
Leveraging Predicated Executi
Processing

Dietmar Ebner Florian Brandner

Institut für Computersprachen

Technische Universität Wien

Argentinierstr. 8, A-1040 Wien, A

{ebner,brandner,andi}@complang.tuw

Abstract—Modern compression standards such as H.264, DivX,
or VC-1 provide astonishing quality at the costs of steadily
increasing processing requirements. Therefore, efficient solutions
for mobile multimedia devices have to effectively leverage in-
struction level parallelism (ILP), which is often achieved by the
deployment of EPIC (Explicitly Parallel Instruction Computing)
architectures. A characteristical architectural feature to increase
the available ILP in the presence of control flow is predicated
execution. Compilers targeting those hardware platforms are
responsible to carefully convert control flow into condition-
al/predicated instructions – a process called if-conversion.

We describe an effective if-conversion algorithm for the CHILI
– a novel hardware architecture specifically designed for digital
video processing and mobile multimedia consumer electronic.
Several architectural characteristics such as the lack of branch
prediction units, large delay slots, and the provided predication
model are significantly different from previous work, typically
aiming mainstream architectures such as Intel Itanium.

The algorithm has been implemented for an optimizing com-
piler based on LLVM. Experimental results using a cycle accurate
simulator for the well known benchmark suite MiBench and
several multimedia codecs show a speed improvement of about
18% on average. On the same programs, our compiler achieves
a speedup of 21% in comparison to the existing code generator
based on gcc.

I. INTRODUCTION

With the emergence of modern compression standards such

as H.264, DivX, and VC-1, the complexity of multimedia

systems ranging from mobile multimedia devices to high

definition video systems rises steadily, imposing new demands

on both software and hardware design. Highly optimizing

compilers are needed to build efficient systems leveraging the

particular hardware architecture despite of increasing time-to-

market pressure. At the same time, high performance require-

ments necessitate the ability to execute multiple instructions

per cycle. EPIC (Explicitly Parallel Instruction Computing)

architectures supporting predicated execution models are more

and more applied for multimedia applications.

Compilers targeting those hardware platforms are respon-

sible to explicitly group instructions together and to acquire

enough instruction level parallelism to keep the processor

busy. The latter is often achieved by eliminating control

dependencies sequentializing the surrounding instructions by

This work is supported in part by ON DEMAND Microelectronics and the
Christian Doppler Forschungsgesellschaft.

the use of p

result is cond

conversion. T

paths in the c

thereby expos

ally, the cont

enables furth

vectorization,

An importa

the compilatio

during code g

and optimizat

to take full

framework. H

of a certain

requiring a fo

transformatio

to defer if-con

scheduling [1

for more prec

Another qu

should be con

efficient exec

strongly depe

scheduling de

In this wo

the CHILI ar

ON DEMAN

conditional ex

for digital vid

electronic. An

tinctive predic

Our algorit

dent compone

applied late in

scheduling/bu

work in the s

tional slot per

for code dup

experimental

1http://www.llv

978-1-4244-1654-7/07/$25.00 © 2007 IEEE 85
on for Multimedia

Andreas Krall

ustria

ien.ac.at

roperly predicated machine instructions whose

itionally nullified – a process often referred as if-
his allows to execute instructions from different

ontrol flow graph within the same basic block,

ing more parallelism to the scheduler. Addition-

rol flow graph (CFG) is simplified which often

er optimizations such as software pipelining,

or certain loop transformations.

nt issue is when to carry out if-conversion in

n process. One option is to apply it very early

eneration, thereby requiring subsequent analysis

ions to deal with predicated code [2]. This allows

advantage of predication within the compiler

owever, it is very hard to estimate the real benefit

transformation at this level, therefore typically

rm of reverse if-conversion if it turns out that a

n has been counterproductive. Another option is

version right before code layout and instruction

1]. This often facilitates prior passes and allows

ise cost calculations.

estions that has to be addressed carefully is what
verted into a predicated form. In order to achieve

ution, a delicate balance has to be found that is

ndent on the particular architecture and related

cisions.

rk, we describe an if-conversion algorithm for

chitecture – a novel 4-way VLIW processor by

D Microelectronics with extensive support for

ecution. This platform is specifically designed

eo processing and mobile multimedia consumer

overview with a short description of the dis-

ation model is given in Section III.

hm is implemented as a target architecture depen-

nt of a static compiler based on LLVM1 and is

the compilation process right before instruction

ndling and code layout. It differs from previous

pecial predication model that requires an addi-

predicated instruction and the inherent support

lication; see Section IV. We provide detailed

results and conclusions in sections V and VI.

m.org

ESTIMedia 2007

II. RELATED WORK

Allen et al. [1] were the first to describe if-conversion –

the conversion of control dependencies to data dependencies

– in a vectorizing compiler. This transformation enables vec-

torization of sections of code which otherwise could not be

converted by the Parallel Fortran Converter. It is noted that if-

conversion has many application areas beyond vectorization.

In [5] Dehnert et al. describe the hardware support of the

Cydra 5 for software pipelining. Important are the single-bit

Iteration Control Registers (ICRs) which are used to control

predicated execution. If-conversion plays an important role in

software pipelining for loop bodies up to 20 basic blocks.

Warter et al. [12] were the first to introduce reverse if-

conversion that transforms scheduled if-converted code back to

the control flow graph representation. They defined a predicate

intermediate representation (predicate IR) and transformations

from the control flow graph to predicate IR and back. With

this transformations, the task of global scheduling is reduced

to local scheduling.

Efficient execution of code generated for a processor with

predicated execution requires to balance between control flow

and predication. August et al. [3] present the partial reverse

control framework that allows the compiler to maximize the

benefits of predication as a compiler representation while

delaying the final balancing of control flow and predication to

scheduling time. The partial reverse if-conversion framework

achieves great speedups over the hyperblock framework.

Fang et al. [6] describe an algorithm which not only

minimizes the number of predicates used for basic blocks,

but also moves the predicate assignments as early as pos-

sible to relax dependency constraints introduced by the if-

conversion. Additionally, common subexpression elimination

for if-converted code is presented. No empirical data about the

effectiveness of the algorithm is given.

Choi et al. [4] did a comprehensive study to evaluate three

different levels of if-conversion aggressiveness measuring the

effects on overall execution time, register pressure, code size,

and branch behavior. If-conversion could remove 29% of the

branch mispredictions, but the speedup is quite small.

Usually, if-conversion is done early in the compilation

process. Snavely et al. [11] present a link-time optimizer

which does predicate analysis and if-conversion very late in the

compilation process at the same time as instruction scheduling

and just before code layout. The link-time optimized code is

denser and almost as fast as the best code produced by the

Intel ecc compiler. For the same programs compiled with the

gcc compiler the average speedup is almost 6%.

Hazelwood and Conte [8] developed a lightweight algorithm

for if-conversion during dynamic optimization. This algorithm

uses dynamic branch prediction information (not including

the warm up phase) to apply if-conversion and reverse if-

conversion to optimize the code of the static compiler. The

method effectively balances the effects of static if-conversion,

achieving speedups of up to 14.7%.

F

III. T

The effects

architectural

of branch pr

execution, or

previous work

almost by hal

Therefore, thi

of our target a

predication m

CHILI is

architecture s

processing. A

ure 1. Each s

offering 64 3

on each of th

the data mem

the first slot a

instructions d

case.

Most exist

only partial su

to conditiona

nullify the res

source predic

beforehand. T

that condition

predicated wi

of binary com

instructions th

unset respect

additional slo

can be used to

directly succe

and store instr

If multiple in

86
ig. 1. Overview of the CHILI architecture.

ARGET ARCHITECTURE DESCRIPTION

of if-conversion strongly depend on several

characteristics such as the absence or presence

ediction, the extend of support for predicated

the number of available branch units, e.g.,
[10] shows that the performance gain is reduced

f when using two instead of one branch unit(s).

s section describes the most important properties

rchitecture and gives an overview of the provided

odel.

a 4-way VLIW (Very Long Instruction Word)

pecifically aimed for efficient (mobile) video

n Overview of the architecture is given in Fig-

lot has access to a general purpose register file

2-bit registers. Loads and Stores can be issued

e four slots and are executed out of order in

ory subsystem. Branches can only be issued in

nd expose a large delay slot of five cycles, i.e.,
irectly succeeding a branch are executed in any

ing general purpose architectures have either

pport for predicated execution (mostly restricted

l moves, e.g., DEC Alpha, Sun Sparc v9) or

ult based on the value of an additional boolean

ate (Itanium, ARM), which has to be evaluated

he CHILI differs from these architectures in

s are evaluated alongside to the instruction to be

thin the same bundle. Therefore, the full range

parisons is provided in addition to special test

at evaluate to true if a particular bit is set or

ively. However, these computations require an

t in the instruction word. In particular, even slots

evaluate the predicate for the instruction in the

eding slot. The only exception are currently load

uctions, which cannot be executed conditionally.

structions are defining a register within the same

int min(int a, int b) {
return a < b ? a : b;

}

min:
{ ret; r0 = r1; if (r2 <= r1) r0 = r2; }
{ nop; nop; nop; nop } //repeated 4 times

Fig. 2. Simple minimum computation for the CHILI architecture.

bundle, the value produced in the slot with the highest index

is kept.

As an example, consider the simple minimum function

depicted in Figure 2. Register r0 denotes the return value

while r1 and r2 are arguments one and two respec-

tively. Semicolons are used as a delimiter among instruc-

tions of the same bundle. Note, that the conditional assign-

ment if (r2 <= r1) r0 = r2; occupies two consecu-

tive slots in total. The ret instruction has a five cycle delay

slot that has to be filled up with no-ops.

The additional costs for predicated instructions in terms of

resource usage and code size have to be carefully considered

during if-conversion. On the other hand, the large instruction

word and the long delay slot of branches usually expose a sig-

nificant amount of spare resources that can be effectively used

for if-conversion. We provide detailed experimental results of

our if-conversion algorithm in Section V.

IV. INCREASING ILP BY IF-CONVERSION

This section describes our if-conversion approach that has

been implemented for a C/C++ compiler backend for the

CHILI architecture. The compiler is based on LLVM – a

carefully designed set of libraries that can be easily com-

bined in order to build optimizing static compilers as well

as dynamic code generators. While most parts of LLVM

operate on a well defined, target independent IR (intermediate

representation), our if-conversion procedure operates on an

abstract representation of concrete target dependent machine

instructions, already after instruction selection and register

allocation.

None of those early code generation passes are aware of the

VLIW design of the CHILI and treat machine instructions as

a sequential list of operations. A special scheduling/bundling

pass is responsible for grouping them together to VLIW

bundles that adhere scheduling and resource constraints and

make effective use of branch delay slots.

An important issue is to decide when to carry out if-

conversion in the compilation process. Our approach is to

perform the transformation right before bundling and code

layout. This allows us to treat if-conversion as a separate

– optional – phase and keep the rest of the backend small

and simple. Previous work [11] shows that such an approach

is capable to retain most of the optimization opportunities

present in the input program. A major advantage is that code

transformations such as spill code insertion have already been

carried out. This allows us to if-convert the final machine

instructions without taking care of subsequent passes.

It is import

ation of VLIW

the if-convers

only roughly

to the limited

the other hand

the increased

general.

A. Algorithm

The overal

outlined in F

of the contro

predecessors,

original prog

removed enti

said to be if-
conditionally

A simple e

a CFG fragm

that all of the

Since cond

tional slot, ou

ever possible

information f

the branch to

that do not cl

block can be

Several asp

• It is imp

with mo

Thus, tho

times. T

breath fi

particula

iting a pa

duplicati

depicted

five or s

• Predicate

b are op

While a
an imme

of condi

additiona

However

– If th

oper

tion

orig

the

– Whe

pred

junc

The

that

87
ant to note that the final scheduling and the cre-

bundles is carried out in a dedicated pass after

ion procedure. The main drawback is that we can

estimate the profitability of transformations due

knowledge of the final instruction bundling. On

, this allows the scheduler to effectively exploit

parallelism present in the if-converted code in

Description

l structure of our if-conversion algorithm is

igure 3. In each transformation, a single block

l flow graph (CFG) is merged into one of its

thereby always preserving the semantics of the

ram. Nodes with a single predecessor can be

rely after the conversion. A basic block S is

convertible if all instructions can be executed

without side-effects on the remaining program.

xample showing the stepwise transformation of

ent is outlined in Figure 4. The sample assumes

blocks involved are eligible for if-conversion.

itional execution of instructions requires an addi-

r aim is to execute them unconditionally when-

. Therefore, we compute and maintain liveness

or the insertion point (the original location of

be replaced). Instructions without side-effects

obber any register that is live in the predecessor

inserted without predication.

ects of the algorithm deserve comment:

ortant to note that we do not exclude blocks

re than one predecessor from consideration.

se blocks might be effectively duplicated several

herefore, it is essential to process the CFG in

rst order to ensure that all predecessors of a

r block have already been considered when vis-

rticular node in order to avoid unfavorable code

on, e.g., compare the transformation sequence

in Figure 4 with an order where either block

ix is processed prior to their predecessors.

s are represented as a triple (a,�, b) while a and

erands and � denotes the comparison operator.

is always a machine register, b might also be

diate value. Due to the implicit re-evaluation

tions, we can easily negate conditions at no

l cost by replacing � with the inverse operator.

, there are two issues to consider:

ere is an instruction that clobbers one of the

ands and there is at least one succeeding instruc-

that has to be predicated, we have to backup the

inal value using a temporary register and modify

condition accordingly.

n if-converting instructions that are already

icated, we have to compute the logical con-

tion of both conditions, which is quite costly.

refore, we maintain a set of available predicates

have already been computed within a block and

1: compute liveness information

2: for all basics blocks B in breath first order do
3: for all successors S of B do
4: normalize S and B
5: if S is if-convertible into B then
6: if there is a branch instruction that can be eliminated when if-con

7: if it is profitable to if-convert S into B then
8: for all instructions s in S do
9: if s has side effects or clobbers any register live at the ins

10: insert an appropriately predicated version of s into B
11: else
12: clone s and insert it into B
13: update liveness information appropriately

14: if B was the only predecessor of S then
15: remove S entirely from the control flow graph

16: cleanup unnecessary branches and merge blocks if possible

Fig. 3. General outline of the if-conversion

(2)

(1)

(3)

(5)

(4)

(6)

(1,2)

(3)

(5)

(4)

(6)

(1,2,3)

(5)

(4)

(6)

Fig. 4. Stepwise transformation of complex CF

have not been invalidated by consecutive instruc-

tions. This is a very common case for large blocks,

e.g., instructions in basic block four in Figure 4 have

to be predicated with the logical conjunction of the

conditions corresponding to edges (1, 3) and (3, 4).
• If-conversion is complicated by basic blocks that might

fall through into their immediate successor. Therefore, we

identify those blocks and normalize them, i.e., explicit

jump instructions are inserted. After if-conversion, we

perform the inverse operation and cleanup those unnec-

essary branches. Additionally, basic block chains without

side exits and entries are merged into a single block. In

general, this exposes more parallelism to the basic block

local scheduling/bundling pass.

A very delicate question is to determine whether it is

profitable to if-convert a particular block. Therefore, we use a

combination of several heuristic criteria:

1) Loop Depth: Let l(B) denote the loop nesting level of

block B, then we do not if-convert a block B′ into B if

l(B′) < l(B), i.e., we do not move code into loop bodies.

2) Block Siz
with add

predicate

architect
value is

block. I

accordin

different

for addit

3) DDG De
ILP to k

that have

along w

blocks w

can seve

frequent)

false. Th

of the co

exclude t

a specifi

88
verting S into B then

ertion point then

algorithm.

(1,2,3,
4)

(5)

(6)

(1,2,3,
4,5,6)

G fragments.

e: The sum of latencies of instructions combined

itional costs for instructions that have to be

d is compared to an experimentally determined,

ure dependent threshold; see Section V. The

intended to be a measure for the size of the

nstructions with high latencies are accounted

gly. For blocks with more than one predecessor, a

– much smaller – threshold is applied to account

ional costs in terms of code size.

pth: Typically, it is very hard to acquire enough

eep a 4-way machine busy and most instructions

been if-converted can be efficiently scheduled

ith the remaining blocks. However, converting

ith a lot of dependencies among the instructions

rely increase the execution time of (possibly

paths that are taken if the particular predicate is

us, we additionally compute the maximum depth
rresponding data dependence graph (DDG) and

hose basic blocks from consideration that exceed

c threshold.

benchmark lines code size
of code no if-conv full if-conv

CRC32 136 736770 736502 -0.03%
FFT 276 839581 839401 -0.02%
adpcm 183 695836 694324 -0.21%
basicmath 326 936928 933069 -0.41%
bitcount 549 656739 656172 -0.08%
blowfish 1185 722480 721897 -0.08%
dijkstra 142 980352 980168 -0.01%
h.263 4789 1802461 1757438 -2.49%
jpeg 15026 1929910 1899473 -1.57%
mp3 8758 1193236 1166789 -2.21%
sha 205 699281 698345 -0.13%
stringsearch 3130 651436 651192 -0.03%
susan 1454 1102714 1085149 -1.59%

TABLE I
BENCHMARK CHARACTERISTICS

V. EXPERIMENTAL RESULTS

We evaluate our algorithm using a cycle accurate simulator

for the CHILI architecture. There is no operating system layer

– all benchmarks are simulated to run directly on the hardware.

Since simulation is a very time consuming task, the default

inputs for some of the benchmarks are slightly shortened.

Most of the test programs are taken from the MiBench suite

[9], [7], a free and commercially representative benchmark

suite for embedded architectures. We omit those that cannot be

compiled with newlib because of dependencies on operating

system features such as sockets and pipes. In addition, we add

some multimedia decoders such as h.263, jpeg, and mp3.

Some characteristics of our test programs are shown in Table I.

As we describe in Section IV, the decision if a block

is going to be if-converted depends on several architecture

dependent thresholds. The average improvement for various

combinations of instruction and depth threshold is shown in

Figure 5. The results have been gathered with a set of ten

benchmarks that could be simulated in reasonable time (less

than 30 minutes per instance). For blocks with more than

one predecessor, we apply a constant threshold of two. It can

be seen that too large thresholds even lead to a decrease of

performance. However, this effect is slightly obscured by the

missing support for conditional loads and stores, which are

likely to be present in large basic blocks.

The speedup achieved by if-conversion for our benchmark

set is shown in Figure 6. While some small instances do

not offer many possibilities for if-conversion, benchmarks

such as adpcm are sped up by an astonishing factor of

2.82. The average improvement over the whole benchmark

set is 18%. Interestingly, a significant fraction of the speedup

is already achieved by simple conditional move instructions

(7%). Ignoring the huge speedup of adpcm, the average

improvement is 5% and 3% respectively.

In contrast to our expectations, if-conversion seems to have

a throughout positive effect on code size; see Table I. None of

the benchmarks has been increased while the average savings

are about 0.71%.

Interestingly, code duplication does not have much effect on

�
�
�
��

�
�
�

 !�"

 !"

 !#"

$

$!�"

$!"

$!#"

�

�!�"

�!"

�!#"

�

$ $

�
�
�
��

�
()

�
��
��

�
�
�

Fig. 6. Speedu

�
�
�
��

�
�
�

 !�"

 !"

 !#"

$

$!�"

$!"

$!#"

�

�!�"

�!"

�!#"

$!�%

$

�
�
�
��

�
��

�
��
��

�
�
�

Fig. 7. Speed

both performa

code size is

the speedup

duplication is

In compari

that has a mu

the average sp

In this wor

dure to conve

for an embedd

predication su

a static comp

contrast to m

late in the c

scheduling/bu

predicated ex

platform.

Experiment

well known b

codecs show

On the same

21% on the b

based on gc
have a big eff

For some

even slightly

89
	

��

�	
��
�

	�
�

��
��
��
��

��
��
���
�

�
��
��
�	

��
��

��
��

�� ��
	

��
��
��
��
	�
��

��
�	
�

	�
��
	�
�

�!%�

$!&% $ $

$!�%

$! � $! '
$!$�

$ $

$!$%

p achieved through if-conversion for the LLVM compiler.

	

��

�	
��
�

	
��

��
��
��
��

��
��
���
�

�
��
��
�	

��
��

��
��

�
�

��
	

��
��
��
��
	�
��

��
�	
�

	�
��
	
��

�!"�

$

 !%"

$! $ $! �

$!��

$!$$
$! �

$!�"

$

$!�#
$!�$

up in comparison to the existing compiler based on gcc.

nce and code size. The average improvement in

slightly decreased from 0.71% to 0.69% while

in comparison to a version with disabled code

less than one percent.

son to an existing compiler based on gcc 4.2
ch more conservative approach to if-conversion,

eedup is about 21%; see Figure 7.

VI. CONCLUSIONS

k, we describe a simple and yet effective proce-

rt control dependencies into data dependencies

ed 4-way VLIW multimedia processor with full

pport. Our algorithm has been implemented for

iler backend based on the LLVM framework. In

ost previous work, if-conversion is done very

ompilation process. Apart from a subsequent

ndling pass, the backend is neither aware of

ecution nor of the VLIW nature of the target

al results using a cycle accurate simulator for the

enchmark suite MiBench and several multimedia

a speed improvement of about 18% on average.

programs, our compiler achieves a speedup of

est code produced by the existing code generator

c. Interestingly, code duplication does neither

ect on the resulting code size nor on runtime.

of the benchmarks, if-conversion shows no or

negative effects. Apparently, this is due to bad

R
un

tim
e

Im
pr

ov
em

en
t

R
un

tim
e

Im
pr

ov
em

en
t

 0
 5

 10
 15

 20
 25

Depth Threshold 0
 10

 20

 0.96
 0.98

 1
 1.02
 1.04
 1.06
 1.08

 1.1
 1.12

Fig. 5. Experimental verification of architecture dep

if-conversion decisions, which are based on criteria that do

not depend on the scheduling of the surrounding blocks. This

keeps the compiler backend simple and modular but appears to

be a major burden for further improvements. Therefore, future

work will include a tighter integration of the if-conversion

procedure with the existing scheduling/bundling pass and/or

reverse if-conversion techniques.

REFERENCES

[1] John R. Allen, Ken Kennedy, Carrie Porterfield, and Joe D. Warren.
Conversion of control dependence to data dependence. In Alan Demers,
editor, Conference Record of the Tenth Annual ACM Symposium on
Principles of Programming Languages, pages 177–189, Austin, TX,
January 1983. ACM SIGACT and SIGPLAN, ACM Press.

[2] David I. August, Wen mei W. Hwu, and Scott A. Mahlke. A framework
for balancing control flow and predication. In Proceedings of the 30th
Annual International Symposium on Microarchitecture, pages 92–103,
Research Triangle Park, North Carolina, December 1–3, 1997. IEEE
Computer Society TC-MICRO and ACM SIGMICRO.

[3] David I. August, Wen mei W. Hwu, and Scott A. Mahlke. The
partial reverse if-conversion framework for balancing control flow and
predication. International Journal of Parallel Programming, 27(5):381–
423, 1999.

[4] Youngsoo Choi, Allan D. Knies, Luke Gerke, and Tin-Fook Ngai. The
impact of if-conversion and branch prediction on program execution
on the intel itanium processor. In Proceedings of the 34th Annual
International Symposium on Microarchitecture, pages 182–191, Austin,
Texas, December 1–5, 2001. ACM/IEEE.

[5] James C. Dehnert, Peter Y.-T. Hsu, and Joseph P. Bratt. Overlapped
loop support in the cydra 5. In ASPLOS-III: Proceedings of the
third international conference on Architectural support for programming

languages
1989. ACM

[6] Jesse Zhixi
predicates a
Sehr, Utpal
Padua, edi
Languages
California,
Computer S

[7] M. R. Guth
R. B. Brow
benchmark
Workload C

[8] Kim M. Ha
dynamic if
of the 200
Compilatio
15–19, 200

[9] MiBench W
[10] Scott A. M

gust, and W
execution s
22nd annua
138–150, N

[11] Noah Snav
analysis an
2002.

[12] Nancy J. W
ishna Rau.
299, June 1

90
 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 30
 40

 50
 60

 70
 80

 90
 100

Instruction Threshold

endent thresholds.

and operating systems, pages 26–38, New York, NY, USA,
Press.
Fang. Compiler algorithms on if-conversion, speculative

ssignment and predicated code optimizations. In David C.
Banerjee, David Gelernter, Alexandru Nicolau, and David A.
tors, Proceedings of the 9th International Workshop on
and Compilers for Parallel Computing, LCPC’96 (San Jose,
August 8-10, 1996), volume 1239 of Lecture Notes in
cience, pages 135–153. Springer, 1996.
aus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
n. MiBench: A free, commercially representative embedded
suite. In Proceedings of the IEEE 4th Annual Workshop on
haracterization, December 2001.
zelwood and Thomas M. Conte. A lightweight algorithm for
-conversion during dynamic optimization. In Proceedings
0 International Conference on Parallel Architectures and
n Techniques (PACT ’00), pages 71–80, Philadelphia, October
0. IEEE Computer Society Press.
ebsite. http://www.eecs.umich.edu/mibench/.

ahlke, Richard E. Hank, James E. McCormick, David I. Au-
en-Mei W. Hwu. A comparison of full and partial predicated
upport for ILP processors. In ISCA ’95: Proceedings of the
l international symposium on Computer architecture, pages
ew York, NY, USA, 1995. ACM Press.
ely, Saumya Debray, and Gregory Andrews. Predicate

d if-conversion in an itanium link-time optimizer, October 01

arter, Scott A. Mahlke, Wen-Mei W. Hwu, and B. Ramakr-
Reverse If-Conversion. ACM SIGPLAN Notices, 28(6):290–
993.

