403, September 1992.[JL96] Richard Jones and Rafael Lins. Garbage Collection. John Wiley, 1996.



64
128
256
512

1k
2k
4k
8k

16k
32k
64k

128k
256k
512k

1m
2m

1 5 9 13 17 21 25 29 33

B
yt

es

After collection number...

heapsize (including fragments)
accumulated size of life objects

accumulated size of free fragments

Fig. 8. Fragmentation of scimark

64

128

256

512

1k

2k

4k

8k

16k

32k

64k

128k

256k

1 5 9

B
yt

es

After collection number...

heapsize (including fragments)
accumulated size of life objects

accumulated size of free fragments

Fig. 9. Fragmentation of linpack[JW98] Mark S. Johnstone and Paul R. Wilson. The memory fragmentation prob-lem: Solved? In 1998 International Symposium on Memory Management,Vancouver, 1998. ACM.[KG97] Andreas Krall and Reinhard Gra
. CACAO { a 64 bit JavaVM just-in-timecompiler. Concurrency: Practice and Experience, 9(11):1017{1030, 1997.[Kra98] Andreas Krall. E�cient JavaVM just-in-time compilation. In Jean-Luc Gaudiot, editor, International Conference on Parallel Architec-tures and Compilation Techniques, pages 205{212, Paris, October 1998.IFIP,ACM,IEEE, North-Holland.[Wil94] Paul R. Wilson. Uniprocessor garbage collection techniques. In ACM Com-puting Surveys, page to apear. ACM, 1994.


